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Abstract

The use of automatic methods, often referred to as Neu-
ral Architecture Search (NAS), in designing neural network
architectures has recently drawn considerable attention. In
this work, we present an efficient NAS approach, named HM-
NAS, that generalizes existing weight sharing based NAS
approaches. Existing weight sharing based NAS approaches
still adopt hand designed heuristics to generate architecture
candidates. As a consequence, the space of architecture
candidates is constrained in a subset of all possible archi-
tectures, making the architecture search results sub-optimal.
HM-NAS addresses this limitation via two innovations. First,
HM-NAS incorporates a multi-level architecture encoding
scheme to enable searching for more flexible network ar-
chitectures. Second, it discards the hand designed heuris-
tics and incorporates a hierarchical masking scheme that
automatically learns and determines the optimal architec-
ture. Compared to state-of-the-art weight sharing based
approaches, HM-NAS is able to achieve better architecture
search performance and competitive model evaluation accu-
racy. Without the constraint imposed by the hand designed
heuristics, our searched networks contain more flexible and
meaningful architectures that existing weight sharing based
NAS approaches are not able to discover.

1. Introduction

Neural architecture search (NAS) has recently attracted
significant interests due to its capability of automating neural
network architecture design and its success in outperforming
hand-crafted architectures in many important tasks such as
image classification [1], object detection [2], and semantic
segmentation [3]. In early NAS approaches, architecture can-
didates are first sampled from the search space; the weights
of each candidate are learned independently and are dis-
carded if the performance of the architecture candidate is
not competitive [4, 1, 5, 6]. Despite their remarkable per-
formance, since each architecture candidate requires a full
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training, these approaches are computationally expensive,
consuming hundreds or even thousands of GPU days in order
to find high-quality architectures.

To overcome this bottleneck, a majority of recent efforts
focuses on improving the computation efficiency of NAS
using the weight sharing strategy [4, 7, 8, 9, 10]. Specifi-
cally, rather than training each architecture candidate inde-
pendently, the architecture search space is encoded within
a single over-parameterized supernet which includes all
the possible connections (i.e., wiring patterns) and oper-
ations (e.g., convolution, pooling, identity). The supernet
is trained only once. All the architecture candidates inherit
their weights directly from the supernet without training
from scratch. By doing this, the computation cost of NAS is
significantly reduced.

Unfortunately, although the supernet subsumes all the
possible architecture candidates, existing weight sharing
based NAS approaches still adopt hand designed heuristics
to extract architecture candidates from the supernet. As an
example, in many existing weight sharing based NAS ap-
proaches such as DARTS [7], the supernet is organized as
stacked cells and each cell contains multiple nodes connected
with edges. However, when extracting architecture candi-
dates from the supernet, each candidate is hard coded to have
exactly two input edges for each node with equal importance
and to associate each edge with exactly one operation. As
such, the space of architecture candidates is constrained in a
subset of all possible architectures, making the architecture
search results sub-optimal.

Given the constraint of existing weight sharing ap-
proaches, it is natural to ask the question: will we be able to
improve architecture search performance if we loosen this
constraint? To this end, we present HM-NAS, an efficient
neural architecture search approach that effectively addresses
such limitation of existing weight sharing based NAS ap-
proaches to achieve better architecture search performance
and competitive model evaluation accuracy. As illustrated in
Figure 1, to loosen the constraint, HM-NAS incorporates a
multi-level architecture encoding scheme which enables an
architecture candidate extracted from the supernet to have



arbitrary numbers of edges and operations associated with
each edge. Moreover, it allows each operation and edge
to have different weights which reflect their relative impor-
tance across the entire network. Based on the multi-level
encoded architecture, HM-NAS formulates neural architec-
ture search as a model pruning problem: it discards the
hand designed heuristics and employs a hierarchical mask-
ing scheme to automatically learn the optimal numbers of
edges and operations and their corresponding importance as
well as mask out unimportant network weights. Moreover,
the addition of these learned hierarchical masks on top of
the supernet also provides a mechanism to help correct the
architecture search bias caused by bilevel optimization of
architecture parameters and network weights during supernet
training [11, 12, 13]. Because of such benefit, HM-NAS is
able to use the unmasked network weights to speed up the
training process.

We evaluate HM-NAS on both CIFAR-10 and ImageNet
and our results are promising: HM-NAS is able to achieve
competitive accuracy on CIFAR-10 with 1.6 x to 1.8 less
parameters and 2.7 x total training time speed-up compared
with state-of-the-art weight sharing approaches. Similar re-
sults are also achieved on ImageNet. Moreover, we have
conducted a series of ablation studies that demonstrate the
superiority of our multi-level architecture encoding and hier-
archical masking schemes over randomly searched architec-
tures, as well as single-level architecture encoding and hand
designed heuristics used in existing weight sharing based
NAS approaches. Finally, we have conducted an in-depth
analysis on the best-performing network architectures found
by HM-NAS. Our results show that without the constraint
imposed by the hand designed heuristics, our searched net-
works contain more flexible and meaningful architectures
that existing weight sharing based NAS approaches are not
able to discover.

