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Abstract

Segmentation of the iris or sclera is an essential process-

ing block in ocular biometric systems. However, human-

computer interaction, as in VR/AR applications, requires

multiple region segmentation to enable smoother interac-

tion and eye-tracking. Such application does not only de-

mand highly accurate and generalizable segmentation, it

requires such segmentation model to be appropriate for the

limited computational power of embedded systems. This

puts strict limits on the size of the deployed deep learning

models. This work presents a miniature multi-scale segmen-

tation network consisting of inter-connected convolutional

modules. We present a baseline multi-scale segmentation

network and modify it to reduce its parameters by more than

80 times, while reducing its accuracy by less than 3%, re-

sulting in our Eye-MMS model containing only 80k param-

eters. This work is developed on the OpenEDS database

and is conducted in preparation for the OpenEDS Semantic

Segmentation Challenge.

1. Introduction

Segmentation of different ocular regions is essential to

enable accurate processing of biometric modalities, such

as the iris or the sclera [16]. This segmentation also pro-

vides valuable information for eye tracking and enhances

the computer-human interaction (HCI) experience, espe-

cially in virtual reality (VR) and Augmented Reality (AR)

applications [19]. Driven by biometric recognition needs,

the ocular segmentation focused either on the iris or sclera

regions. However, multiple region segmentation is essential

for HCI applications.

Achieving accurate multi-region ocular segmentation in

the AR/VR (or embedded systems generally) context faces

two main challenges. The first is the high variation in the

region appearance because of the independent movement

of different parts (eyeball, pupil dilation, eyelid, eyebrows)

and the demographic-related appearance variations, which

requires a highly generalized solution. The second chal-

lenge is to limit the computational needs of the segmen-

tation solution by the minimalistic hardware specifications

available in such applications. Given a solution based on

neural networks, one of the main computational limitations

is the segmentation model size, represented by the number

of learned parameters.

This work is conducted in preparation for the OpenEDS

Semantic Segmentation Challenge and therefore build its

solution on the challenge database. We propose a solution

based on multi-scale inter-connected convolutional modules

that considers the image information at multiple scales and

thus reduce the parameters needed to learn low-scale image

properties. We minimize our initial model from 6574k to

80k parameters by taking advantage of the fact that segmen-

tation takes an image from a highly detailed space to a space

with small number of discrete labels. This allowed focusing

on larger image changes (rather than small details) by re-

ducing the feature maps sizes, resulting in smaller convolu-

tional layers, and thus significantly smaller model. Despite

this large reduction in the model size (more than 80 times

reduction), our Eye-MMS model achieved over 90% mean

intersection over union on the four label regions on evalua-

tion data that is identity-disjoint from the training data. This

is less than three percentage points lower than our initially

proposed model with 6574k parameters.

2. Related work

Previous works addressing semantic image segmentation

in the ocular region focused mainly on iris or sclera seg-

mentation. Sclera can be a biometric characteristic, but its

segmentation acts also as a way to detect the outer bound-

aries of the iris. This had been motivated mainly by the

high interest in iris recognition, as one of the most accu-

rate biometrics characteristics [10]. The localization (seg-

mentation) accuracy of the iris significantly effects the iris

recognition performance [16]. Earlier works suggested seg-

menting the iris region by defining its boundaries, e.g. by

Hough transforms [23]. More recent works followed the



trend in generic segmentation and detected the iris region

by utilizing Fully Convolutional Network (FCN) [12, 3] or

U-Net [15].

Sclera segmentation has been addressed by a series of

competitions in the last five years, since 2015 [7]. The latest

competition [6] focused on variations in the capture angle

and the use of mobile devices. The winning team utilized U-

Net structure [21] modified by a channel attention module

as described by Yu et al. [24].

