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Abstract

Compositional convolutional networks are generative

models of neural network features, that achieve state of the

art results when classifying partially occluded objects [2],

even when they have not been exposed to occluded objects

during training. While previous results showed the potential

of CompositionalNets at localizing occluders, this remains

to be confirmed quantitatively. In this work, we study the

performance of CompositionalNets at localizing occluders

in an image. We propose to extend the original model with

a mixture of von-Mises-Fisher distributions. We show that

this extension increases the model’s ability to localize oc-

cluders in an image while retaining an exceptional perfor-

mance at classifying partially occluded objects.

1. Introduction

In natural images, objects are surrounded and partially

occluded by other objects. Current deep models are sig-

nificantly less robust to partial occlusion compared to Hu-

mans [5, 2]. Kortylewski et al. recently proposed the com-

positional convolutional network (CompositionalNet) [2],

a generative model of neural feature activations that can

classify partially occluded objects with exceptional perfor-

mance, even when it has not been exposed to occluded ob-

jects during training.

While robustness to partial occlusion is a desirable prop-

erty of vision systems, they should also be able to localize

which parts of the object are occluded. The ability to local-

ize occluders in an image is important because it improves

explainability of the classification process and enables im-

portant future research for parsing scenes with mutually oc-

cluding objects.

Preliminary results in [2] suggest that Compositional-

Nets might be able to localize the occluder in the image,

however, this property was not confirmed quantitatively. In

this work, we study the ability of CompositionalNets at lo-

calizing occluders in an image. Our experiments show that

CompositionalNets are not able to localize the occluder well

Figure 1: Occluder localization with CompositionalNets.

Left: Input image. Middle & Right: Occlusion score based

on feature activations in the pool4 layer of standard Com-

positionalNets [2] and our proposed extension respectively.

We can clearly observe that our proposed model can local-

ize occluders better across different objects and occluder

types. Note that the CompositionalNets have not been ex-

posed to partially occluded objects at training time.

(see experiments in Section 3), despite being able to classify

partially occluded images robustly. We find that the reason

for this is a simplified assumption about the distribution of

neural feature activations in CompositionalNets (feature ac-

tivations are binarized and their distribution were modeled

using a Bernoulli distribution [2]). We propose to overcome

this limitation by modeling the real-valued feature activa-

tions as a mixture of von Mises Fisher distributions. We

demonstrate that this enhances the ability of Compositional-

Nets at localizing occluders significantly while retaining its

exceptional performance at classifying partially occluded

objects.

Our work demonstrates that neural networks are capable

of localizing occluders in images when the architecture is

compositional and the model is trained to be generative in

terms of its low-level feature activations.

2. Compositional Convolutional Networks

We first review CompositonalNets as introduced in [2]

(Section 2.1) and then propose an extension that enables



them to better localize occluders in images (Section 2.2).

2.1. CompositionalNets with Dictionary Encodings

A feature map F l is the output of a layer l in a CNN.

A feature vector f l
p ∈ R

C is the vector of features in F l at

position p, where p is defined on the 2D lattice of the feature

map and C is the number of channels in the layer. Note that

the spatial information from the image is preserved in the

feature maps. We omit the subscript l in the remainder of

this section because it is fixed in our model (e.g. l = 4 for

the layer conv4).

A generative model of binary dictionary encodings.

The authors in [2] proposed to encode the feature maps F

with a dictionary D = {d1, . . . , dK}. The dictionary is

learned by clustering the vectors from the feature maps of

all training images {Fn|n = 1, . . . , N}. The real valued

feature vectors fp are encoded with a sparse binary vector bp
by detecting the nearest neighbors of fp in the learned part

dictionary D using the cosine distance g(·|·). Hence, the

element bp,k = 1 if g(fp, dk) > δ. Intuitively, bp encodes

which parts of the dictionary D are detected at position p

in the feature map F . A generative model of the binary

activation matrix B is defined as Bernoulli distribution:

p(B|Ay) =
∏

p

p(bp|αp,y) (1)

=
∏

p,k

α
bp,k
p,k,y(1− αp,k,y)

1−bp,k . (2)

Where αp,k,y is the probability that the part dk is active at

position p for the object class y, and thus bp,k = 1. Note that

parts are assumed to be independently distributed which

makes the model in spirit similar to bag of words models.

However, the important difference is that the spatial posi-

tion of the part detections is preserved, hence capturing the

spatial structure of the object.