In summary, our work makes the following contributions:

e We present HM-NAS, an efficient neural architecture
search approach that loosens the constraint of existing
weight sharing based NAS approaches.

e We introduce a multi-level architecture encoding
scheme which enables an architecture candidate to have
arbitrary numbers of edges and operations with dif-
ferent importance. We also introduce a hierarchical
masking scheme which is able to not only automati-
cally learn the optimal numbers of edges, operations
and important network weights, but also help correct the
architecture search bias caused by bilevel optimization
during supernet training.

e Extensive experiments show that compared to state-
of-the-art weight sharing based NAS approaches, HM-
NAS is able to achieve better architecture search effi-
ciency and competitive model evaluation accuracy.
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Figure 1: The pipelines of (a) existing weight sharing based
NAS approaches such as DARTS [7] and SNAS [8]; and (b)
HM-NAS (our approach).

2. Related Work

Designing high-quality neural networks requires domain
knowledge and extensive experiences. To cut the labor in-
tensity, there has been a growing interest in developing auto-
mated neural network design approaches through NAS. Pio-
neer works on NAS employ reinforcement learning (RL) or
evolutionary algorithms to find the best architecture based on
nested optimization [4, 1, 5, 6]. However, these approaches
are incredibly expensive in terms of computation cost. For
example, in [1], it takes 450 GPUs for four days to search
for the best network architecture.

To reduce computation cost, many works adopt the weight
sharing strategy where the weights of architecture candidates
are inherited from a supernet that subsumes all the possible
architecture candidates. To further reduce the computation
cost, recent weight sharing based approaches such as DARTS
[7] and SNAS [8] replace the discrete architecture search
space with a continuous one and employ gradient descent to
find the optimal architecture. However, these approaches re-
strict the continuous search space with hand designed heuris-
tics, which could jeopardize the architecture search perfor-
mance. Moreover, as discussed in [11, 12, 13], the bilevel
optimization of architecture parameters and network weights
used in existing weight sharing based approaches inevitably
introduces bias to the architecture search process, making
their architecture search results sub-optimal. Our approach
is related to DARTS and SNAS in the sense that we both
build upon the weight sharing strategy. However, our goal
is to address the above limitations of existing approaches to
achieve better architecture search performance.

Our approach is also related to ProxylessNAS [9]. Proxy-
lessNAS formulates NAS as a model pruning problem. In
our approach, the employed hierarchical masking scheme
also prunes the redundant parts of the supernet to generate
the optimal network architecture. The distinction is that
ProxylessNAS focuses on pruning operations (referred to



Architecture Retrain Use
NAS Approach Encoding from Scratch  Proxy
ENAS [4] Operations Yes Yes
NASNet [1] Operations Yes Yes
AmoebaNet [6] Operations Yes Yes
NAONet [14] Operations Yes Yes
ProxylessNAS [9] Operations Yes No
FBNet [15] Operations Yes No
DARTS [7] Operations Yes Yes
SNAS [8] Operations Yes Yes
HM-NAS Operations & Edges No No

Table 1: Comparison between HM-NAS and other NAS
approaches on a number of important dimensions.

as path in [9]) of the supernet, while HM-NAS provides a
more generalized model pruning mechanism which prunes
the redundant operations, edges, and network weights of the
supernet to derive the optimal architecture. Our approach is
also similar to ProxylessNAS as being a proxyless approach.
Rather than adopting a proxy strategy like [7, 8], which
transfers the searched architecture to another larger network,
both HM-NAS and ProxylessNAS directly search the ar-
chitectures on target datasets without architecture transfer.
However, unlike ProxylessNAS which involves retraining as
the last step, HM-NAS eliminates the prolonged retraining
process and replaces it with a fine-tuning process with the
reuse of the unmasked pretrained supernet weights.

Table 1 provides a comparison between HM-NAS and
relevant approaches on a number of important dimensions.
The combination of the proposed multi-level architecture
encoding and hierarchical masking techniques makes HM-
NAS superior over many existing approaches. We quantify
such superiority in §4.