Eye tracking can benefit greatly from multiple region

semantic segmentation of the ocular area. However, only

recent activities have targeted this problem and provided

appropriate research databases. One of these is the iBUG

Eye Segmentation Dataset [17] where relatively low res-

olution ocular regions are segmented into two labels, iris

and pupil as one class, and sclera as the second class. The

work also proposed a segmentation solution based on con-

volution neural network followed by refinement by con-

ditional random field. Rot et al. [22] also addressed the

multi-region (iris, sclera, pupil, periocular, eyelashes, and

canthus) segmentation issue by building a convolutional

encoder-decoder solution, however, with a a database of a

limited size. Very recently, Garbin et al. [8] presented a

research oriented database that addresses different issues

related to eye tracking. One aspect of this database is

the multi-region semantic segmentation of the eye region,

which is the bases of this work and the OpenEDS Seman-

tic Segmentation Challenge. This database addresses short-

comings in previous databases by providing a larger number

of subjects and images, along with high resolution images

to address VR applications.

Generic image segmentation solutions have achieved in-

creasingly impressive performances since the rise of deep

learning. Main advances in this regard are segmentation

based on FCN [14], U-Net [21], Feature Pyramid Network

[11], Mask R-CNN [9], DeepLabv3+ [4], Path Aggregation

Network [13], and most recently the Context Encoding Net-

work [25]. However, few works have addressed segmenta-

tion solutions constrained by very limited computational re-

sources (e.g. embedded systems). The latest of such works

is the Fast-SCNN [20] that result in a model with 1.1 million

parameters, which is still large for some embedded devices.

3. Methodology

The goal of our solution is to create an accurate segmen-

tation for a given eye region image despite appearance vari-

ations. The created model should be of a small size (around

or below 1MB) to enable application in embedded environ-

ments, such as AR/VR applications. In this section, we

present two segmentation models, the first is built to demon-

strate the idea of multi-scale segmentation and the second

aims at maintaining (to a large degree) the performance of

the first model, while being significantly smaller (smaller

number of learned parameters).

We start by proposing a Multi-scale segmentation so-

lutions (Eye-MS). This model aims at extracting more gen-

eral information at lower image scales, and thus minimizing

the model size required to extract such information. It also

process the image at higher scales to analyze detailed im-

age information. The presented solution is influenced by

the cascaded refinement network introduced by Chen and

Koltun [5] as an image synthesis tool. Our proposed ar-

chitecture is a convolutional neural network that consists

of inter-connected refinement modules. Each module con-

sists of only two convolutional layers (last module contains

3 convolutional layers), each followed by layer normaliza-

tion [1] and a LReLU non-linearity [18]. The first module

considers the lowest resolution space (40x25 in our model).

This resolution is increased in the successor modules until

the last module (640x400 in our case), matching the target

image resolution. The input of each module is the output

of the previous module up-sampled to the proper input size

of the current module, concatenated with the source image

down-sampled to the proper input size of the current mod-

ule. Our Eye-MS model uses 4x4 convolutions and a feature

map (FM) of the size 256 for the first three modules and 128

for the last two modules. A summery of the network de-

tails is presented in Table 1. Our Eye-MS model size 6574k

parameters, making it relatively smaller than conventional

solutions such as the real-time ICNet (6680k) [26] and Seg-

Net (29460k) [2]. However, such a model size might be too

large for embedded applications.

As we aim at producing an accurate segmentation model,

however with a much smaller size, we point out that we

are moving from a higher detailed space (captured eye im-

age) to a space with lower variation (segmentation of four

classes). Thus, we can neglect minor details in the im-

age and focus on major changes across the image space.

This can help us reduce the less important (for segmenta-

tion) learned parameters. We induce this notion by reduc-

ing the feature map size of the convolutional layers of the

Eye-MS model. We designed our Miniature Multi-scale

Segmentation Network (Eye-MMS) by setting the feature

map size to 32 for the first two modules and 16 for the last

three modules. This reduction in the feature map size lead

to a reduction in the size of the subsequent convolutional

layers, therefore, a significant reduction in the number of

learned parameters. This model contains 80081 learned

parameters, and thus, will be noted as Eye-MMS80. The

model architecture is provided in Table 2.

