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Abstract

Recently, convolutional neural networks with 3D kernels
(3D CNNs) have been very popular in computer vision com-
munity as a result of their superior ability of extracting
spatio-temporal features within video frames compared to
2D CNNs. Although there has been great advances recently
to build resource efficient 2D CNN architectures consider-
ing memory and power budget, there is hardly any simi-
lar resource efficient architectures for 3D CNNs. In this
paper, we have converted various well-known resource ef-
ficient 2D CNNs to 3D CNNs and evaluated their perfor-
mance on three major benchmarks in terms of classification
accuracy for different complexity levels. We have experi-
mented on (1) Kinetics-600 dataset to inspect their capacity
to learn, (2) Jester dataset to inspect their ability to capture
motion patterns, and (3) UCF-101 to inspect the applica-
bility of transfer learning. We have evaluated the run-time
performance of each model on a single Titan XP GPU and
a Jetson TX2 embedded system. The results of this study
show that these models can be utilized for different types
of real-world applications since they provide real-time per-
formance with considerable accuracies and memory usage.
Our analysis on different complexity levels shows that the
resource efficient 3D CNNs should not be designed too shal-
low or narrow in order to save complexity. The codes and
pretrained models used in this work are publicly available
1

1. Introduction

Ever since AlexNet [18] won the ImageNet Challenge
(ILSVRC 2012 [24]), convolutional neural networks
(CNNs) have dominated the majority of the computer
vision tasks. Then the primary trend has been more on
creating deeper and wider CNN architectures to achieve
higher accuracies [10, 26, 29]. However, in real world
computer vision applications such as face recognition,
robot navigation and augmented reality, the tasks need to be
carried out under runtime constraints on a computationally
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limited platform. Only recently, there has been a rising
interest in building resource efficient convolutional neural
networks but it is limited with 2-dimensional kernels (2D)
[13, 11, 37, 20, 25].

The same history is repeating for CNNs with 3-
dimensional (3D) kernels [9]. Since the large video
datasets became available, the primary trend for video
recognition tasks is again to achieve higher accuracies by
building deeper and wider architectures [31, 22, 32, 9, 6].
Considering the fact that 3D CNNs achieve better per-
formance for video recognition tasks compared to 2D
CNNs [3], it is very likely that this 3D CNN architecture
search will continue until the achieved accuracies saturate.
However, real-world applications still require resource
efficient 3D CNN architectures taking runtime, memory
and power budget into account. This work aims to fill this
research gap.

In this paper, we first have created the 3D versions
of the well-known 2D resource efficient architectures:
SqueezeNet, MobileNet, ShuffleNet, MobileNetV2 and
ShuffleNetV2. We have evaluated t-he performance of
these architectures on three publicly available benchmarks:

(1) Kinetics-600 dataset[3] to learn models’ capacities.

(2) Jester dataset [1] to learn how well the models capture
the motion.

(3) UCF-101 dataset [27] to evaluate the applicability of
transfer learning for each model.

The computational complexity of the implemented archi-
tectures are measured in terms of floating point operations
(FLOPs), which is widely used metric among resource ef-
ficient architectures. In this paper, the number of FLOPs
refers to the number of multiply-adds. However, as high-
lighted by [20], the number of FLOPs is an indirect metric
which does not give an actual performance indication like
speed or latency. Therefore, for all the implemented archi-
tectures we have also evaluated their run-time performance
on two different platforms, which are Nvidia Titan XP GPU
and Jetson TX2 embedded system-on-module (SoM) with
integrated 256-core Pascal GPU.



2. Related Work

Lately, there is a rising interest in building small and ef-
ficient neural networks [13, 11, 20, 23, 34, 7]. The com-
mon approaches used for this objective can be categorized
under two categories: (i) Accelerating the pretrained net-
works, or (ii) directly constructing small networks by ma-
nipulating kernels. For the first one, [7, 8, 33, 21] proposes
to prune either network connections or channels without re-
ducing the performance of pretrained models. Additionally,
many other methods apply quantization [23, 28, 34] or fac-
torization [19, 14, 15] for the same objective. However, our
focus is on the second one for directly designing small and
resource efficient 3D CNN architectures.