3. Our Approach

3.1. Search Space and Supernet Design with Multi-
Level Architecture Encoding

Following [6, 7, 8], we use a cell structure with an ordered
sequence of nodes as our search space. The network is then
composed of several identical cells which are stacked on top
of each other. Specifically, a cell is represented using a di-
rected acyclic graph (DAG) where each node x in the DAG is
a latent representation (e.g., a feature map in a convolutional
network). A cell is set to have two input nodes, one or more
intermediate nodes, and one output node. Specifically, the
two input nodes are connected to the outputs of cells from
two previous cells; each intermediate node is connected by
all its predecessors; and the output node is the concatenation
of all the intermediate nodes within the cell.

To build the supernet that subsumes all the possible
architectures in the search space, existing works such as
DARTS [7] and SNAS [8] associate each edge in the DAG
with a mixture of candidate operations (e.g., convolution,

pooling, identity) instead of a definite one. Moreover, each
candidate operation of the mixture is assigned with a learn-
able variable (i.e., operation mixing weight) which encodes
the importance of this candidate operation. As such, the mix-
ture of candidate operations associated with a particular edge
is represented as the softmax over all candidate operations:

Z exp(a;)

Z exp(a;) Oi(w) M

where {o0;} denote the set of NV candidate operations, {«;}
denote the set of NV real-valued operation mixing weights.

Although this supernet encodes the importance of dif-
ferent candidate operations within each edge, it does not
provide a mechanism to encode the importance of different
edges across the entire DAG. Instead, all the edges across
the DAG are constrained to have the same importance. How-
ever, as we observed in our experiments (§4), loosening this
constraint is able to help NAS find better architectures.

Motivated by this observation, in HM-NAS’s supernet,
besides encoding the importance of each candidate operation
within an edge, we introduce a separate set of learnable
variables (i.e., edge mixing weights) to independently encode
the importance of each edge across the DAG. As such, each
intermediate node z(*) in the DAG is computed based on all
of its predecessors as:
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where 3(%7) denote the real-valued edge mixing weight for
the directed edge (i, j).

In summary, &« = {a;} encode the architecture at the
operation level while 3 = {3(+7)} encode the architecture
at the edge level. Therefore, we have constructed a supernet
with multi-level architecture encoding where ¢ and (3 alto-
gether encode the overall architecture of the network, and
we refer to {, 3} as the architecture parameters.

3.2. Training the Supernet

To train the multi-level encoded supernet, we follow [7]
to jointly optimize the architecture parameters {c, 3} and
the network weights w in a bilevel way via stochastic gra-
dient descent with first or second-order approximation. Let
Lirain and L,,; denote the training loss and validation loss
respectively. The goal is to find {a*, 3"} that minimize

Loyai(a, B, w*), where w* is obtained by minimizing the
training loss w* = argmin,, Lirqin(a*, 3%, w). For the
details of this bilevel optimization, please refer to [7] as we
do not claim any new contribution on this part.

Here we want to emphasize two techniques that we find
helpful in training our multi-level encoded supernet. First,
due to insufficient training of network weights w at the be-
ginning of the supernet training, the architecture parameters
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Figure 2: Illustration of the iterative hierarchical masking process on a single cell. In this example, each edge has 3
candidate operations marked using red, yellow, and blue color respectively. In each iteration, the real-valued hierarchical
masks { M, M5, M}, } are passed through a deterministic thresholding function to obtain the corresponding binary masks
(highlighted grids represent ‘1°, the rest represent ‘0”) that mask out redundant operations, edges, and weights of the supernet.

«a and (3 could be randomly selected. To avoid this, similar
to [15], we adopt a warm start in training of w while freez-
ing the training of o and 3. Second, updating o and 3 too
frequently could lead to underfitting of w. We solve this by
triggering the optimization of c and 3 stochastically rather
than doing it constantly, with a probability of p = o (iter),
where ifer is the number of iterations and o (+) is a monoton-
ically non-increasing function that satisfies o(0) = 1. After
a prolonged decrease, the probability p may even be set to
zero, i.e., no bilevel optimization is conducted any longer
and only w is optimized.

3.3. Searching the Optimal Architecture via
Hierarchical Masking

Given the trained supernet, we formulate neural archi-
tecture search as a model pruning problem, and iteratively
prune the redundant operations, edges, and network weights
of the supernet in a hierarchical manner to derive the op-
timal architecture through a scheme which we refer to as
hierarchical masking.

Figure 2 illustrates the iterative hierarchical masking
process on a single cell. Specifically, we begin with the
trained supernet as our base network, and initiate three types
of real-valued masks for operations, edges, and network
weights, respectively. These masks are passed through a
deterministic thresholding function to obtain the correspond-
ing binary masks. These generated binary masks are then
elementwisely multiplied with the architecture parameters
{a*, 3"} and network weights w* of the supernet to gen-
erate a searched network. By iteratively training the real-
valued masks through backpropagation combined with net-
work binarization techniques [16] in an end-to-end manner,
the binary masks learned in the end are able to mask out
redundant operations, edges, and network weights in the
supernet to derive the optimal architecture.

