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Abstract

Recently, convolutional neural networks with 3D kernels

(3D CNNs) have been very popular in computer vision com-

munity as a result of their superior ability of extracting

spatio-temporal features within video frames compared to

2D CNNs. Although there has been great advances recently

to build resource efficient 2D CNN architectures consider-

ing memory and power budget, there is hardly any simi-

lar resource efficient architectures for 3D CNNs. In this

paper, we have converted various well-known resource ef-

ficient 2D CNNs to 3D CNNs and evaluated their perfor-

mance on three major benchmarks in terms of classification

accuracy for different complexity levels. We have experi-

mented on (1) Kinetics-600 dataset to inspect their capacity

to learn, (2) Jester dataset to inspect their ability to capture

motion patterns, and (3) UCF-101 to inspect the applica-

bility of transfer learning. We have evaluated the run-time

performance of each model on a single Titan XP GPU and

a Jetson TX2 embedded system. The results of this study

show that these models can be utilized for different types

of real-world applications since they provide real-time per-

formance with considerable accuracies and memory usage.

Our analysis on different complexity levels shows that the

resource efficient 3D CNNs should not be designed too shal-

low or narrow in order to save complexity. The codes and

pretrained models used in this work are publicly available
1.

1. Introduction

Ever since AlexNet [18] won the ImageNet Challenge

(ILSVRC 2012 [24]), convolutional neural networks

(CNNs) have dominated the majority of the computer

vision tasks. Then the primary trend has been more on

creating deeper and wider CNN architectures to achieve

higher accuracies [10, 26, 29]. However, in real world

computer vision applications such as face recognition,

robot navigation and augmented reality, the tasks need to be

carried out under runtime constraints on a computationally

1https://github.com/okankop/Efficient-3DCNNs

limited platform. Only recently, there has been a rising

interest in building resource efficient convolutional neural

networks but it is limited with 2-dimensional kernels (2D)

[13, 11, 37, 20, 25].

The same history is repeating for CNNs with 3-

dimensional (3D) kernels [9]. Since the large video

datasets became available, the primary trend for video

recognition tasks is again to achieve higher accuracies by

building deeper and wider architectures [31, 22, 32, 9, 6].

Considering the fact that 3D CNNs achieve better per-

formance for video recognition tasks compared to 2D

CNNs [3], it is very likely that this 3D CNN architecture

search will continue until the achieved accuracies saturate.

However, real-world applications still require resource

efficient 3D CNN architectures taking runtime, memory

and power budget into account. This work aims to fill this

research gap.

In this paper, we first have created the 3D versions

of the well-known 2D resource efficient architectures:

SqueezeNet, MobileNet, ShuffleNet, MobileNetV2 and

ShuffleNetV2. We have evaluated t-he performance of

these architectures on three publicly available benchmarks:

(1) Kinetics-600 dataset[3] to learn models’ capacities.

(2) Jester dataset [1] to learn how well the models capture

the motion.

(3) UCF-101 dataset [27] to evaluate the applicability of

transfer learning for each model.

The computational complexity of the implemented archi-

tectures are measured in terms of floating point operations

(FLOPs), which is widely used metric among resource ef-

ficient architectures. In this paper, the number of FLOPs

refers to the number of multiply-adds. However, as high-

lighted by [20], the number of FLOPs is an indirect metric

which does not give an actual performance indication like

speed or latency. Therefore, for all the implemented archi-

tectures we have also evaluated their run-time performance

on two different platforms, which are Nvidia Titan XP GPU

and Jetson TX2 embedded system-on-module (SoM) with

integrated 256-core Pascal GPU.



2. Related Work

Lately, there is a rising interest in building small and ef-

ficient neural networks [13, 11, 20, 23, 34, 7]. The com-

mon approaches used for this objective can be categorized

under two categories: (i) Accelerating the pretrained net-

works, or (ii) directly constructing small networks by ma-

nipulating kernels. For the first one, [7, 8, 33, 21] proposes

to prune either network connections or channels without re-

ducing the performance of pretrained models. Additionally,

many other methods apply quantization [23, 28, 34] or fac-

torization [19, 14, 15] for the same objective. However, our

focus is on the second one for directly designing small and

resource efficient 3D CNN architectures.