Current well-known resource efficient CNN architec-
tures are all constructed with 2D convolutional kernels and
benchmarked at ImageNet. SqueezeNet [13] reduced the
number of parameters and computation while maintain-
ing the classification performance. MobileNet [11] makes
use of depthwise separable convolutions to construct light-
weight deep neural networks. The depthwise separable con-
volutions factorize the standard convolutions into a depth-
wise convolution followed by a 1x1 pointwise convolution.
Compared to standard convolutions, depthwise separable
convolutions use between 8§ to 9 times less parameters and
computations. ShuffleNet [37] proposes to use pointwise
group convolutions and channel shuffle in order to reduce
computational cost. MobileNetv2 [25] makes use of the
inverted residual structure where the intermediate expan-
sion layer uses depthwise convolutions. ShuffleNetV2 [20]
builds on top of ShuffleNet [37] using channel split together
with channel shuffle which realizes a feature reuse pattern.

These architectures intensively make use of group con-
volutions and depthwise separable convolutions. Group
convolutions are first introduced in AlexNet [18] and effi-
ciently utilized in ResNeXt [35]. Depthwise separable con-
volutions are introduced in Xception [5] and they are the
main building blocks for majority of lightweight architec-
tures.

All of the above-mentioned resource efficient architec-
tures are 2D CNNs. They are designed to operate on static
images and evaluated on a very large benchmark (i.e., Ima-
geNet). To the best of our knowledge, this is the first work
that proposes and evaluates resource efficient 3D CNNs on
large scale video benchmarks.

3D CNNs such as well-known C3D [30] require sig-
nificantly more parameters and computations compared to
their 2D counterparts which make them harder to train and
prone to overfitting. With the availability of large scale
video datasets such as Sports-1M [16], Kinetics-400 [3],
this problem is solved. Moreover, [3] proved that 3D CNNs
achieve better accuracies compared to 2D CNNs for video
classification task. Consequently, 3D CNN architecture
search is an active area in research community to achieve

higher accuracies.

Several 3D CNN architectures have been proposed re-
cently. Carreira et al. propose Inflated 3D CNN (I3D) [3],
where the filters and pooling kernels of a deep CNN are
expanded to 3D, making it possible to leverage successful
ImageNet architecture designs and their pretrained models.
P3D [22] and (2+1)D [32] propose to decompose 3D con-
volutions into 2D and 1D convolutions operating on spatial
and depth dimensions, respectively. In [9], 3D versions of
famous ImageNet architectures such as ResNet [10], Wide
ResNet [36], ResNeXt [35] and DenseNet [12] are evalu-
ated and it has been shown that ResNeXt achieves better re-
sults compared to others. Recently, Feichtenhofer et al. pro-
pose a novel architecture named SlowFast [6], which uses a
Slow pathway, operating at low frame rate, to capture static
content of a video, and a Fast pathway, operating at high
frame rate, to capture the dynamic content of a video.

Up to now, nearly all the 3D CNN architectures in the
literature are heavyweight, requiring 10s and even 100s bil-
lions of floating point operations (FLOPs). Moreover, ma-
jority of these architectures also use optical flow modal-
ity, which increases the complexity even further. Our fo-
cus in this work is to evaluate 3D CNNs having less than
500 MFLOPs. Consequently, we have implemented the 3D
version of SqueezeNet [13], MobileNet [11], MobileNetV2
[25], ShuffleNet [37] and ShuffleNetV2 [20] for 4 differ-
ent complexity levels and then evaluated them on 3 differ-
ent video benchmarks. We have evaluated our architectures
only using RGB modality without computing costly optical
flow modality.

3. Resource Efficient 3D CNN Architectures

In this section, we explain the details of the resource ef-
ficient 3D CNN architectures that have been proposed and
evaluated within the scope of this work. We initially in-
troduce the 3D versions of the well-know resource efficient
2D CNN architectures by explaining their building blocks
and networks structures. Then we compare these models in
terms of number of layers, nonlinearities, and skip connec-
tions. We conclude with training details of the models.