Formally, let M" = {M,, M;;, M, } denote the real-
valued hierarchical masks, where M, M3, M, is the real-
valued mask for operations, edges, and network weights,
respectively. Architecture search is then reduced to find-
ing M"™ which minimizes the training loss of the masked
supernet:

M"™ = argmin L(Pp(a®, 8%, w")) (&)
o
M=HM"—71) “)

where M = {M,, Mg, M} are the corresponding bi-
nary masks, H (-) is the Heaviside step function as the deter-
ministic thresholding function, 7 is the pre-defined threshold,
and P(-) is the elementwise projection function. In this work,
we use elementwise multiplication for P(-).

Even though the Heaviside step function in (4) is non-
differentiable, we adopt the approximation strategy used in
BinaryConnect [16] to approximate the gradients of real-
valued masks M " using the gradients of the binary masks
M, and thus update the real-valued masks M" using the
gradients of the binary masks M. As shown in prior
works [17, 16, 18], this strategy is effective because the
gradients of M actually act as a regularizer or a noisy es-
timator of the gradients of M ™. By doing this, the binary
masks can be trained in an end-to-end differentiable manner.

3.4. Deriving the Final Model via Fine-Tuning

The hierarchical masking process in §3.3 outputs not only
the optimal network architecture but also a set of optimized
network weights. As such, we can derive the final model
via fine-tuning instead of retraining the searched architec-
ture from scratch. With the optimized network weights, the
searched architecture is able to maintain comparable accu-
racy compared to the supernet (e.g., ~1% loss on CIFAR-
10), and thus acts as a significantly better starting point for



Algorithm 1: HM-NAS

Input: multi-level architecture encoded supernet
O(a, B, w), real-valued masks M,, M, M, threshold
7, deterministic thresholding function H (-), elementwise
projection function P(-)
Output: {©(a*, B*, w*), M}, M}, M3, }: the
optimized searched model and binary masks
// supernet training
Initialize o < @, 8 + B°, w + w®, ¢t + 0.
while not converge do
Update 3 and « by descending Vg Lyqi (™, B, w™)
and Vo Lyai (e, B*, w™) with a probability of o (t)
Update w by descending V. Ltrain (™, 8%, w)
t+—t+1
end
// searching via hierarchical masking
Initialize M7, + Mo, Mj; + M, M, + M.,
while not converge do
Feed forward and loss calculation with
PH(M',Z)*T) (w*), PH(MQ*T) (a”), ,PH(Mgfr) (87)
Update M" by descending
Var—r) Lirain (P (e, B, w™))
end
// fine-tuning the searched network
Initialize w < w™. Construct searched network
O(a”, 8", w) masked by My, M7, M7,.
while not converge do
Update unmasked w by descending
Vo Lirain(Pm+ (e, B, w))
end

fine-tuning. This not only ensures higher accuracy, but also
replaces the prolonged retraining process with a more effi-
cient fine-tuning process, as we will demonstrate in §4.2.

4. Experiments and Results

We evaluate the performance of HM-NAS and compare
it with state-of-the-arts NAS approaches on two benchmark
datasets: CIFAR-10 (§4.2) and ImageNet (§4.3). More-
over, we have conducted a series of ablation studies that
validate the importance and effectiveness of the proposed
multi-level architecture encoding scheme and hierarchical
masking scheme incorporated in the design of HM-NAS
(§4.4). Finally, we provide an in-depth analysis on the archi-
tecture found by HM-NAS (§4.5).

4.1. Experimental Setup

We use 3 cells and 36 initial channels to build the supernet
for CIFAR-10, and 5 cells and 24 initial channels for Ima-
geNet. Following DARTS [7], our cell consists of 7 nodes
in all the experiments. The input nodes, i.e., the first and
second nodes of cell £ is the output of cell £ — 1 and k — 2,
respectively. The output node is the depthwise concatena-
tion of all the intermediate nodes. We include the following

operations: 3 X 3 and 5 X 5 separable convolutions, 3 x 3
and 5 x b dilated separable convolutions, 3 x 3 max pooling
and average pooling, and identity. ReLU-Conv-BN triplet is
adopted for convolutional operations except the first convo-
lutional layer (Conv-BN), and each separable convolution is
applied twice. The default stride is 1 for all operations unless
the output size is changed. The experiments are conducted
using a single NVIDIA Tesla V100 GPU.

