
Matrix Nets: A New Deep Architecture for Object Detection

Abdullah Rashwan

University of Waterloo

Vector Institute

arashwan@uwaterloo.ca

Agastya Kalra

Akasha Imaging Corp.

University of Waterloo

agastya@akasha.im

Pascal Poupart

University of Waterloo

Vector Institute

ppoupart@uwaterloo.ca

Figure 1. Model size (millions of parameters) vs accuracy (average

precision) reported on MSCOCO test-dev for single-shot detec-

tors. Enabled by our MatrixNet backbone, our model outperforms

all other single-shot architectures while being smaller in size.

Abstract

We present Matrix Nets (xNets), a new deep architecture

for object detection. xNets map objects with different sizes

and aspect ratios into layers where the sizes and the aspect

ratios of the objects within their layers are nearly uniform.

Hence, xNets provide a scale and aspect ratio aware ar-

chitecture. We leverage xNets to enhance key-points based

object detection. Our architecture achieves mAP of 47.8 on

MS COCO, which is higher than any other single-shot de-

tector while using half the number of parameters and train-

ing 3x faster than the next best architecture.

1. Introduction

Object detection is one of the most widely studied tasks

in computer vision with many applications to other vision

tasks such as object tracking, instance segmentation, and

image captioning. Object detection architectures can be

sorted into two categories; single-shot detectors [6, 3] and

two-stage detectors [4]. Two-stage detectors leverage a re-

gion proposal network to find a fixed number of object can-

didates, then a second network is used to predict a score for

each candidate and to refine its bounding box.

Single-shot detectors can also be split into two cate-

gories; anchor based detectors [6, 7] and key-point based

Figure 2. (a) Shows the original FPN architecture [5], where there

are different output layers are assigned at each scale. Note we do

not show the skip connections for the sake of simplicity. (b) Shows

the MatrixNet architecture, where the 5 FPN layers are viewed as

the diagonal layers in the matrix. We fill in the rest of the matrix

by downsampling these layers.

detectors [3, 2]. Anchor-based detectors contain many an-

chor boxes and then predict offsets and classes for each an-

chor. The most famous anchor-based architecture is Reti-

naNet [6], which proposed the focal loss function to help

correct for the class imbalance of positive to negative an-

chor boxes. The highest performing anchor-based detec-

tor is Feature Selective Anchor-Free (FSAF) [7]. FSAF en-

sembles the anchor-based output with an anchor free output

head to further improve performance.

On the other hand, key-point based detectors predict top-

left and bottom-right corner heat-maps and match them to-

gether using feature embeddings. The original key-point

based detector is CornerNet [3], which leverages a special

corner pooling layer to accurately detect objects of differ-

ent sizes. Since then, CenterNet [2] substantially improved

CornerNet architecture by predicting object centers along

with corners.

Detecting objects at different scales is a major chal-



lenge for object detection. One of the biggest advancements

in scale aware architectures is Feature Pyramid Networks

(FPNs), introduced by Lin et al. [5]. FPNs were designed

to be scale invariant by having multiple layers with differ-

ent receptive fields so that objects are mapped to layers with

relevant receptive fields. Small objects are mapped to ear-

lier layers in the pyramid, and larger objects are mapped

to later layers. Since the size of the objects relative to the

downsampling of the layer are kept nearly uniform across

pyramid layers, a single output sub-network can be shared

across all layers. Although FPNs provided an elegant way

for handling objects of different sizes, they didn’t provide

any solution for objects of different aspect ratios. A high

tower, a giraffe, or a knife introduce a design difficulty for

FPNs: Does one map these objects to layers according to

their width or height? Assigning the object to a layer ac-

cording to its larger dimension would result in loss of in-

formation along the smaller dimension due to aggressive

downsampling, and vice versa. To solve this, we introduce

Matrix Networks, a new scale and aspect ratio aware CNN

architecture. xNets, as shown in Fig. 2, have several matrix

layers, each layer handles an object of specific size and as-

pect ratio. xNets assign objects of different sizes and aspect

ratios to layers such that object sizes within their assigned

layers are close to uniform. This allows a square output con-

volution kernel to equally gather information about objects

of all aspect ratios and scales. xNets can be applied to any

backbone, similar to FPNs. We denote this by appending a

”-X” to the backbone, i.e. ResNet50-X.