Current well-known resource efficient CNN architec-

tures are all constructed with 2D convolutional kernels and

benchmarked at ImageNet. SqueezeNet [13] reduced the

number of parameters and computation while maintain-

ing the classification performance. MobileNet [11] makes

use of depthwise separable convolutions to construct light-

weight deep neural networks. The depthwise separable con-

volutions factorize the standard convolutions into a depth-

wise convolution followed by a 1x1 pointwise convolution.

Compared to standard convolutions, depthwise separable

convolutions use between 8 to 9 times less parameters and

computations. ShuffleNet [37] proposes to use pointwise

group convolutions and channel shuffle in order to reduce

computational cost. MobileNetv2 [25] makes use of the

inverted residual structure where the intermediate expan-

sion layer uses depthwise convolutions. ShuffleNetV2 [20]

builds on top of ShuffleNet [37] using channel split together

with channel shuffle which realizes a feature reuse pattern.

These architectures intensively make use of group con-

volutions and depthwise separable convolutions. Group

convolutions are first introduced in AlexNet [18] and effi-

ciently utilized in ResNeXt [35]. Depthwise separable con-

volutions are introduced in Xception [5] and they are the

main building blocks for majority of lightweight architec-

tures.

All of the above-mentioned resource efficient architec-

tures are 2D CNNs. They are designed to operate on static

images and evaluated on a very large benchmark (i.e., Ima-

geNet). To the best of our knowledge, this is the first work

that proposes and evaluates resource efficient 3D CNNs on

large scale video benchmarks.

3D CNNs such as well-known C3D [30] require sig-

nificantly more parameters and computations compared to

their 2D counterparts which make them harder to train and

prone to overfitting. With the availability of large scale

video datasets such as Sports-1M [16], Kinetics-400 [3],

this problem is solved. Moreover, [3] proved that 3D CNNs

achieve better accuracies compared to 2D CNNs for video

classification task. Consequently, 3D CNN architecture

search is an active area in research community to achieve

higher accuracies.

Several 3D CNN architectures have been proposed re-

cently. Carreira et al. propose Inflated 3D CNN (I3D) [3],

where the filters and pooling kernels of a deep CNN are

expanded to 3D, making it possible to leverage successful

ImageNet architecture designs and their pretrained models.

P3D [22] and (2+1)D [32] propose to decompose 3D con-

volutions into 2D and 1D convolutions operating on spatial

and depth dimensions, respectively. In [9], 3D versions of

famous ImageNet architectures such as ResNet [10], Wide

ResNet [36], ResNeXt [35] and DenseNet [12] are evalu-

ated and it has been shown that ResNeXt achieves better re-

sults compared to others. Recently, Feichtenhofer et al. pro-

pose a novel architecture named SlowFast [6], which uses a

Slow pathway, operating at low frame rate, to capture static

content of a video, and a Fast pathway, operating at high

frame rate, to capture the dynamic content of a video.

Up to now, nearly all the 3D CNN architectures in the

literature are heavyweight, requiring 10s and even 100s bil-

lions of floating point operations (FLOPs). Moreover, ma-

jority of these architectures also use optical flow modal-

ity, which increases the complexity even further. Our fo-

cus in this work is to evaluate 3D CNNs having less than

500 MFLOPs. Consequently, we have implemented the 3D

version of SqueezeNet [13], MobileNet [11], MobileNetV2

[25], ShuffleNet [37] and ShuffleNetV2 [20] for 4 differ-

ent complexity levels and then evaluated them on 3 differ-

ent video benchmarks. We have evaluated our architectures

only using RGB modality without computing costly optical

flow modality.

3. Resource Efficient 3D CNN Architectures

In this section, we explain the details of the resource ef-

ficient 3D CNN architectures that have been proposed and

evaluated within the scope of this work. We initially in-

troduce the 3D versions of the well-know resource efficient

2D CNN architectures by explaining their building blocks

and networks structures. Then we compare these models in

terms of number of layers, nonlinearities, and skip connec-

tions. We conclude with training details of the models.

3.1. 3D Versions of Well­known Architectures

In this section, we give the implementation details of our

resource efficient architectures with 3-dimensional kernels,

which are converted from well-know resource efficient 2D

CNN architectures. Main building blocks of each architec-

ture are depicted in Fig. 1. The input is always considered

as a clip of 16 frames with spatial resolution of 112 pix-

els. For all of the 3D CNN architectures, first convolutions

always apply stride of (1,2,2). For the rest of the archi-

tectures, depth dimension is reduced together with spatial

dimensions.