4.2. Results on CIFAR-10

Training Details. We begin with training the supernet for
100 epochs with batch size 128. In each epoch, we first
train weights w on 80% of the training set using SGD with
momentum. The initial learning rate is 0.1 with decay fol-
lowing a cosine decaying schedule. The momentum is 0.9
and weight decay is 3e-4. Architecture parameters o, 3
are randomly initialized and scaled by le-3. Next, We train
« and 3 on the rest 20% of the training set with Adam
optimizer [19] with the learning rate of 3e-4 and weight de-
cay of le-3. We empirically observe more stable training
process when using Adam for optimizing the architecture
parameters, which is also used in [7]. Following [15], we
postpone the training of & and 3 by 10 epochs to warm
up w first. The supernet training takes 7.5 hours (or 30
hours for the second-order approximation). Once the super-
net is trained, we perform 20 epochs of neural architecture
search via hierarchical masking using the entire training set.
Hierarchical masks M, M ;, M}, are initialized as le-2.
They are trained using the Adam optimizer with an initial
learning rate of le-4 for M, and le-5 for M, and M,
which is decayed by a factor of 10 after 10 epochs. The
binarizer threshold 7 (Equation 4) is Se-3'. The hierarchical
mask training takes 3.5 hours. Lastly, the masked network is
fine-tuned for 200 epochs for 9.6 hours with cutout [20].

Architecture Evaluation. Table 2 shows our evaluation
results on CIFAR-10 where ‘c/o’ denotes cutout adapted
from [20]. The test error of HM-NAS is on par with state-of-
the-art NAS methods. Notably, HM-NAS achieves this by
using the fewest parameters among all methods. Specifically,
HM-NAS only uses 1.8M parameters, which is 1.4 X to 3.2x
fewer compared to others.

Performance at Different Training Stages. Table 3 breaks
down the complete architecture search process of HM-NAS
and shows the performance of HM-NAS at different stages.
Specifically, compared to the supernet, the searched network
(derived after hierarchical masking) loses only ~1% accu-
racy with 40% less parameters. Although directly using
this searched network is not optimal (with test error 5.14%),
it does provide a good initialization for fine-tuning, which
leads to lower test error (from 5.14% to 2.41%).

'Our method is robust to thresholds in the range of [0, le-2].



Architecture Test Error Params Search Cost Train Cost Total Cost  Search
(%) (M) (GPU days) (GPU days) (GPU days) Method

DenseNet-BC [21] 3.46 25.6 - - - manual
ENAS + c/o [4] 2.89 4.6 0.45 (630 epochs)’ - RL
NASNet-A + c/o [1] 2.65 33 3150 - - RL
SNAS + c/o [8] 2.85 2.8 1.5 1.5 (600 epochs) 3 gradient-based
ProxyLess-G + c/o 2.08 5.7 4% (600 epochs) gradient-based
AmoebaNet-A + c/o [6] 3.34 + 0.06 3.2 3150 - - evolution
AmoebaNet-B + c/o [6] 2.55 £0.05 2.8 3150 - - evolution
DARTS (Istorder) + c/o[7]  3.00 + 0.14 3.3 1.5% 2t (600 epochs) 3.5 gradient-based
DARTS (2nd order) + c/o [7] 2.76 £ 0.09 33 4% 2t (600 epochs) 6 gradient-based
HM-NAS (1st order) + c/o 2.78 +0.07 1.8 0.45 0.4 (200 epochs) 0.85 gradient-based
HM-NAS (2nd order) + c/o 2.41 + 0.05 1.8 1.4 0.4 (200 epochs) 1.8 gradient-based

* Results obtained from authors’ official response in openreview.
t Results obtained using code publicly released by the authors.

Table 2: Comparison with state-of-the-arts on CIFAR-10.
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search stages.

Architecture Search Cost Analysis. To find the optimal ar-
chitecture, HM-NAS only uses 0.85 or 1.8 GPU days, which
is significantly faster compared to all other NAS methods.
To understand why HM-NAS is efficient, we compare the
complete architecture search process of HM-NAS to DARTS.
Figure 3 illustrates the training curve of HM-NAS (in blue
color) and DARTS? (in red color) during the complete ar-
chitecture search process on CIFAR-10. Specifically, both
HM-NAS and DARTS use the first 100 epochs to train the
supernet with the same train/validation dataset split. Due
to multi-level architecture encoding, HM-NAS is able to
achieve better test results after 100 epochs. Then, DARTS
transfers the learned cell to build a larger network and re-
trains it from scratch. This process takes approximately 600
epochs to converge. In contrast, from 100 epoch to 120
epoch and onward, HM-NAS performs architecture search
via hierarchical masking and fine-tuning, respectively. This
process only takes 220 epochs to converge, which is 2.7 x
faster compared to DARTS.