As an application, we use xNets for key-point based ob-

ject detection. While key-point based single-shot detectors

are the current state-of-the-art [2], they have two limitations

due to using a single output layer: they require very large,

computationally expensive backbones, and special pooling

layers for the model to converge. Second, they have dif-

ficulty accurately matching top-left, and bottom-right cor-

ners. To solve these limitations, we introduce keypoint-

matrixnet (KP-xNet) architecture, an architecture that lever-

ages xNet to achieve state-of-the-art results using ResNet-

50, Resnet-101, and ResNeXt-101 backbones. We detect

corners for objects of different sizes and aspect ratios using

different matrix layers, and simplify the matching process

by removing the embedding layer entirely and regressing

the object centers directly. We show that KP-xNet outper-

forms all existing single-shot detectors by achieving 47.8%

mAP on the MS COCO benchmark.

The rest of the paper is structured as follows: Section

2 formalizes the idea of MatrixNets, while Section 3 dis-

cusses keypoint based object detection, and our method for

applying MatrixNets for key-point based object detection.

Section 4 covers experiments, results, and comparisons, and

finally Section 5 is the conclusion.

Figure 3. The KP-xNet architecture.

2. Matrix Nets
Matrix nets (xNets) as shown in Fig. 2 model objects

of different sizes and aspect ratio using a matrix of lay-

ers where each entry i, j in the matrix represents a layer,

li,j , with width down-sampling of 2i−1 and height down-

sampling of 2j−1 with respect to the top left layer, l1,1 in

the matrix. The diagonal layers are square layers of differ-

ent sizes, equivalent to an FPN, while the off diagonal lay-

ers are rectangle layers, unique to xNets. Layer l1,1 is the

largest layer in size, every step to the right cuts the width

of the layer by half, while every step down cuts the height

by half. For example, Width(l3,4) = 0.5Width(l3,3). Di-

agonal layers model objects with square-like aspect ratios,

while off diagonal layers model objects with more extreme

aspect ratios. Layers close to the top right or bottom left

corners of the matrix model objects with very high or very

low aspect ratios. Such objects are very rare, so these layers

can be pruned for efficiency.

2.1. Layer Generation
Generating matrix layers is a crucial step since it impacts

the number of model parameters. The more parameters, the

more expressive the model and the harder the optimization

problem is, hence we chose to introduce as few new param-

eters as possible. The diagonal layers can be obtained from

different stages of the backbone or using a feature pyra-

mid backbone [5]. The upper triangular layers are obtained

by applying a series of shared 3x3 convolutions with stride

1x2 on the diagonal layers. Similarly, the bottom left lay-

ers are obtained using shared 3x3 convolutions with stride

2x1. The parameters are shared across all down-sampling

convolutions to minimize the number of new parameters.

2.2. Layer Ranges
Each layer in the matrix models objects of certain widths

and heights, hence we need to define the range of widths and

heights of objects assigned to each layer in the matrix. The

ranges need to reflect the receptive field of the feature vec-

tors of the matrix layers. Each step to the right in the matrix

effectively doubles the receptive field in the horizontal di-

mension, and each step down doubles the receptive field in

the vertical dimension. Hence, the range of the widths or



heights needs to be doubled as we advance to the right or

down in the matrix. Once the range for the first layer l1,1 is

defined, we can generate the ranges for the rest of the ma-

trix layers using the above rule. For example, if the range

for layer l1,1 is H ∈ [24px, 48px], W ∈ [24px, 48px], the

range for layer l1,2 will be H ∈ [24, 48], W ∈ [48, 96].
Objects on the boundaries of these ranges could destabi-

lize training since layer assignment would change if there’s

a slight change in object size. To avoid this problem, we

relax the layer boundaries by extending them in both direc-

tions. This is accomplished by multiplying the lower end of

the range by a number less than one, and the higher end by

a number greater than one, in all our experiments, we use

0.8, and 1.3 respectively.

2.3. Advantages of Matrix Nets

The key advantage of Matrix Nets is they allow a square

convolutional kernel to accurately gather information about

different aspect ratios. In traditional object detection mod-

els, such as RetinaNet, a square convolutional kernel is re-

quired to output boxes of different aspect ratios and scales.

This is counter-intuitive since boxes of different aspect ra-

tios and scales require different contexts. In Matrix Nets,

the same square convolutional kernel can be used for de-

tecting boxes of different scales and aspect ratios since the

context changes in each matrix layer. Since object sizes

are nearly uniform within their assigned layers, the dy-

namic range of the widths and heights is smaller compared

to other architecture such as FPNs. Hence, regressing the

heights and widths of objects becomes an easier optimiza-

tion problem. Finally MatrixNets can be used as a back-

bone to any object detection architecture, anchor-based or

keypoint-based, one-stage or two-stage detectors.