Both networks (Eye-MS and Eye-MMS80) are trained

using an L2 loss on the pixel-level between the produced

segmentation and the ground-truth label. The networks

were trained with a patch size of one and a learning rate of

10e-4. The output layer produced 2-D array of float num-

bers to enable a smooth learn conversion. The predicted



Eye-MS (6574k parameters)

Module Input size layer Output size

Module 0 40x25x1
g 25 conv1 (filter:[4x4], FM:256), LN, LReLU

40x25x256
g 25 conv2 (filter:[4x4], FM:256), LN, LReLU

Module 1 80x50x257
g 50 conv1 (filter:[4x4], FM:256), LN, LReLU

80x50x256
g 50 conv2 (filter:[4x4], FM:256), LN, LReLU

Module 2 160x100x257
g 100 conv1 (filter:[4x4], FM:256), LN, LReLU

160x100x256
g 100 conv2 (filter:[4x4], FM:256), LN, LReLU

Module 3 320x200x257
g 200 conv1 (filter:[4x4], FM:128), LN, LReLU

320x200x128
g 200 conv2 (filter:[4x4], FM:128), LN, LReLU

Module 4
640x400x129

g 400 conv1 (filter:[4x4], FM:128), LN, LReLU

640x400x1g 400 conv2 (filter:[4x4], FM:128), LN, LReLU

Output g 400 conv100 ([1x1], FM:1)

Table 1: The detailed structure of the multi-scale segmentation network Eye-MS (6574k). The input of each of the 5 modules is the source

image and the output of the previous module (not for Module 0), down-sampled and up-sampled subsequently to the input size of the

current module. FM (Feature map), LN (Layer Normalization), and CON (Concatenate)

Eye-MMS80 (80k parameters)

Module Input size layer Output size

Module 0 40x25x1
g 25 conv1 (filter:[4x4], FM:32), LN, LReLU

40x25x32
g 25 conv2 (filter:[4x4], FM:32), LN, LReLU

Module 1 80x50x33
g 50 conv1 (filter:[4x4], FM:32), LN, LReLU

80x50x32
g 50 conv2 (filter:[4x4], FM:32), LN, LReLU

Module 2 160x100x33
g 100 conv1 (filter:[4x4], FM:16), LN, LReLU

160x100x16
g 100 conv2 (filter:[4x4], FM:16), LN, LReLU

Module 3 320x200x17
g 200 conv1 (filter:[4x4], FM:16), LN, LReLU

320x200x16
g 200 conv2 (filter:[4x4], FM:16), LN, LReLU

Module 4
640x400x17

g 400 conv1 (filter:[4x4], FM:16), LN, LReLU

640x400x1g 400 conv2 (filter:[4x4], FM:16), LN, LReLU

Output g 400 conv100 ([1x1], FM:1)

Table 2: The detailed structure of the miniature multi-scale segmentation network Eye-MMS80. The input of each of the 5 modules is the

source image and the output of the previous module (not for Module 0), down-sampled and up-sampled subsequently to the input size of

the current module. FM (Feature map), LN (Layer Normalization), and CON (Concatenate).

segmentations are rounded to the nearest integer to repre-

sent the discrete labels.

4. Experimental setup

This work used the OpenEDS [8] data captured using

a virtual-reality HMD with two eye-facing cameras. The

segmentation data included 152 subjects and 12759 images

annotated of 400x640 pixels resolution. The data is split

into training, validation, and test identity-disjoint splits as

described in [8]. Evaluation on the test split is only possible

through an online portal and with limited frequency.

The segmentation performance is evaluated here as the

intersection over union (IoU ) of each of the four segmented

regions i={pupil, iris, sclera, background} between the pre-

dicted segmentation (P) and the ground-truth label (L) and

is given by

IoUi =
Li ∩ Pi

Li ∪ Pi

. (1)

To get an overall performance measure, we also report the

IoUmean, the unweighted mean of the four IoUi values.

We report the results on the validation split (2403 im-

ages) of the database to provide more detailed experiments.

The identity-disjoint validation split was not used to train

the reported models. The possible experiments are limited

on the test split by the competition rules to one evaluation

per day, limiting the possibility of multiple experiments.

The results are reported for the model Eye-MS and the

miniature model Eye-MMS80 after 8 epochs (reached loss:

for 0.0175 Eye-MMS80 and 0.0104 for Eye-MS) of train-

ing and after 15 epochs of training (reached loss: 0.0121

for Eye-MMS80 and 0.0085 for Eye-MS). All models were

trained on the training split, containing 8916 pairs of eye

images and corresponding ground-truth labels.