4.3. Results on ImageNet

We conduct experiments on ImageNet 1000-class [22]
classification task, where input image size is 224 x 224. The
dataset has around 1.28M training images and we test on the
50k validation images.

Training Details. We adopt the small computation regime
(e.g., MobileNet-V1 [23]) in the experiments. Following

2Qur implementation based on the code released by the authors.

Figure 3: Training curves of HM-NAS (in blue color) and
DARTS (in red color) on CIFAR-10. Solid lines denote test
errors (y-axis on the left); dashed lines denote training errors
(y-axis on the right).

[15], 100 classes from the original 1,000 classes of Ima-
geNet is randomly sampled to train the supernet for 100
epochs with batch size 128. It takes around one GPU day
to finish the supernet training. Once the supernet is trained,
the hierarchical masking is then performed with the same
optimization settings mentioned in §4.2. The hierarchical
masking process takes around one GPU day to finish. Lastly,
the searched network is fine-tuned on the entire ImageNet
training dataset (with 1,000 classes) for 60 epochs with ini-
tial learning rate le-2 then decreased to le-3 at the epoch 30.
This phase takes around 3 GPU days to finish.

Architecture Evaluation. Table 4 shows our evaluation re-
sults on ImageNet. The result is comparable to DARTS,
considering that we adopt the exact same search space
in DARTS [7], which uses the operations incorporated in
MobileNet-V1 [23]. Notably, we achieve comparable results
to the state-of-the-art gradient-based NAS approaches [8, 7]
with 1.2 to 1.3x less parameters and 1.08 x to 1.2 less
FLOPs. With a larger supernet and better candidate op-
erations such as the ones used in MobileNet-V2 [24], We
believe that the results could be further improved.

4.4. Ablation Studies

In this section, we conduct a series of ablation studies to
demonstrate the superiority of the design of HM-NAS. The



. Top-1 Acc. Params FLOPs

Architecture (%) (M) (M)
MobileNet-V1 [23] 70.6 4.2 569
MobileNet-V2 [24] 74.7 6.9 585
NASNet-A [1] 74.0 53 564
Amoeba-A [6] 74.5 5.1 555
DARTS [7] 73.3 4.7 574
SNAS [8] 72.7 4.3 522
HM-NAS 73.4 3.6 482

Table 4: Comparison with state-of-the-arts on ImageNet.

ablation studies are conducted on CIFAR-10 with second-
order derivative introduced in Table 2.

Comparison to Single-Level Architecture Encoding. To
demonstrate the superiority of the proposed multi-level ar-
chitecture encoding scheme over single-level architecture
encoding, we compare the single-level encoded network
against the multi-level encoded network, both with hand de-
signed heuristics (by replacing each mixed operation with the
most likely operation and taking the top-2 confident edges
from distinct nodes). As shown in Table 5, the multi-level
architecture encoding achieves 2.7% test error, giving 0.4%
accuracy improvement over the single-level one.

Comparison to Hand Designed Heuristics. To demon-
strate the superiority of learned hierarchical masks over hand
designed heuristics, we compare the multi-level encoded net-
work with learned hierarchical masks against the one with
hand designed heuristics. As shown in Table 5, the hierar-
chical masks achieve 2.41% test error, providing about 0.3%
accuracy improvement over hand designed heuristics.

Comparison to Random Architectures. As discussed
in [11, 25], random architecture is also a competitive choice.
Therefore, we perform a random architecture search from
the same supernet for 18 times. As shown in Table 6, the
average test error of random architecture is 3.41%. This is
competitive to the test error of single-level encoded network
(3.1% in Table 5), whose search space is constrained by
hand designed heuristics. Similar findings are also observed
in [11]. In contrast, HM-NAS outperforms the random ar-
chitecture by 1% in test error with 3 x less training epochs.
This is because with multi-level architecture encoding and
hierarchical masking, the search space is significantly en-
larged, making it challenging for random search to find a
competitive network.

Comparison to Random Initialization. As our final ab-
lation study, to demonstrate the superiority of unmasked
network weights obtained from hierarchical masking over
random weights, we randomly initialize the weights of the
searched network (same architecture as HM-NAS) and train
it for 600 epochs on par with the training setup in DARTS.
We run 5 times of random initialization, each running the
same number of epochs. As shown in Table 6, the average

Architecture . Test Params
. Derived Rule Error
Encoding ™)
(%)
Single-Level (cv) Hand Designed Heuristics 3.1 2.5
Multi-Level (e, 3)  Hand Designed Heuristics 2.7 2.1

Multi-Level (a, ) Learned Hierarchical Masks ~ 2.41 1.8

Table 5: Comparison to single-level architecture encoding
and hand designed heuristics.