3. Key-point Based Object Detection

CornerNet [3] was proposed as an alternative to anchor-

based detectors, CornerNet predicts a bounding box as a

pair of corners: top-left, and bottom-right. For each cor-

ner, CornerNet predicts heatmaps, offsets, and embeddings.

Top-left, and bottom-right corner candidates are extracted

from the heatmaps. Embeddings are used to group the top-

left, and bottom-right corners that belong to the same ob-

ject. Finally, offsets are used to refine the bounding boxes

producing tighter bounding boxes. This approach has three

main limitations.

(1) CornerNet handles objects from different sizes and

aspect ratios using a single output layer. As a result, pre-

dicting corners for large objects presents a challenge since

the available information about the object at the corner lo-

cation isn’t always available with regular convolutions. To

solve this challenge, CornerNet introduced the corner pool-

ing layer that uses a max operation on the horizontal and

vertical dimensions. The top left corner pooling layer scans

the entire right bottom image to detect any presence of a

corner. Although, experimentally they show that corner

pooling stabilizes the model, we know that max operations

lose information. For example, if two objects share the

same location for the top edge, only the object with the max

features will contribute to the gradient. So, we can expect to

see false positive predictions due to corner pooling layers.

(2) Matching the top left and bottom right corners is done

with feature embeddings. There are two problems that arise

from using embeddings in this setting. First, the pairwise

distances need to be optimized during the training, so as

the number of objects in an image increases, the number of

pairs increases quadratically, which affects the scalability of

the training when dealing with dense object detection. The

second problem is learning embeddings themselves. Cor-

nerNet tries to learn the embedding for each object corner

conditioned on the appearance of the other corner of the ob-

ject. Now, if the object is too big, the appearance of both

corners can be very different due to the distance between

them, as a result the embeddings at each corner can be dif-

ferent as well. Also, if there are multiple objects in the im-

age with similar appearance, the embeddings for their cor-

ners will likely be similar. This is why we saw examples

where CornerNet merged persons, or traffic lights together.

(3) As a result of the previous two problems, Corner-

Net is forced to use the Hourglass-104 backbone to achieve

state-of-the-art performance. This has over 200M param-

eters, very slow and unstable training, requiring 10 GPUs

with 12GB memory to ensure a large enough batch size for

stable convergence.

3.1. Key-point Based Object Detection Using Ma-
trix Nets

Fig. 3 shows our proposed architecture for keypoint

based object detection, KP-xNet. KP-xNet consists of 4

stages. (a-b) We use a xNet backbone as defined in Sec-

tion 2. (c) Using a shared output sub-network, for each

matrix layer we predict the top-left and bottom-right cor-

ner heatmaps, corner offsets, and center predictions for ob-

jects within their layers. (d) We match corners within the

same layer using the center predictions, and then combine

the outputs of all layers with soft non-maximum suppres-

sion to achieve the final output.

Corner Heatmaps Using xNets ensures that the context

required for objects within a layer is bounded by the recep-

tive field of a single feature map in that layer. As a result,

corner pooling is no longer needed, regular convolutional

layers can be used to predict the heatmaps for the top left

and bottom right corners. Similar to CornerNet, we use fo-

cal loss to deal with unbalanced classes.

Corner Regression Due to image downsampling, refin-

ing the corners is important to have tighter bounding boxes.

When scaling down a corner to x, y location in a layer, we

predict the offsets so that we can scale up the corner to the



original image size without losing precision. We keep the

offset values between −0.5, and 0.5, and we use smooth L1

loss to optimize the parameters.

Center Regression Since the matching is done within

each individual matrix layer, the width and height of the

object is guaranteed to be within a certain range. The center

of the object can be regressed easily because the range for

the center is small. In CornerNet, the dynamic range for the

centers is large, trying to regress centers in a single output

layer would probably fail. Once the centers are obtained,

the corners can be matched together by comparing the re-

gressed center to the actual center between the two corners.

During the training, center regression scales linearly with

the number of objects in the image compared to quadratic

growth in the case of learning embeddings. To optimize the

parameters, we use smooth L1 loss.

KP-xNet solves problem (1) of CornerNets because all

the matrix layers represent different scales and aspect ratios

rather than having them all in a single layer. This also al-

lows us to get rid of the corner pooling operation. (2) is

solved since we no longer predict embeddings, instead we

regress centers directly. By solving the first two problems

of CornerNets, we will show in the experiments that we can

achieve higher results than CornerNet using a smaller net-

work, and less of computational resources.