Mixture of compositional models. The independence

assumption between parts in Equation 1, the model assumes

that the spatial distribution of parts in B is approximately

the same. This assumption does not hold for 3D objects,

because e.g. by changing the 3D pose of an object the rel-

ative spatial distribution of parts changes strongly (e.g. the

location of the tires of a car in the image change between the

side view and a frontal view). This problem can be resolved

by using mixtures of compositional models:

p(B|Ay,V) =
∏

m

p(B|Am
y )νm , (3)

∑

m

νm = 1, νm ∈ {0, 1}. (4)

The intuition is that each mixture component m will repre-

sent images of an object that have approximately the same

spatial part distribution (i.e. similar viewpoint and 3D struc-

ture). The parameters of the individual mixtures Am
y as well

(a) (b) (c) (d)

Figure 2: Visualization of synthetic partial occlusions with

40-60% occlusion. We simulate different types of occluder

appearances: (a) natural objects, (b) white color, (c) random

noise, (d) textures.

as the mixture assignment variables V can be learned using

maximum likelihood estimation while alternating between

estimating Am
y and V .

Occlusion modeling. Partial occlusion of an object will

change the part activation patterns in B such that parts may

be missing and other parts might be active at a previously

unseen location. The intuition behind an occlusion model is

that at each position p in the image either the object model

Ay or a background model β is active:

p(B|Γ) =
∏

p

p(bp|FG)zpp(bp|BG)1−zp , (5)

zp ∈ {0, 1}, (6)

p(bp|FG) = p(bp|αp,y)p(zp), (7)

p(bp|BG) = p(bp|β)(1− p(zp)). (8)

Γ = {Ay;β;Z} The binary variable zp indicates if the

object is visible at position p. The occlusion prior p(zp)
can be learned or alternatively be set manually (see Sec-

tion 3). The background model is defined as: p(b|β) =∏
k β

bk
k (1 − βk)

1−bk . Here the background model is as-

sumed to be independent of the position in the image and

thus has no spatial structure. The background model can be

estimated by β = 1
J

∑J
j=1 bj , where J part detection vec-

tors bj are randomly sampled on a set of background images

that do not contain one of the objects of interest. The max-

imum likelihood estimate of the occlusion variables zp can

be computed efficiently due to the independence assump-

tion in the occlusion model (Equation 5).

2.2. Fully Generative CompositionalNets

The model as presented in the previous section can rec-

ognize partially occluded objects with high-performance

[2], however, it is not able to discriminate well between the

occluder and the object (see occluder localization experi-

ments in Section 3). One reason is that instead of modeling

the distribution of the real-valued features p(F |y), the au-

thors in [2] binarize the features with a heuristic threshold

and just model the distribution of binary activations p(B|y)
(Equation 1). However, the binarization induces a loss of in-

formation that is useful to discriminate between the object



Classification under Occlusion

Occ. Area 0% Level-1: 20-40% Level-2: 40-60% Level-3: 60-80% Mean

Occ. Type - w n t o w n t o w n t o -

VGG 99.2 97.9 97.9 97.6 90.3 91.6 90.5 89.7 68.8 54.7 52.3 48.1 47.5 78.9

CompMixOcc-Dictionary 93.1 93.9 93.5 93.5 93.4 92.4 92.4 92.0 91.1 87.6 84.9 84.3 87.0 90.7

CompMixOcc-Full 92.4 92.2 92.1 92.2 92.7 90.9 90.2 89.4 90.4 85.8 84.7 79.0 87.8 89.2

CompositionalNet-Dictionary 98.8 97.8 97.5 97.2 95.9 94.7 94.5 94.0 91.2 87.4 85.4 83.8 85.4 92.6

CompositionalNet-Full 98.9 97.7 97.4 97.2 96.3 94.2 93.5 93.0 91.3 85.9 85.2 79.1 86.5 92.0

Human 100.0 100.0 100.0 98.3 99.5

Table 1: Object classification under occlusion. The proposed fully generative model performs on par with the dictionary-

based model proposed in [2], while it performs much better at occlusion localization (see Figure 3).

and the occluder.