Architecture Test Error Params Train Cost
(%) ™M) (epochs)
Random Architecture 3.41 +£0.15 2.1 600
Random Initialization ¥ 2.95 4 0.08 1.8 600
HM-NAS 2.41 + 0.05 1.8 200

¥ Same architecture as HM-NAS + c/o with random initialized weights.

Table 6: Comparison to random architectures and random
initialization.

test error of random initialization is 2.95%, which is compa-
rable to DARTS but considerably higher than HM-NAS. This
result indicates that a good initialization for the searched net-
work is critical for obtaining the best-performing results and
fast convergence.

4.5. Searched Architecture Analysis

Finally, we provide an in-depth analysis on the network
architecture found by HM-NAS. We have the following three
important observations.

Different Learned Importance for Different Edges. Fig-
ure 4(a) and Figure 5(a) illustrate the details of the learned
cell for CIFAR-10 and ImageNet respectively, where the im-
portance of edge, i.e., edge mixing weight 3(»7) is marked
above every edge. Unlike DARTS in which each edge has
the same hard-coded importance, due to multi-level architec-
ture encoding, the best-performing cell found by HM-NAS
has different learned importance for different edges across
the cell. Moreover, we find that edges connecting to later
intermediate nodes have higher importance than early in-
termediate nodes. One possible explanation is that during
cell construction, each intermediate node is ordered and is
derived from its predecessors by accumulating information
passed from its predecessors. Hence, it has more influence
on the output of the cell, which is reflected by the higher
importance learned through our approach. Once the impor-
tance of the edge is no longer heuristically determined but
automatically learned, the multi-level architecture encoding
provides a more flexible way to encode the entire supernet
architecture and thus provides us with a better superset for
architecture search.

Robustness of Learned Edge Importance. We repeat the
experiments 5 times with random seeds on both CIFAR-10
and ImageNet datasets, and report the (per run) averaged
incoming edge importance in each immediate node with the
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Figure 4: Details of learned cell for CIFAR-10. (a) cell structure. (b) number of input edges of four intermediate nodes. (c)
histogram of the number of edges w.r.t the number of operations selected.
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Figure 5: Details of learned cell for ImageNet. (a) cell structure. (b) number of input edges of four intermediate nodes. (c)
histogram of the number of edges w.r.t the number of operations selected.
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Figure 6: Robustness of learned edge importance of (a)
CIFAR-10 and (b) ImageNet. The learned importance of
different edges does not strongly depend on initialization.

best validation performance of the architecture over epochs
(we keep track of the most recent architectures). As shown in
Figure 6, we observe that the learned importance of different
edges does not strongly depend on initialization: even if
the initial weights are randomly initialized, after the search
process completes, the later intermediate nodes always have
higher importance than earlier nodes.

More Flexible Architectures. Figure 4(b) and Figure 5(b)
show the number of input edges connecting to each inter-
mediate node, while Figure 4(c) and Figure 5(c) show the
histogram of the number of edges w.r.t the number of oper-
ations selected (e.g. the third bar from the left shows that
three edges have two associated operations). Unlike DARTS
in which each intermediate node is hard coded to have ex-
actly two input edges and each edge is hard coded to have
exactly one operation, the best-performing cell found by
HM-NAS has intermediate nodes which have more (> 2) in-
coming edges, and edges are associated with zero (the edge

is removed) or multiple (> 1) operations. This observation
suggests that HM-NAS is able to find more flexible architec-
tures that existing weight sharing based NAS approaches are
not able to discover.

In principle, other constraints such as the number of cells,
the number of channels, the number of nodes in a cell, and
the combination operation (e.g. sum, concatenation) can all
be further relaxed by the proposed multi-level architecture
encoding and hierarchical masking schemes. We leave these
explorations as our future work.

5. Conclusion

We present an efficient NAS approach named HM-NAS
that generalizes existing weight sharing based NAS ap-
proaches. HM-NAS incorporates a multi-level architecture
encoding scheme to enable an architecture candidate to have
arbitrary numbers of edges and operations with different im-
portance. The learned hierarchical masks not only select the
optimal numbers of edges, operations and important network
weights, but also help correct the architecture search bias
caused by bilevel optimization in supernet training. Experi-
ment results show that, compared to state-of-the-arts, HM-
NAS is able to achieve competitive accuracy on CIFAR-10
and ImageNet with improved architecture search efficiency.

6. Acknowledgement

This work was partially supported by NSF Awards CNS-
1617627 and PFI:BIC-1632051.



References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and
Quoc V Le. Learning transferable architectures for
scalable image recognition. In CVPR, pages 8697—
8710, 2018.