Figure 1: Main building block for each resource efficient 3D CNN architecture. F is the number of feature maps and D × H × W

stands for Depth × Height × Width for the input and output volumes. DWConv and GConv stand for depthwise and group convolution,

respectively. BN and ReLU(6) stand for Batch Normalization and Rectified Linear Unit (capped at 6), respectively. (a) SqueezeNet’s Fire

block; (b) MobileNet block; (c) left: MobileNetv2 block, right: MobileNetv2 block with spatiotemporal downsampling (2x); (d) left:

ShuffleNet block, right: ShuffleNet block with spatiotemporal downsampling (2x); (e) left: ShuffleNetv2 block, right: ShuffleNetv2 block

with spatiotemporal downsampling (2x).

3.1.1 3D-SqueezeNet

SqueezeNet [13] is considered as one of very first resource

efficient CNN architectures with notable accuracy perfor-

mance. It achieves the AlexNet [18]-level accuracy with 50

times fewer parameters and less than 0.5 MB model size.

The main building block of SqueezeNet is Fire block

whose 3D version is depicted in Fig. 1 (a). As illustrated

in Table 1, 3D-SqueezeNet begins with a convolution layer

(Conv1), followed by 8 Fire blocks (Fire-2-9), ending with

a final convolutional layer (Conv10).

In our experiments, we use SqueezeNet with simple by-

pass since it achieves the best result in its 2D version for

ImageNet. SqueezeNet does not apply depthwise convolu-

tions which is the main building block for majority of re-

source efficient architectures. Instead, it uses three strate-

gies to reduce the number of parameters while maintaining

accuracy: (i) Replacing 3x3 filters with 1x1 filters, (ii) de-

creasing the number of input channels to 3x3 filters, and

(iii) downsampling late in the network so that convolution

layers have large activation maps. Moreover, compared to

other resource efficient architectures, SqueezeNet cannot be

modified with width multiplier parameter resulting in dif-

ferent complexities. Therefore, it is only experimented with

its default configuration as shown in Table 8.

3.1.2 3D-MobileNetV1

MobileNets [11] apply depthwise separable convolutions

which have a form that factorize a standard convolution



Layer / Stride Filter size Output size

Input clip 3x16x112x112

Conv1/s(1,2,2) 3x3x3 64x16x56x56

MaxPool/s(2,2,2) 3x3x3 64x8x28x28

Fire2 128x8x28x28

Fire3 128x8x28x28

MaxPool/s(2,2,2) 3x3x3 128x4x14x14

Fire4 256x4x14x14

Fire5 256x4x14x14

MaxPool/s(2,2,2) 3x3x3 256x2x7x7

Fire6 384x2x7x7

Fire7 384x2x7x7

MaxPool/s(2,2,2) 3x3x3 384x1x4x4

Fire8 512x1x4x4

Fire9 512x1x4x4

Conv10/s(1,1,1) 1x1x1 NumClsx1x4x4

AvgPool/s(1,1,1) 1x4x4 NumCls

Table 1: 3D-SqueezeNet architecture. Details of Fire block is

given in Fig. 1 (a).

into a depthwise convolution and 1× 1 convolution, which

is called as pointwise convolution. In MobileNet architec-

tures, the depthwise convolution applies a single filter to

each input channel and then the pointwise convolution ap-

plies a 1 × 1 convolution to combine the outputs of the

depthwise convolution. Different from the standard con-

volution, the depthwise separable convolution involves two

layers which separates filtering and combining operations

as illustrated in Fig. 1 (b). This process helps to decrease

computation time and model size significantly. Unlike all

recent popular CNN architectures, MobileNet does not con-

tain skip connections. Therefore, depth of the network can-

not be increased too much which hinders gradient flow.

Table 2 shows the details of the 3D-MobileNet architec-

ture. 3D-MobileNet begins with a convolutional layer, fol-

lowed by 13 MobileNet blocks, ending with a linear layer.

MobileNet has 28 layers in case the depthwise and point-

wise convolutions in each MobileNet block are counted as

separate layers.