3.1. 3D Versions of Well-known Architectures

In this section, we give the implementation details of our
resource efficient architectures with 3-dimensional kernels,
which are converted from well-know resource efficient 2D
CNN architectures. Main building blocks of each architec-
ture are depicted in Fig. 1. The input is always considered
as a clip of 16 frames with spatial resolution of 112 pix-
els. For all of the 3D CNN architectures, first convolutions
always apply stride of (1,2,2). For the rest of the archi-
tectures, depth dimension is reduced together with spatial
dimensions.
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Figure 1: Main building block for each resource efficient 3D CNN architecture. F is the number of feature maps and D x H x W
stands for Depth x Height x Width for the input and output volumes. DWConv and GCony stand for depthwise and group convolution,
respectively. BN and ReLU(6) stand for Batch Normalization and Rectified Linear Unit (capped at 6), respectively. (a) SqueezeNet’s Fire
block; (b) MobileNet block; (c) left: MobileNetv2 block, right: MobileNetv2 block with spatiotemporal downsampling (2x); (d) left:
ShuffleNet block, right: ShuffleNet block with spatiotemporal downsampling (2x); (e) left: ShuffleNetv2 block, right: ShuffleNetv2 block

with spatiotemporal downsampling (2x).

3.1.1 3D-SqueezeNet

SqueezeNet [13] is considered as one of very first resource
efficient CNN architectures with notable accuracy perfor-
mance. It achieves the AlexNet [18]-level accuracy with 50
times fewer parameters and less than 0.5 MB model size.

The main building block of SqueezeNet is Fire block
whose 3D version is depicted in Fig. 1 (a). As illustrated
in Table 1, 3D-SqueezeNet begins with a convolution layer
(Convl), followed by 8 Fire blocks (Fire-2-9), ending with
a final convolutional layer (Conv10).

In our experiments, we use SqueezeNet with simple by-
pass since it achieves the best result in its 2D version for
ImageNet. SqueezeNet does not apply depthwise convolu-
tions which is the main building block for majority of re-

source efficient architectures. Instead, it uses three strate-
gies to reduce the number of parameters while maintaining
accuracy: (i) Replacing 3x3 filters with 1x1 filters, (ii) de-
creasing the number of input channels to 3x3 filters, and
(ii1) downsampling late in the network so that convolution
layers have large activation maps. Moreover, compared to
other resource efficient architectures, SqueezeNet cannot be
modified with width_multiplier parameter resulting in dif-
ferent complexities. Therefore, it is only experimented with
its default configuration as shown in Table 8.

3.1.2 3D-MobileNetV1

MobileNets [11] apply depthwise separable convolutions
which have a form that factorize a standard convolution



Layer / Stride Filter size Output size
Input clip 3x16x112x112
Conv1/s(1,2,2) 3x3x3 64x16x56x56
MaxPool/s(2,2,2) 3x3x3 64x8x28x28
Fire2 128x8x28x28
Fire3 128x8x28x28
MaxPool/s(2,2,2) 3x3x3 128x4x14x14
Fired 256x4x14x14
Fire5 256x4x14x14
MaxPool/s(2,2,2) 3x3x3 256x2x7x7
Fire6 384x2x7x7
Fire7 384x2x7x7
MaxPool/s(2,2,2) 3x3x3 384x1x4x4
Fire8 512x1x4x4
Fire9 512x1x4x4
Conv10/s(1,1,1) 1x1x1 NumClsx1x4x4
AvgPool/s(1,1,1)  1x4x4 NumCls

Table 1: 3D-SqueezeNet architecture. Details of Fire block is
given in Fig. 1 (a).

into a depthwise convolution and 1 x 1 convolution, which
is called as pointwise convolution. In MobileNet architec-
tures, the depthwise convolution applies a single filter to
each input channel and then the pointwise convolution ap-
plies a 1 x 1 convolution to combine the outputs of the
depthwise convolution. Different from the standard con-
volution, the depthwise separable convolution involves two
layers which separates filtering and combining operations
as illustrated in Fig. 1 (b). This process helps to decrease
computation time and model size significantly. Unlike all
recent popular CNN architectures, MobileNet does not con-
tain skip connections. Therefore, depth of the network can-
not be increased too much which hinders gradient flow.

Table 2 shows the details of the 3D-MobileNet architec-
ture. 3D-MobileNet begins with a convolutional layer, fol-
lowed by 13 MobileNet blocks, ending with a linear layer.
MobileNet has 28 layers in case the depthwise and point-
wise convolutions in each MobileNet block are counted as
separate layers.