Yukang Chen, Tong Yang, Xiangyu Zhang, Gaofeng
Meng, Chunhong Pan, and Jian Sun. Detnas: Neural
architecture search on object detection. arXiv preprint
arXiv:1903.10979, 2019.

Vladimir Nekrasov, Hao Chen, Chunhua Shen, and
Jan Reid. Fast neural architecture search of compact
semantic segmentation models via auxiliary cells. In
CVPR, pages 9126-9135, 2019.

Hieu Pham, Melody Guan, Barret Zoph, Quoc Le, and
Jeff Dean. Efficient neural architecture search via pa-
rameters sharing. In ICML, 2018.

Bowen Baker, Otkrist Gupta, Nikhil Naik, and Ramesh
Raskar. Designing neural network architectures using
reinforcement learning. In /ICLR, 2017.

Esteban Real, Alok Aggarwal, Yanping Huang, and
Quoc V Le. Regularized evolution for image classifier
architecture search. In AAAI 2019.

Hanxiao Liu, Karen Simonyan, and Yiming Yang.
Darts: Differentiable architecture search. In ICLR,
2019.

Sirui Xie, Hehui Zheng, Chunxiao Liu, and Liang Lin.
Snas: stochastic neural architecture search. In /CLR,
2019.

Han Cai, Ligeng Zhu, and Song Han. Proxylessnas:
Direct neural architecture search on target task and
hardware. In ICLR, 2019.

Andrew Brock, Theodore Lim, James M. Ritchie, and
Nick Weston. Smash: One-shot model architecture
search through hypernetworks. ICLR, 2018.

Christian Sciuto, Kaicheng Yu, Martin Jaggi, Claudiu
Musat, and Mathieu Salzmann. Evaluating the search
phase of neural architecture search. arXiv preprint
arXiv:1902.08142, 2019.

Gabriel Bender, Pieter-Jan Kindermans, Barret Zoph,
Vijay Vasudevan, and Quoc Le. Understanding and
simplifying one-shot architecture search. In ICML,
pages 549-558, 2018.

Zichao Guo, Xiangyu Zhang, Haoyuan Mu, Wen Heng,
Zechun Liu, Yichen Wei, and Jian Sun. Single path one-
shot neural architecture search with uniform sampling.
arXiv preprint arXiv:1904.00420, 2019.

(14]

[15]

[16]

[17]

(18]

[19]

(20]

(21]

(22]

(23]

(24]

(25]

Rengian Luo, Fei Tian, Tao Qin, Enhong Chen, and
Tie-Yan Liu. Neural architecture optimization. In
Advances in neural information processing systems,
pages 7816-7827, 2018.

Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan
Wang, Fei Sun, Yiming Wu, Yuandong Tian, Peter Va-
jda, Yangqing Jia, and Kurt Keutzer. Fbnet: Hardware-
aware efficient convnet design via differentiable neural
architecture search. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition,
pages 10734-10742, 2019.

Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre
David. Binaryconnect: Training deep neural networks
with binary weights during propagations. In Advances
in neural information processing systems, pages 3123—
3131, 2015.

Arun Mallya, Dillon Davis, and Svetlana Lazebnik.
Piggyback: Adapting a single network to multiple tasks
by learning to mask weights. In ECCV, pages 67-82,
2018.

Itay Hubara, Matthieu Courbariaux, Daniel Soudry,
Ran El-Yaniv, and Yoshua Bengio. Binarized neural
networks. In Advances in neural information process-
ing systems, pages 4107-4115, 2016.

Diederik P Kingma and Jimmy Ba. Adam: A method
for stochastic optimization. ICLR, 2015.

Terrance DeVries and Graham W Taylor. Improved
regularization of convolutional neural networks with
cutout. arXiv preprint arXiv:1708.04552, 2017.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and
Kilian Q Weinberger. Densely connected convolutional
networks. In CVPR, pages 4700-4708, 2017.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. ImageNet: A Large-Scale Hierarchical
Image Database. In CVPR, 2009.

Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry
Kalenichenko, Weijun Wang, Tobias Weyand, Marco
Andreetto, and Hartwig Adam. Mobilenets: Efficient
convolutional neural networks for mobile vision appli-
cations. arXiv preprint arXiv:1704.04861, 2017.

Mark Sandler, Andrew Howard, Menglong Zhu, An-
drey Zhmoginov, and Liang-Chieh Chen. Mobilenetv2:
Inverted residuals and linear bottlenecks. In CVPR,
pages 45104520, 2018.

Liam Li and Ameet Talwalkar. Random search and
reproducibility for neural architecture search. arXiv
preprint arXiv:1902.07638, 2019.