3.1.3 3D-MobileNetV2

MobileNetV2 [25] is another 2D resource efficient architec-

ture. It builds upon the main idea of MobileNetV1 by using

depthwise separable convolutions; however, it introduces

two new components: 1) linear bottlenecks between the lay-

ers, and 2) shortcut connections between the bottlenecks.

The idea behind 1) is both keeping the size of model low

by decreasing number of channels and extracting as much

as information by applying depthwise convolution after de-

compressing the data. This convolutional module allows to

Layer / Stride Repeat Output size

Input clip 3x16x112x112

Conv(3x3x3)/s(1,2,2) 1 32x16x56x56

Block/s(2x2x2) 1 64x8x28x28

Block/s(2x2x2) 1 128x4x14x14

Block/s(1x1x1) 1 128x4x14x14

Block/s(2x2x2) 1 256x2x7x7

Block/s(1x1x1) 1 256x2x7x7

Block/s(2x2x2) 1 512x1x4x4

Block/s(1x1x1) 5 512x1x4x4

Block/s(1x1x1) 1 1024x1x4x4

Block/s(1x1x1) 1 1024x1x4x4

AvgPool(1x4x4)/s(1,1,1) 1 1024x1x1x1

Linear(1024xNumCls) 1 NumCls

Table 2: 3D-MobileNet architecture. Details of Block is given in

Fig. 1 (b).

reduce memory usage during inference. On the other hand,

2) allows training faster and construct deeper models like

ResNet architectures [10].

Fig. 1 (c) shows the MobileNetV2 block. Table 3

shows the layers of 3D-MobileNetV2 architecture. 3D-

MobileNetV2 begins with a convolutional layer, followed

by 17 MobileNetV2 blocks, and then a convolutional layer

and finally ending with a linear layer.

3.1.4 3D-ShuffleNetV1

According to [37], ShuffleNet provides superior perfor-

mance compared to MobileNet [11] by a significant margin,

which is reported as absolute 7.8% lower ImageNet top-1

error at level of 40 MFLOPs. The model is also reported to

achieve 13× actual speedup over AlexNet while maintain-

Layer / Stride Repeat Output size

Input clip 3x16x112x112

Conv(3x3x3)/s(1,2,2) 1 32x16x56x56

Block/s(1x1x1) 1 16x16x56x56

Block/s(2x2x2) 2 24x8x28x28

Block/s(2x2x2) 3 32x4x14x14

Block/s(2x2x2) 4 64x2x7x7

Block/s(1x1x1) 3 96x2x7x7

Block/s(2x2x2) 3 160x1x4x4

Block/s(1x1x1) 1 320x1x4x4

Conv(1x1x1)/s(1,1,1) 1 1280x1x4x4

AvgPool/s(1,1,1) 1 1024x1x1x1

Linear 1 NumCls

Table 3: 3D-MobileNetV2 architecture. Block is inverted residual

block whose details are given in Fig. 1 (c) with stride 1 (left) and

spatio temporal 2x downsampling (right).



Layer / Stride Repeat
Output size

(groups=3)

Input clip 3x16x112x112

Conv(3x3x3)/s(1,2,2) 1 24x16x56x56

MaxPool(3x3x3)/s(2,2,2) 1 24x8x28x28

Block/s(2x2x2) 1 240x4x14x14

Block/s(1x1x1) 3 240x4x14x14

Block/s(2x2x2) 1 480x2x7x7

Block/s(1x1x1) 7 480x2x7x7

Block/s(2x2x2) 1 960x1x4x4

Block/s(1x1x1) 3 960x1x4x4

AvgPool(1x4x4)/s(1,1,1) 1 960x1x1x1

Linear 1 NumCls

Table 4: 3D-ShuffleNet architecture. Its’ main building block is

given in Fig. 1 (d) with stride 1 (left) and spatio temporal 2x down-

sampling (right).

ing comparable accuracy.

The architecture uses two new operations, which are

pointwise group convolution and channel shuffle which is

depicted in Fig. 1 (d).

As illustrated in Table 4, 3D-ShuffleNet begins with

a convolutional layer followed by 16 ShuffleNet blocks,

which are grouped into three stages. In each stage, the num-

ber of output channels are kept same with the applied Shuf-

fleNet blocks. For the next stage, the output channels are

doubled and the spatial and depth dimensions are reduced to

half. ShuffleNet architecture ends with a final linear layer.

In ShuffleNet units, group number g controls the connection

sparsity of pointwise convolutions. In this study, the group

number is selected as 3.