3.1.3 3D-MobileNetV2

MobileNetV?2 [25] is another 2D resource efficient architec-
ture. It builds upon the main idea of MobileNetV 1 by using
depthwise separable convolutions; however, it introduces
two new components: 1) linear bottlenecks between the lay-
ers, and 2) shortcut connections between the bottlenecks.
The idea behind 1) is both keeping the size of model low
by decreasing number of channels and extracting as much
as information by applying depthwise convolution after de-
compressing the data. This convolutional module allows to

Layer / Stride Repeat  Output size
Input clip 3x16x112x112
Conv(3x3x3)/s(1,2,2) 1 32x16x56x56
Block/s(2x2x2) 1 64x8x28x28
Block/s(2x2x2) 1 128x4x14x14
Block/s(1x1x1) 1 128x4x14x14
Block/s(2x2x2) 1 256x2x7x7
Block/s(1x1x1) 1 256x2x7x7
Block/s(2x2x2) 1 512x1x4x4
Block/s(1x1x1) 5 512x1x4x4
Block/s(1x1x1) 1 1024x1x4x4
Block/s(1x1x1) 1 1024x1x4x4
AvgPool(1x4x4)/s(1,1,1) 1 1024x1x1x1
Linear(1024xNumCls) 1 NumCls

Table 2: 3D-MobileNet architecture. Details of Block is given in
Fig. 1 (b).

reduce memory usage during inference. On the other hand,
2) allows training faster and construct deeper models like
ResNet architectures [10].

Fig. 1 (c) shows the MobileNetV2 block. Table 3
shows the layers of 3D-MobileNetV2 architecture. 3D-
MobileNetV2 begins with a convolutional layer, followed
by 17 MobileNetV2 blocks, and then a convolutional layer
and finally ending with a linear layer.

3.1.4 3D-ShuffleNetV1

According to [37], ShuffleNet provides superior perfor-
mance compared to MobileNet [11] by a significant margin,
which is reported as absolute 7.8% lower ImageNet top-1
error at level of 40 MFLOPs. The model is also reported to
achieve 13X actual speedup over AlexNet while maintain-

Layer / Stride Repeat  Qutput size
Input clip 3x16x112x112
Conv(3x3x3)/s(1,2,2) 1 32x16x56x56
Block/s(1x1x1) 1 16x16x56x56
Block/s(2x2x2) 2 24x8x28x28
Block/s(2x2x2) 3 32x4x14x14
Block/s(2x2x2) 4 64x2x7x7
Block/s(1x1x1) 3 96x2x7x7
Block/s(2x2x2) 3 160x1x4x4
Block/s(1x1x1) 1 320x1x4x4
Conv(1x1x1)/s(1,1,1) 1 1280x1x4x4
AvgPool/s(1,1,1) 1 1024x1x1x1
Linear 1 NumCls

Table 3: 3D-MobileNetV2 architecture. Block is inverted residual
block whose details are given in Fig. 1 (c) with stride 1 (left) and
spatio temporal 2x downsampling (right).



Output size

Layer / Stride Repeat (groups=3)
Input clip 3x16x112x112
Conv(3x3x3)/s(1,2,2) 1 24x16x56x56
MaxPool(3x3x3)/s(2,2,2) 1 24x8x28x28
Block/s(2x2x2) 1 240x4x14x14
Block/s(1x1x1) 3 240x4x14x14
Block/s(2x2x2) 1 480x2x7x7
Block/s(1x1x1) 7 480x2x7x7
Block/s(2x2x2) 1 960x1x4x4
Block/s(1x1x1) 3 960x1x4x4
AvgPool(1x4x4)/s(1,1,1) 1 960x1x1x1
Linear 1 NumCls

Table 4: 3D-ShuffleNet architecture. Its’ main building block is
given in Fig. 1 (d) with stride 1 (left) and spatio temporal 2x down-
sampling (right).

ing comparable accuracy.

The architecture uses two new operations, which are
pointwise group convolution and channel shuffle which is
depicted in Fig. 1 (d).

As illustrated in Table 4, 3D-ShuffleNet begins with
a convolutional layer followed by 16 ShuffieNet blocks,
which are grouped into three stages. In each stage, the num-
ber of output channels are kept same with the applied Shuf-
fleNet blocks. For the next stage, the output channels are
doubled and the spatial and depth dimensions are reduced to
half. ShuffleNet architecture ends with a final linear layer.
In ShuffleNet units, group number g controls the connection
sparsity of pointwise convolutions. In this study, the group
number is selected as 3.