4. Experiments
We train all of our networks on a server with Titan XP

GPUs. We use a batch size of 20, that requires 3 GPUs for

resnet50-X, and 4 GPUs for resnet101-X, and ResNeXt101-

X. For our final ResNeXt101-X experiment we train on

an AWS p3.16xlarge instance with 8 V100 GPUs to allow

for a larger batch size of 55. This improves performance

by 0.7% mAP. During the training, we use crops of sizes

512x512, and we use standard scale jitter of 0.6-1.5 and a

custom cutout [1] implementation. For optimization, we use

the Adam optimizer and set an initial learning rate of 5e-5,

and cut it by 1/10 after 130k iterations, training for a total

of 180k epochs. For our matrix layer ranges, we set l1,1 to

be [24px-48px]x[24px-48px] and then scale the rest as de-

scribed in Section 2.2. At test time, we resize the image so

that the max side of the image is 900. We use both the orig-

inal, and the horizontally flipped images for inference. We

trained our model on MS COCO ’trainval35k’ set (i.e., 80K

training images and 35K validation images), and tested on

the ’test-dev2017’ set. Using this setup, we achieve 41.7,

42.7, 44.7 mAP single scale, and 43.9, 44.8, and 47.8 mAP

multi-scale.

4.1. Comparisons
As shown in Table 1, our final model, KP-xNet (Multi-

Scale) with ResNext-101-X backbone achieves higher mAP

than the next best model and more than 5.7% mAP over

the original CornerNet architecture. The second best ar-

chitecture, CenterNet (Multi-Scale), is trained with a back-

Table 1. Empirical results on MSCOCO for our method as com-

pared to best results reported in other works.

Architecture Backbone mAP

CornerNet [3] Hourglass-104 40.8

CornerNet (Multi-Scale) [3] Hourglass-104 42.1

RetinaNet [6] ResNeXt-101-FPN 40.8

FSAF [7] ResNeXt-101-FPN 42.3

FSAF (Multi-Scale) [7] ResNeXt 101-FPN 44.6

CenterNet [2] Hourglass-104 44.9

CenterNet (Multi-Scale) [2] Hourglass-104 47.0

KP-xNet ResNeXt-101-X 44.7

KP-xNet (Multi-Scale) ResNeXt-101-X 47.8

bone twice the size and 3x the training iterations, and 2x

GPU memory. CenterNet ran 480k training iterations on

the Hourglass-104 backbone whereas our model converged

in 180k training iterations on the smaller ResNeXt-101-X

backbone.

We also compare our model with other models on dif-

ferent backbones based on the number of parameters. In

Fig. 1, we show that KP-xNet outperforms all other archi-

tectures at all parameter levels. Results are obtained from

each individual paper. We believe this is because KP-xNet

uses a scale and aspect ratio aware architecture.

5. Conclusion

In this work, we introduced MatrixNet, a scale and
aspect ratio aware architecture for object detection. We
showed how to use MatrixNets to solve fundamental lim-
itations of keypoints object detection. Our model achieves
the state-of-the-art accuracy on MS COCO among single
shot detectors.

References

[1] T. DeVries and G. W. Taylor. Improved regularization of

convolutional neural networks with cutout. arXiv preprint

arXiv:1708.04552, 2017. 4

[2] K. Duan, S. Bai, L. Xie, H. Qi, Q. Huang, and Q. Tian. Cen-

ternet: Object detection with keypoint triplets. arXiv preprint

arXiv:1904.08189, 2019. 1, 2, 4

[3] H. Law and J. Deng. Cornernet: Detecting objects as paired

keypoints. In Proceedings of the European Conference on

Computer Vision (ECCV), pages 734–750, 2018. 1, 3, 4

[4] Y. Li, Y. Chen, N. Wang, and Z. Zhang. Scale-aware

trident networks for object detection. arXiv preprint

arXiv:1901.01892, 2019. 1

[5] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and

S. Belongie. Feature pyramid networks for object detection.

In Proceedings of the IEEE conference on computer vision

and pattern recognition, pages 2117–2125, 2017. 1, 2

[6] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár. Focal

loss for dense object detection. In Proceedings of the IEEE in-

ternational conference on computer vision, pages 2980–2988,

2017. 1, 4

[7] C. Zhu, Y. He, and M. Savvides. Feature selective anchor-

free module for single-shot object detection. arXiv preprint

arXiv:1903.00621, 2019. 1, 4