3.1.5 3D-ShuffleNetV2

In ShuffleNetV2 [20] architecture, channel split operator is

introduced different from V1. As illustrated in Fig. 1 (e),

at the beginning of each block, the input of c feature chan-

nels are split into two branches with c-c
′

and c
′

channels,

respectively. One branch remains as identity, and the other

branch includes three convolutions with the same input and

output channels. Different from ShuffleNet, the two 1×1

convolutions are not groupwise. After the convolutions, the

two branches are concatenated and the number of channels

keeps the same. At the end of the block, channel shuffle

operation is applied to enable information communication

between the two branches.

Table 5 shows the layers of 3D-ShuffleNetV2 architec-

ture. 3D-ShuffleNetV2 architecture begins with a convolu-

tional layer, followed by 16 ShuffleNetV2 blocks, and then

a convolutional layer and finally ending with a linear layer.

Similar to 3D-ShuffleNet, the stack of blocks are grouped

into three stages, and at each stage the number of output

Layer / Stride Repeat Output size

Input clip 3x16x112x112

Conv(3x3x3)/s(1,2,2) 1 24x16x56x56

MaxPool(3x3x3)/s(2,2,2) 1 24x8x28x28

Block/s(2x2x2) 1 c1x4x14x14

Block/s(1x1x1) 3 c1x4x14x14

Block/s(2x2x2) 1 c2x2x7x7

Block/s(1x1x1) 7 c2x2x7x7

Block/s(2x2x2) 1 c3x1x4x4

Block/s(1x1x1) 3 c3x1x4x4

Conv(1x1x1)/s(1,1,1) 1 c4x1x4x4

AvgPool(1x4x4)/s(1,1,1) 1 c4x1x1x1

Linear 1 NumCls

Table 5: 3D-ShuffleNetV2 architecture. Its’ main building block

is given in Fig. 1 (e) with stride 1 (left) and spatio temporal 2x

downsampling (right). The number of channels (c1, c2, c3, c4) for

different complexities are given in Table 6.

Output channels

0.25x 0.5x 1.0x 1.5x 2.0x

c1 32 48 116 176 244

c2 64 96 232 352 488

c3 128 192 464 704 976

c4 1024 1024 1024 1024 2048

Table 6: The number of channels used in 3D-ShuffleNetv2 archi-

tecture for different levels of complexities.

channels are kept same while with the next stage, they are

doubled. Different from the 3D-ShuffleNet, the number of

channels in each stage are not fixed. Table 6 shows the

number of channels (c1, c2, c3, c4) for different levels of

complexities. Also, in 3D-ShuffleNet, the number of output

channels in the final layer (c4) is same after the third stage,

whereas in 3D-ShuffleNetV2, different number of output

channels are selected for different levels of complexities

(Table 6).

3.1.6 Comperative Analysis

In this section, we compare the experimented architectures

according to the number of layers, nonlinearities and skip

connections. These design criteria plays an important role

for the performance of the architectures. Comparison of the

architectures are given in Table 7. For the number of lay-

ers, we counted the convolutional and linear layers. For the

skip-connections, we have counted the addition or concate-

nation operations in the architectures. Finally, for the num-

ber of non-linearity, we have counted the ReLU operations

in one inference time since it is the only non-linearity used

for all the architectures.

It is noticeable that comparatively earlier architectures



Model
Number of

layers non-lin. skip-con.

3D-SqueezeNet 18 18 4

3D-ShuffleNetV1 50 33 16

3D-ShuffleNetV2 51 34 16

3D-MobileNetV1 28 27 0

3D-MobileNetV2 53 35 10

Table 7: Comparison of resource efficient 3D architectures accord-

ing to the number of layers, non-linearity and skip-connections.

(i.e. SqueezeNet and MobileNetV1) have smaller num-

ber of layers, non-linearity and skip-connections. On the

other hand, recent resource efficient architectures (i.e. Shuf-

fleNetV1, ShuffleNetV2 and MobileNetV2) are deeper, in

the order of 50 layers and 30 non-linearity. Corollary, they

require more skip connections in order to facilitate better

gradient update mechanism.