3.1.5 3D-ShuffleNetV2

In ShuffleNetV2 [20] architecture, channel split operator is
introduced different from V1. As illustrated in Fig. 1 (e),
at the beginning of each block, the input of ¢ feature chan-
nels are split into two branches with c-¢’ and ¢ channels,
respectively. One branch remains as identity, and the other
branch includes three convolutions with the same input and
output channels. Different from ShuffleNet, the two 1x1
convolutions are not groupwise. After the convolutions, the
two branches are concatenated and the number of channels
keeps the same. At the end of the block, channel shuffle
operation is applied to enable information communication
between the two branches.

Table 5 shows the layers of 3D-ShuffleNetV2 architec-
ture. 3D-ShuffleNetV2 architecture begins with a convolu-
tional layer, followed by 16 ShuffleNetV2 blocks, and then
a convolutional layer and finally ending with a linear layer.
Similar to 3D-ShuffleNet, the stack of blocks are grouped
into three stages, and at each stage the number of output

Layer / Stride Repeat Output size
Input clip 3x16x112x112
Conv(3x3x3)/s(1,2,2) 1 24x16x56x56
MaxPool(3x3x3)/s(2,2,2) 1 24x8x28x28
Block/s(2x2x2) 1 c1x4x14x14
Block/s(1x1x1) 3 c1x4x14x14
Block/s(2x2x2) 1 Cox2XTX7
Block/s(1x1x1) 7 CoX2XTX7
Block/s(2x2x2) 1 c3x1x4x4
Block/s(1x1x1) 3 c3x1x4x4
Conv(1x1x1)/s(1,1,1) 1 cyx1x4x4
AvgPool(1x4x4)/s(1,1,1) 1 cyx1x1x1
Linear 1 NumCls

Table 5: 3D-ShuffleNetV2 architecture. Its’ main building block
is given in Fig. 1 (e) with stride 1 (left) and spatio temporal 2x
downsampling (right). The number of channels (c1, c2, c3, c4) for
different complexities are given in Table 6.

Output channels
0.25x 0.5x 1.0x 1.5x 2.0x

c1 32 48 116 176 244
c2 64 96 232 352 488
c3 | 128 192 464 704 976
cg | 1024 1024 1024 1024 2048

Table 6: The number of channels used in 3D-ShuffleNetv2 archi-
tecture for different levels of complexities.

channels are kept same while with the next stage, they are
doubled. Different from the 3D-ShuffleNet, the number of
channels in each stage are not fixed. Table 6 shows the
number of channels (c1, co, c3, c4) for different levels of
complexities. Also, in 3D-ShuffleNet, the number of output
channels in the final layer (c4) is same after the third stage,
whereas in 3D-ShuffleNetV2, different number of output
channels are selected for different levels of complexities
(Table 6).

3.1.6 Comperative Analysis

In this section, we compare the experimented architectures
according to the number of layers, nonlinearities and skip
connections. These design criteria plays an important role
for the performance of the architectures. Comparison of the
architectures are given in Table 7. For the number of lay-
ers, we counted the convolutional and linear layers. For the
skip-connections, we have counted the addition or concate-
nation operations in the architectures. Finally, for the num-
ber of non-linearity, we have counted the ReLU operations
in one inference time since it is the only non-linearity used
for all the architectures.

It is noticeable that comparatively earlier architectures



Model Number of

layers non-lin. skip-con.
3D-SqueezeNet 18 18 4
3D-ShuffleNetV1 50 33 16
3D-ShuffleNetV2 51 34 16
3D-MobileNetV1 28 27 0
3D-MobileNetV2 53 35 10

Table 7: Comparison of resource efficient 3D architectures accord-
ing to the number of layers, non-linearity and skip-connections.

(i.e. SqueezeNet and MobileNetV1) have smaller num-
ber of layers, non-linearity and skip-connections. On the
other hand, recent resource efficient architectures (i.e. Shuf-
fleNetV1, ShuffleNetV2 and MobileNetV?2) are deeper, in
the order of 50 layers and 30 non-linearity. Corollary, they
require more skip connections in order to facilitate better
gradient update mechanism.