It should be mentioned that we evaluate the output of

the network without any significant post-processing (only

rounding to nearest integer) to enable a clear evaluation of

the network performance. Post-processing (non-learned)

steps such as morphological operations or contour finding

(e.g. marching squares) and masking might enhance the

segmentation results, however, with a computational load.

Post-processing learned refinement is also possible, e.g.

conditional random field, however not applied here to main-

tain low computational requirements.

5. Results

Figure 1 shows samples of the validation images along

with the predicted segmentation by our Eye-MS and Eye-

MMS80 (both trained for 15 epochs), and the segmenta-

tion ground-truth. One can notice flakes of sclera label in



Eye-MMS80 (80k) Eye-MS (6574k)

Region 8 epochs 15 epochs 8 epochs 15 epochs

IoU(BG) 0.9831 0.9857 0.9892 0.9896

IoU(Sclera) 0.7825 0.8084 0.8476 0.8519

IoU(Iris) 0.9105 0.9223 0.9391 0.9408

IoU(Pupil) 0.8958 0.9105 0.9275 0.9276

IoU-mean 0.8931 0.9068 0.9258 0.9275

Table 3: The performance, given as IoU, on different ocular re-

gions and a mean IoU to represent general performance of our pro-

posed models, Eye-MS and Eye-MMS80, at two different stages

of the training process. It is noticed that despite the significant re-

duction in the model size the performance is only slightly effected.

BG refers to the background region.

the background in the cases where the eye is covered by

highly reflective eyeglasses. Such flakes might, if needed,

be removed by post-processing operations (contouring and

masking), which is not performed in the reported results.

Extreme eye-gaze, illumination, and small opening of the

eye seems to have no large effect on the performance of

our proposed models. These situations lead to small flakes

in the background and sclera regions. These flakes seems

to be slightly more frequent or larger in the miniature Eye-

MMS80 model, but without effecting the overall segmenta-

tion structural boundaries.

Table 3 lists the performances, given as IoU, for each

individual region (label) and as a mean over the four re-

gions. This performance comparison is made for both the

Eye-MS and the Eye-MMS80 and in two points of the train-

ing process. It is noticeable from the table, and in all ex-

perimental settings, that the IoU(background) achieves the

highest value, this might be based on the relatively large

area of the background and thus the lower probable ratio

of non-intersection to the union area, between the ground-

truth and prediction. The IoU(iris) and IoU(pupil) achieve

closer values, with the IoU(iris) slightly over performing

the later. The IoU(sclera) scores significantly lower than

the other eye regions. This might be due to the confusion

between the sclera and background, especially with images

containing highly reflective glasses. The Eye-MMS80 with

15 epoch training achieved 89.5 % mean IoU on the test data

split through the online evaluation of the OpenEDS Seman-

tic Segmentation Challenge.

Table 3 also shows that increasing the training to fifteen

epochs improves the performance of both models. This

points out that further training might further increase the

performance without over-fitting, especially if accompanied

by data augmentation (which is not implemented in the re-

ported results). The Eye-MMS80 generally performs only

slightly worse than the Eye-MS model while having less

than 1/80 of its parameters.

6. Conclusion

This work proposes a multiple eye regions seman-

tic segmentation solution containing only 80k parameters.

(a) Input image (b) Eye-MS (c) Eye-MMS80 (d) Ground-truth

Figure 1: Samples of the input images, segmentation produced by

our Eye-MS and Eye-MMS80 models, and the ground-truth seg-

mentation. These images are selected to have variations of eye

glasses with reflections, extreme gaze direction, extreme illumina-

tion, and eyes with small opening.

This aims at enabling deployment in computationally re-

stricted embedded systems, such as VR/AR applications.

We initially proposed a multi-scale segmentation network

based on multi-scale inter-connected convolutional mod-

ules. Then we took advantage of the nature of the segmen-

tation task to lower the number of its learned parameters

from 6574k to 80k, while only lowering the mean inter-

section over union (over the four regions of the eye) from

92.8% to 90.7%. We point out the validity of our approach

and the possibility of enhancing the overall performance by

post-processing the segmentations, augmenting the training

data, and further training.
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