3.2. Training Details

Learning: For the training of the architectures, Stochas-

tic Gradient Descent (SGD) with standard categorical cross-

entropy loss is applied. For mini-batch size of SGD, largest

fitting batch size is selected, which is usually in the order

of 128 videos. The momentum, dampening and weight de-

cay are set to 0.9, 0.9 and 1x10−3, respectively. When the

networks are trained from scratch, learning rate is initial-

ized with 0.1 and reduced 3 times with a factor of 10−1

when the validation loss converges. For the training of

UCF-101 benchmark, we have used the pretrained models

of Kinetics-600. We have frozen the network parameters

and fine-tuned only the last layer. For fine-tuning, we start

with a learning rate of 0.01 and reduced it two times after

30th and 45th epochs with a factor of 10−1 and optimiza-

tion is completed after 15 more epochs.

Regularization: Although Kinetics-600 and Jester are

very large benchmarks and immune to over-fitting, UCF-

101 still requires intensive regularization. Weight decay of

1x10−3 is applied for all the parameters of the network. A

dropout layer is applied before the final conv/linear layer of

the networks. While dropout ratio is kept at 0.2 for Kinetics-

600 and Jester, it is increased to 0.9 for UCF-101.

Augmentation: For temporal augmentation, input clips

are selected from a random temporal position in the video

clip. If the video contains smaller number of frames than

the input size, loop padding is applied. For the input to

the networks, always 16-frame clips are used. For Jester

benchmark, it is critical to capture the full content of the

gesture video in the selected input clip. Therefore, we have

applied downsampling of 2 by selected 16 frames from 32

frames for Jester benchmark [17].

For spatial augmentation, we have selected a random

spatial position from the input video. Moreover, we have

selected a scale randomly from {1, 1

21/4
, 1

23/4
, 1

2
} in order

to perform multi-scale cropping as in [9]. For Kinetics-600

and UCF-101, input clips are flipped with 50% probabil-

ity. After the augmentations, input clip to the network has

the size of 3 x 16 x 112 x 112 referring to number of input

channels, frames, width and height pixels, respectively.

Recognition: For Kinetics-600 and UCF-101, we select

non-overlapping 16-frame clips from each video sample.

Then center cropping with scale 1 is applied to each clip.

Using the pretrained models, class scores for each clip is

calculated. For each video, we average the scores of all

clips. The class with the highest score indicates the class

label of the video.

Implementation: Network architectures are imple-

mented in PyTorch and trained with a single Titan Xp

GPU.

4. Experiments

In this section, we first explain the experimented

datasets. Then, we discuss about the achieved results

for the experimented network architectures together with

their run-time performance on both NVIDIA Titan Xp and

Jetson TX2 embedded system.

4.1. Datasets

• Kinetics-600 dataset is an extension of Kinetics-400

dataset, which contains 600 human action classes, with at

least 600 video clips for each action. Each clip is ap-

proximately 10 seconds long and is taken from a different

YouTube video. There are in total 392,622 training videos.

For each class, there are also 50 and 100 validation and test

videos, respectively. Since the labels for the test set is not

publicly available, we have conducted our experiments on

the validation set.

We selected Kinetics-600 benchmark in order to evalu-

ate the capacity of the experimented networks. It is very

rare that a real-life application tries to classify 600 different

classes. However, these kind of very large-scale datasets are

very useful to evaluate the capacity of the networks to learn.

Although it is still necessary to capture the motion patterns

in the video, the network should especially capture the spa-

tial content in order to identify the correct class label of

the video. For example, there are 9 different ”eating some-

thing” classes where ”something” is one of ”burger, cake,

carrot, chips, doughnut, hotdog, ice cream, spaghetti, wa-

termelon”. Although ”eating” action is same for all these,

the true label can only be identified when the network cap-

tures discriminative features of what is being eaten.