3.2. Training Details

Learning: For the training of the architectures, Stochas-
tic Gradient Descent (SGD) with standard categorical cross-
entropy loss is applied. For mini-batch size of SGD, largest
fitting batch size is selected, which is usually in the order
of 128 videos. The momentum, dampening and weight de-
cay are set to 0.9, 0.9 and 1x1073, respectively. When the
networks are trained from scratch, learning rate is initial-
ized with 0.1 and reduced 3 times with a factor of 10~!
when the validation loss converges. For the training of
UCF-101 benchmark, we have used the pretrained models
of Kinetics-600. We have frozen the network parameters
and fine-tuned only the last layer. For fine-tuning, we start
with a learning rate of 0.01 and reduced it two times after
30" and 45" epochs with a factor of 10! and optimiza-
tion is completed after 15 more epochs.

Regularization: Although Kinetics-600 and Jester are
very large benchmarks and immune to over-fitting, UCF-
101 still requires intensive regularization. Weight decay of
1x1073 is applied for all the parameters of the network. A
dropout layer is applied before the final conv/linear layer of
the networks. While dropout ratio is kept at 0.2 for Kinetics-
600 and Jester, it is increased to 0.9 for UCF-101.

Augmentation: For temporal augmentation, input clips
are selected from a random temporal position in the video
clip. If the video contains smaller number of frames than
the input size, loop padding is applied. For the input to
the networks, always 16-frame clips are used. For Jester
benchmark, it is critical to capture the full content of the
gesture video in the selected input clip. Therefore, we have
applied downsampling of 2 by selected 16 frames from 32
frames for Jester benchmark [17].

For spatial augmentation, we have selected a random
spatial position from the input video. Moreover, we have

selected a scale randomly from {1, 57, 5377, 3} in order
to perform multi-scale cropping as in [9]. For Kinetics-600
and UCF-101, input clips are flipped with 50% probabil-
ity. After the augmentations, input clip to the network has
the size of 3 x 16 x 112 x 112 referring to number of input
channels, frames, width and height pixels, respectively.

Recognition: For Kinetics-600 and UCF-101, we select
non-overlapping 16-frame clips from each video sample.
Then center cropping with scale 1 is applied to each clip.
Using the pretrained models, class scores for each clip is
calculated. For each video, we average the scores of all
clips. The class with the highest score indicates the class
label of the video.

Implementation: Network architectures are imple-
mented in PyTorch and trained with a single Titan Xp
GPU.

4. Experiments

In this section, we first explain the experimented
datasets. Then, we discuss about the achieved results
for the experimented network architectures together with
their run-time performance on both NVIDIA Titan Xp and
Jetson TX2 embedded system.

4.1. Datasets

o Kinetics-600 dataset is an extension of Kinetics-400
dataset, which contains 600 human action classes, with at
least 600 video clips for each action. Each clip is ap-
proximately 10 seconds long and is taken from a different
YouTube video. There are in total 392,622 training videos.
For each class, there are also 50 and 100 validation and test
videos, respectively. Since the labels for the test set is not
publicly available, we have conducted our experiments on
the validation set.

We selected Kinetics-600 benchmark in order to evalu-
ate the capacity of the experimented networks. It is very
rare that a real-life application tries to classify 600 different
classes. However, these kind of very large-scale datasets are
very useful to evaluate the capacity of the networks to learn.
Although it is still necessary to capture the motion patterns
in the video, the network should especially capture the spa-
tial content in order to identify the correct class label of
the video. For example, there are 9 different “eating some-
thing” classes where “something” is one of “’burger, cake,
carrot, chips, doughnut, hotdog, ice cream, spaghetti, wa-
termelon”. Although “eating” action is same for all these,
the true label can only be identified when the network cap-
tures discriminative features of what is being eaten.

o Jester dataset is currently the largest available hand ges-
ture dataset. In each video sample of the dataset, a person
performs pre-defined hand gestures in front of a laptop cam-
era or webcam. There are in total 148,092 gesture videos
under 27 classes. The dataset is divided into three subsets:



Speed (cps) Accuracy (%)