In this paper, we propose a generative model of the real

valued features p(F |y). In particular, we propose to replace

the Bernoulli distribution over binary features (see Equation

1) with a mixture of von Mises Fisher (vMF) distributions:

p(F |Θy) =
∏

p

p(fp|Ap,y, θ) (9)

=
∏

p

∑

k

αp,k,yp(fp|Sk, µk), (10)

where Θy = {A0,y, . . . ,AP,y, θ} are the model parameters

at every position p ∈ P on the lattice of the feature map

F , Ap,y = {αp,0,y, . . . , αp,K,y|
∑K

k=0 αp,k,y = 1} are the

mixture coefficients, K is the number of mixture compo-

nents, θ = {θk = {Sk, µk}|k = 1, . . . ,K} are the parame-

ters of the vMF mixture distributions:

p(fp|Sk, µk) =
eSkµ

T
k fp

Z(Sk)
, ‖fp‖ = 1, ‖µk‖ = 1, (11)

and Z(Sk) is the normalization constant. Accord-

ingly, we define the background model as p(f |β) =∑
k βkp(f |Sk, µk). The parameters of the vMF mixture

model Θy and the background model β can be learned

with maximum likelihood estimation, as proposed in [2].

In the following experiments, we show that replacing the

dictionary-based encoding of the features with the proposed

fully generative model of the features (while keeping the

remaining model the same) significantly enhances the abil-

ity of CompositionalNets to localize occluders in an image,

while retaining an exceptional performance at classifying

partially occluded objects.

3. Experiments

In this section, we compare our proposed fully genera-

tive CompositionalNet with the dictionary-based model as

described in Section 2.1 at object classification and occluder

localization. The experiments are performed on the Occlud-

edVehicles dataset proposed in [3] and extended in [2]. The

dataset consists of vehicles from the from the PASCAL3D+

dataset [4] that were synthetically occluded by four differ-

ent types of occluders: objects (Figure 2a) and patches with

constant white color (Figure 2b), random noise (Figure 2c)

and textures (Figure 2d). At training time all models are

trained on non-occluded images, while at test time the mod-

els are exposed to images with different amount of partial

occlusion. The CompositionalNets are trained from the fea-

ture activations of the pool4-layer of a VGG model that was

pretrained on ImageNet [1]. The detailed training setup and

parameter settings are chosen as specified in [2].

Localizing occluders with CompositionalNets. Fig-

ure 4 illustrates occlusion scores at different positions p

of the corresponding feature map F . We compute the oc-

clusion score as the log-likelihood ratio log
p(fp|BG)
p(fp|FG) of the

background and foreground model. Note that we visual-

ize only positive occlusion scores to highlight the localiza-

tion of the occluder. We can observe that the fully genera-

tive model can localize occluders significantly better than in

the dictionary-based model for all types of occluders. Fig-

ure 3 shows the ROC curves of both models when using

the occlusion score for classifying each pixel as being oc-

cluder or not. The dictionary-based model (dotted lines)

performs poorly for any type of occluder except the plain

white ones. In contrast, our fully generative model signifi-

cantly improves the quality of the occluder classification for

all types of occluders. Note how textured occluders (objects

and textured masks) are more difficult to localize.

In summary, our experimental results show that the fully

generative CompositionalNet outperforms the dictionary-

based model presented in [2] at occlusion localization sig-

nificantly (Figure 3), while it performs on par at classifying

partially occluded objects (Table 1).

4. Conclusion

In this work, we considered the problem of classifying

partially occluded objects and localizing the occluders un-

der the constraint that partially occluded objects are not part

of the training data. We showed that dictionary-based Com-



(a) (b) (c)

Figure 3: Occluder localization with dictionary-based CompositionalNets and our proposed fully generative Compositional-

Net for different levels of partial occlusion: (a) 20-40%, (b) 40-60% and (c) 60-80% of the object is occluded. Our model

significantly outperforms dictionary-based CompositionalNets.

Figure 4: Visualization of occlusion localization results (not cherry picked). Each result consists of three images: The input

image, the occlusion scores of a dictionary-based CompositionalNet and our proposed fully generative CompositionalNet.

Note how our model can localize occluders with higher certainty across objects and occluder types.

positionalNets are not able to localize occluders well, al-

though they can classify partially occluded objects well. We

proposed an extension to CompositionalNets that enables

them to accurately localize occluders in images while re-

taining an exceptional performance at classifying partially

occluded objects. Our work shows that neural networks

are capable of localizing occluders in images when their ar-

chitecture is compositional and they are trained to be fully

generative in terms of their high-level features. An accu-

rate occluder localization enhances the interpretability of

the network’s prediction and enables important future work

on parsing scenes with mutually occluding objects.
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