• Jester dataset is currently the largest available hand ges-

ture dataset. In each video sample of the dataset, a person

performs pre-defined hand gestures in front of a laptop cam-

era or webcam. There are in total 148,092 gesture videos

under 27 classes. The dataset is divided into three subsets:



Model MFLOPs Params
Speed (cps) Accuracy (%)

Titan XP Jetson TX2 Kinetics-600 Jester UCF-101

3D-ShuffleNetV1 0.5x 42 0.55M 398 69 35.51 89.23 64.39

3D-ShuffleNetV2 0.25x 42 0.83M 442 82 25.73 86.91 56.52

3D-MobileNetV1 0.5x 46 1.17M 290 57 31.74 87.61 62.17

3D-MobileNetV2 0.2x 42 0.96M 357 42 24.14 86.43 55.56

3D-ShuffleNetV1 1.0x 125 1.52M 269 49 45.31 92.27 76.00

3D-ShuffleNetV2 1.0x 119 1.91M 243 44 46.10 91.96 77.90

3D-MobileNetV1 1.0x 137 3.91M 164 31 40.07 90.81 70.95

3D-MobileNetV2 0.45x 126 1.40M 203 19 36.47 90.21 68.31

3D-ShuffleNetV1 1.5x 235 2.92M 204 31 52.75 93.12 81.73

3D-ShuffleNetV2 1.5x 215 3.16M 186 34 52.05 93.16 82.32

3D-MobileNetV1 1.5x 273 8.22M 116 19 48.24 91.28 76.00

3D-MobileNetV2 0.7x 245 2.05M 130 13 45.59 93.34 77.32

3D-ShuffleNetV1 2.0x 393 4.78M 161 24 56.84 93.54 84.96

3D-ShuffleNetV2 2.0x 360 6.64M 146 26 55.17 93.71 83.32

3D-MobileNetV1 2.0x 454 14.10M 88 15 48.53 92.56 76.18

3D-MobileNetV2 1.0x 446 3.12M 93 9 50.65 94.59 81.60

3D-SqueezeNet 728 2.15M 682 46 40.52 90.77 74.94

ResNet-18 5557 33.24M 334 17 57.65 93.34 80.09

ResNet-50 6782 44.24M 183 11 63.00 93.70 88.92

ResNet-101 10612 83.29M 142 8 64.18 94.10 87.02

ResNeXt-101 6932 48.34M 122 7 68.30 94.89 89.08

I3D [2] 88202 12.90M — — 71.90 — —

Table 8: Comparison of resource efficient 3D architectures over video classification accuracy, number of parameters and speed on two

different platforms and four levels of computation complexity. The calculations of MFLOPs, parameters and speeds are done for Kinetics-

600 benchmark. For speed calculations (clips per second (cps)), the used platforms are Titan Xp and Jetson TX2; and the batch size is set

to 8. All models takes 16 frames input with 112 x 112 spatial resolution except for I3D, which takes 64 frames input with 224 x 224 spatial

resolution.

training set (118,562 videos), validation set (14,787 videos),

and test set (14,743 videos). Since the labels for test set is

not publicly available, we have conducted our experiments

on the validation set.

Unlike Kinetics-600 benchmark, in Jester dataset, spatial

content of the all video samples are same: A person sitting

in front of a camera performs a hand gesture from almost the

same distance. Moreover, the selection of classes are more

focused on the movement of the hand. That is why, Jester

benchmark is suitable to inspect the ability of the networks

in capturing motion patterns.

• UCF101 dataset is an action recognition dataset of realis-

tic action videos, collected from YouTube. It consists of 101

action classes, over 13k clips and 27 hours of video data.

Compared to Kinetics-600 and Jester datasets, UCF-101

contains very little amount of training videos, hence prone

to over-fitting. For the evaluation of UCF-101 dataset, we

have used only split-1. We selected UCF-101 benchmark in

order to inspect the applicability of transfer learning for the

experimented network architectures.

4.2. Results

In this section, we elaborate on our findings in the exper-

iments that we have conducted for 5 different network ar-

chitectures, 4 levels of complexity (except for SqueezeNet)

on 3 different benchmarks. Moreover, runtime performance

of the models are evaluated on 2 different platforms, namely

Titan XP and Jetson TX2 embedded system. According to

the results in Table 8, the following conclusions can be in-

ferred:

Accuracy:

(i) The deeper architectures (3D-ShuffleNet, 3D-

ShuffleNetV2, 3D-MobileNetV2) achieve better results

compared to shallower architectures (3D-SqueezeNet,

3D-MobileNetV1). Accordingly, resource efficient 3D

CNNs should not be designed too shallow in order to save

complexity.



(ii) Motion patterns are better captured with depthwise

convolutions. Since depthwise convolutions have kernels

of 3x3x3, they can capture relations in depth dimension to-

gether with spatial dimension. The main building block of

3D-MobileNetV2 is the inverted residual block, which ex-

pands the number of channels to the input of depthwise con-

volution layers with an expansion ratio. Therefore, it con-

tains more depthwise convolution filters compared to other

architectures. Consequently, it achieves by far best perfor-

mance in Jester benchmark, although it has inferior results

in Kinetics-600 and UCF-101 benchmarks.