Model MFLOPs Params
Titan XP Jetson TX2 Kinetics-600 Jester UCF-101

3D-ShuffleNetV1 0.5x 42 0.55M 398 69 35.51 89.23 64.39
3D-ShuffleNetV2 0.25x 42 0.83M 442 82 25.73 86.91 56.52
3D-MobileNetV1 0.5x 46 1.17M 290 57 31.74 87.61 62.17
3D-MobileNetV2 0.2x 42 0.96M 357 42 24.14 86.43 55.56
3D-ShuffleNetV1 1.0x 125 1.52M 269 49 45.31 92.27 76.00
3D-ShuffleNetV2 1.0x 119 1.91M 243 44 46.10 91.96 77.90
3D-MobileNetV1 1.0x 137 3.91M 164 31 40.07 90.81 70.95
3D-MobileNetV2 0.45x 126 1.40M 203 19 36.47 90.21 68.31
3D-ShuffleNetV1 1.5x 235 2.92M 204 31 52.75 93.12 81.73
3D-ShuffleNetV2 1.5x 215 3.16M 186 34 52.05 93.16 82.32
3D-MobileNetV1 1.5x 273 8.22M 116 19 48.24 91.28 76.00
3D-MobileNetV2 0.7x 245 2.05M 130 13 45.59 93.34 77.32
3D-ShuffleNetV1 2.0x 393 4.78M 161 24 56.84 93.54 84.96
3D-ShuffleNetV2 2.0x 360 6.64M 146 26 55.17 93.71 83.32
3D-MobileNetV1 2.0x 454 14.10M 88 15 48.53 92.56 76.18
3D-MobileNetV2 1.0x 446 3.12M 93 9 50.65 94.59 81.60
3D-SqueezeNet 728 2.15M 682 46 40.52 90.77 74.94
ResNet-18 5557 33.24M 334 17 57.65 93.34 80.09
ResNet-50 6782 44.24M 183 11 63.00 93.70 88.92
ResNet-101 10612 83.29M 142 8 64.18 94.10 87.02
ResNeXt-101 6932 48.34M 122 7 68.30 94.89 89.08
13D [2] 88202 12.90M — — 71.90 — —

Table 8: Comparison of resource efficient 3D architectures over video classification accuracy, number of parameters and speed on two
different platforms and four levels of computation complexity. The calculations of MFLOPs, parameters and speeds are done for Kinetics-
600 benchmark. For speed calculations (clips per second (cps)), the used platforms are Titan Xp and Jetson TX2; and the batch size is set
to 8. All models takes 16 frames input with 112 x 112 spatial resolution except for I3D, which takes 64 frames input with 224 x 224 spatial
resolution.

training set (118,562 videos), validation set (14,787 videos), ~ experimented network architectures.

and test set (14,743 videos). Since the labels for test set is
not publicly available, we have conducted our experiments
on the validation set.

4.2. Results

In this section, we elaborate on our findings in the exper-
iments that we have conducted for 5 different network ar-
chitectures, 4 levels of complexity (except for SqueezeNet)
on 3 different benchmarks. Moreover, runtime performance
of the models are evaluated on 2 different platforms, namely
Titan XP and Jetson TX2 embedded system. According to
the results in Table 8, the following conclusions can be in-

Unlike Kinetics-600 benchmark, in Jester dataset, spatial
content of the all video samples are same: A person sitting
in front of a camera performs a hand gesture from almost the
same distance. Moreover, the selection of classes are more
focused on the movement of the hand. That is why, Jester
benchmark is suitable to inspect the ability of the networks

in capturing motion patterns.

o UCF101 dataset is an action recognition dataset of realis-
tic action videos, collected from YouTube. It consists of 101
action classes, over 13k clips and 27 hours of video data.
Compared to Kinetics-600 and Jester datasets, UCF-101
contains very little amount of training videos, hence prone
to over-fitting. For the evaluation of UCF-101 dataset, we
have used only split-1. We selected UCF-101 benchmark in
order to inspect the applicability of transfer learning for the

ferred:

Accuracy:

(i) The deeper architectures (3D-ShuffleNet, 3D-
ShuffleNetV2, 3D-MobileNetV2) achieve better results
compared to shallower architectures (3D-SqueezeNet,
3D-MobileNetV1). Accordingly, resource efficient 3D
CNNs should not be designed too shallow in order to save
complexity.



(ii) Motion patterns are better captured with depthwise
convolutions. Since depthwise convolutions have kernels
of 3x3x3, they can capture relations in depth dimension to-
gether with spatial dimension. The main building block of
3D-MobileNetV?2 is the inverted residual block, which ex-
pands the number of channels to the input of depthwise con-
volution layers with an expansion ratio. Therefore, it con-
tains more depthwise convolution filters compared to other
architectures. Consequently, it achieves by far best perfor-
mance in Jester benchmark, although it has inferior results
in Kinetics-600 and UCF-101 benchmarks.