(iii) All models showed comparatively similar perfor-

mance on both Kinetics-600 and UCF-101 datasets. This

shows transfer learning is a valid approach for resource ef-

ficient 3D CNNs since there is a direct correlation between

model performances on these two datasets.

Complexity level:

(iv) There is a severe performance degradation if the net-

works are scaled with very small width multiplier in or-

der to satisfy the required computational complexity. For

example, in the first block of the Table 8, we can see

that 3D-MobileNetV2 0.2x and 3D-ShuffleNetV2 0.25x

achieve 5-9% worse than 3D-ShuffleNetV1 0.5x and 3D-

MobileNetV1 0.5x in Kinetics-600 benchmark. Capacity

of the models degrades severely as the width multiplier

gets smaller, especially when it is less than 0.5. We can

see the same pattern on all three benchmarks that we have

experimented.

(v) The main design criteria of the 3D-SqueezeNet is

to save number of parameters, not computations. There-

fore it has the smallest number of parameters at the highest

complexity level. However, it also has around 300 million

more FLOPs compared to other architectures since it does

not make use of depthwise convolutions.

Runtime performance:

(vi) Although the network architectures contain similar

FLOPs, some architectures are much faster than others. As

highlighted by [20], this is due to several other factors af-

fecting speed such as memory access cost (MAC) and de-

gree of parallelism, which are not taken into account by

FLOPs.

(vii) 3D-SqueezeNet is the only architecture that does

not make use of depthwise convolutions, hence contains

highest FLOPs. However, surprisingly it has the highest

runtime performance. This is due to the latest CUDNN [4]

library which is specifically optimized for standard convo-

lutions. Similar results can also be observed with ResNet

and ResNeXt architectures.

(viii) Runtime performance heavily depends on the

hardware that the network architecture is running. For

example, for the highest two complexity levels, 3D-

ShuffleNetV1 is the faster than 3D-ShuffleNetV2 on GPU,

whereas 3D-ShuffleNetV2 achieves higher runtime than

3D-ShuffleNetV1 on Jetson TX2.

State-of-the-art comparison:

(ix) Architectures with more parameters and FLOPs like

ResNets, ResNeXt-101 and I3D achieve generally better re-

sults for datasets measuring the capacity of the tested archi-

tectures like Kinetics dataset as evaluated and shown in Ta-

ble 8. However, network design makes a huge difference.

For example, 3D-ShuffleNetV1 2.0x achieves similar per-

formance with ResNet-18, although ResNet-18 requires 7

times more parameters and 14 times FLOPs .

(x) The architecture design should be done according to

the given task. As inverted residual block excels at captur-

ing dynamic motions, 3D-MobileNetV2 1.0x achieves bet-

ter results than much wider and deeper ResNet-101 (around

20 times more parameters and FLOPs) at Jester benchmark.

5. Conclusion

In recent years, the research in action recognition has

mostly focused on obtaining the best accuracy by generat-

ing deep and wide CNN architectures. However, real-world

applications require resource efficient architectures that take

runtime, memory and power budget into account. Recently,

several resource efficient 2D CNN architectures have been

proposed. However, there is a lack of architectures for 3D

counterparts. This work aims to fill this research gap.

The proposed architectures are generated by imple-

menting the 3D versions of Squeezenet, MobileNet,

MobileNetV2, ShuffleNet, ShuffleNetV2 architectures for

4 different complexity levels. The performance of these

architectures have been evaluated using 3 different bench-

marks, which are selected according to analyze models’

capacities, how well the models capture the motion and the

applicability of transfer learning for each model.

According to the analysis for 4 different complexity

levels, the results show that these resource efficient 3D

CNN architectures provide considerable classification per-

formances. Using the width multiplier, the capacity of

the architectures can be modified flexibly. The results on

Jester benchmark show that depthwise convolutions are

very good at capturing motion patterns. Moreover, nearly

all models run in real-time both at Titan XP and Jetson TX2.

As the results proved the applicability of transfer learning,

these architectures can be used for other real-world applica-

tions by using pretrained models.
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