(iii) All models showed comparatively similar perfor-
mance on both Kinetics-600 and UCF-101 datasets. This
shows transfer learning is a valid approach for resource ef-
ficient 3D CNNss since there is a direct correlation between
model performances on these two datasets.

Complexity level:

(iv) There is a severe performance degradation if the net-
works are scaled with very small width_multiplier in or-
der to satisfy the required computational complexity. For
example, in the first block of the Table 8, we can see
that 3D-MobileNetV2 0.2x and 3D-ShuffleNetV2 0.25x
achieve 5-9% worse than 3D-ShuffleNetV1 0.5x and 3D-
MobileNetV1 0.5x in Kinetics-600 benchmark. Capacity
of the models degrades severely as the width_multiplier
gets smaller, especially when it is less than 0.5. We can
see the same pattern on all three benchmarks that we have
experimented.

(v) The main design criteria of the 3D-SqueezeNet is
to save number of parameters, not computations. There-
fore it has the smallest number of parameters at the highest
complexity level. However, it also has around 300 million
more FLOPs compared to other architectures since it does
not make use of depthwise convolutions.

Runtime performance:

(vi) Although the network architectures contain similar
FLOPs, some architectures are much faster than others. As
highlighted by [20], this is due to several other factors af-
fecting speed such as memory access cost (MAC) and de-
gree of parallelism, which are not taken into account by
FLOPs.

(vii) 3D-SqueezeNet is the only architecture that does
not make use of depthwise convolutions, hence contains
highest FLOPs. However, surprisingly it has the highest
runtime performance. This is due to the latest CUDNN [4]
library which is specifically optimized for standard convo-
lutions. Similar results can also be observed with ResNet
and ResNeXt architectures.

(viii) Runtime performance heavily depends on the
hardware that the network architecture is running. For
example, for the highest two complexity levels, 3D-
ShuffleNetV1 is the faster than 3D-ShuffleNetV2 on GPU,

whereas 3D-ShuffleNetV2 achieves higher runtime than
3D-ShuffleNetV1 on Jetson TX2.

State-of-the-art comparison:

(ix) Architectures with more parameters and FLOPs like
ResNets, ResNeXt-101 and I3D achieve generally better re-
sults for datasets measuring the capacity of the tested archi-
tectures like Kinetics dataset as evaluated and shown in Ta-
ble 8. However, network design makes a huge difference.
For example, 3D-ShuffleNetV1 2.0x achieves similar per-
formance with ResNet-18, although ResNet-18 requires 7
times more parameters and 14 times FLOPs .

(x) The architecture design should be done according to
the given task. As inverted residual block excels at captur-
ing dynamic motions, 3D-MobileNetV2 1.0x achieves bet-
ter results than much wider and deeper ResNet-101 (around
20 times more parameters and FLOPs) at Jester benchmark.

5. Conclusion

In recent years, the research in action recognition has
mostly focused on obtaining the best accuracy by generat-
ing deep and wide CNN architectures. However, real-world
applications require resource efficient architectures that take
runtime, memory and power budget into account. Recently,
several resource efficient 2D CNN architectures have been
proposed. However, there is a lack of architectures for 3D
counterparts. This work aims to fill this research gap.

The proposed architectures are generated by imple-
menting the 3D versions of Squeezenet, MobileNet,
MobileNetV2, ShuffleNet, ShuffleNetV?2 architectures for
4 different complexity levels. The performance of these
architectures have been evaluated using 3 different bench-
marks, which are selected according to analyze models’
capacities, how well the models capture the motion and the
applicability of transfer learning for each model.

According to the analysis for 4 different complexity
levels, the results show that these resource efficient 3D
CNN architectures provide considerable classification per-
formances. Using the width_multiplier, the capacity of
the architectures can be modified flexibly. The results on
Jester benchmark show that depthwise convolutions are
very good at capturing motion patterns. Moreover, nearly
all models run in real-time both at Titan XP and Jetson TX?2.
As the results proved the applicability of transfer learning,
these architectures can be used for other real-world applica-
tions by using pretrained models.
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