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Abstract

Photosensor oculography (PS-OG) eye movement sen-

sors offer desirable performance characteristics for inte-

gration within wireless head mounted devices (HMDs), in-

cluding low power consumption and high sampling rates.

To address the known performance degradation of these

sensors due to HMD shifts, various machine learning tech-

niques have been proposed for mapping sensor outputs to

gaze location. This paper advances the understanding of a

recently introduced convolutional neural network designed

to provide shift invariant gaze mapping within a specified

range of sensor translations. Performance is assessed for

shift training examples which better reflect the distribution

of values that would be generated through manual reposi-

tioning of the HMD during a dedicated collection of train-

ing data. The network is shown to exhibit comparable ac-

curacy for this realistic shift distribution versus a previ-

ously considered rectangular grid, thereby enhancing the

feasibility of in-field set-up. In addition, this work further

demonstrates the practical viability of the proposed initial-

ization process by demonstrating robust mapping perfor-

mance versus training data scale. The ability to maintain

reasonable accuracy for shifts extending beyond those in-

troduced during training is also demonstrated.

1. Introduction

Eye movement (EM) sensors are a valuable tool for en-

hancing user experience in virtual and augmented reality

(VR/AR) environments. This potential is evidenced through

the recent acquisition activity of large technology compa-

nies, as well as the integration of EM sensors within newly

released VR/AR platforms. By empowering gaze-based

interaction, EM sensors can enhance user immersion in

VR/AR [6]. EM sensors also enable the implementation

of gaze-contingent rendering, which reduces graphical re-

source requirements by exploiting the limitations of the hu-

man visual system [5].

EM sensors are traditionally implemented using video-

based approaches. Denoted as video oculography (VOG),

this technique estimates gaze location using computation-

ally intensive image processing algorithms [2]. This process

typically involves extracting the location of common eye

features, such as the pupil and corneal glint, and then devel-

oping regression-based mappings to gaze location through

a calibration procedure. Although VOG-based sensors

are common in non-mobile applications, they are not well

suited for deployment in wireless head-mounted devices

(HMDs) due to their considerable computational overhead,

which scales directly with the requisite sampling rate. This

limitation is especially pertinent for emerging EM-enabled

VR/AR applications, such as health assessment and eye-

movement biometrics, which demand accurate estimates of

gaze location at high sampling rates.

To meet the performance requirements of next-

generation HMDs, alternative EM sensor architectures have

been explored. Sensors employing photosensor oculogra-

phy (PS-OG), which form gaze location estimates using

variations in reflectivity captured by a discrete array of pho-

tosensors, offer considerable potential for meeting this de-

mand. A diagram depicting the potential integration of a

PS-OG sensor within an HMD is presented in Fig. 1. As

shown, a hot mirror is utilized in order to place the sensor

array out of the user’s line-of-sight.

PS-OG-based sensors suffer from considerable accuracy

degradation in the presence of even slight sensor shifts,

which induce relative displacements of the sensor’s field of

view with respect to the eye [8]. Similar performance re-

ductions have also been described for VOG-based sensors

[4]. Shift-related performance degradation is especially

concerning for untethered VR/AR applications, where in-

creased user mobility will increase the likelihood of sensor

movements.

The mechanism of shift-related performance reduction

for PS-OG sensors is demonstrated in Fig. 2 using the simu-

lation workflow utilized herein and described in Section 3.1.

As the relative position of the array changes with respect to

the eye, captured signal intensities vary considerably for a



Figure 1: Schematic Diagram of PS-OG Integration Using

a Hot Mirror

fixed gaze position. The resulting variation across the ar-

ray is a function of the original field of view of each ele-

ment, with those components located near strong reflection

boundaries exhibiting the most significant changes. These

perturbations are similar to those resulting from the rotation

of the eye during transitions of gaze location. Absent of a

correctional technique, the system may confuse these two

scenarios, thereby degrading the spatial accuracy of gaze

estimates.

Machine learning models have been demonstrated to

address this aforementioned scenario. To enable this ap-

proach, a mapping between raw sensor outputs and gaze

location is learned over an anticipated range of sensor dis-

placements. To generate the necessary training data, prior

work has suggested that the user manually reposition the

HMD while fixating at varying target positions over the

operating range of the sensor during a calibration proce-

dure. These simulation-based studies have exclusively ex-

plored scenarios in which shift training data is available in

an evenly spaced rectangular grid over the entire range of

translations considered in testing. [3], [10].

While useful for establishing proof-of-concept, the con-

sidered spatial distribution of shift training data is incon-

sistent with what would be produced using the proposed

generation mechanism. Moreover, although training data

collection reduces user convenience by increasing initial-

ization time, no analysis has been conducted to assess per-

formance variability versus the amount of training data uti-

lized. Such insight is valuable for practical deployment, as

it allows developers to exploit potential trade-offs between

accuracy and user convenience as a function of application

requirements.

The research described herein seeks to address these lim-

itations for a previously proposed convolutional neural net-

work (CNN) gaze mapping [3]. The realism of the spatial

distribution of available training data is enhanced by using

Gaussian random variables to simulate manual reposition-

ing of the HMD. Variability in accuracy as a function of

available training data is explored, along with the capacity

of learned mappings to generalize to shift ranges not ob-

served during training. In addition, the range of shifts con-

sidered is expanded versus prior studies to the limits of the

current simulation workflow.

This manuscript extends the literature by demonstrating

the ability of the gaze mapping network to achieve compara-

ble accuracy to previous studies for a more realistic spatial

distribution of shift training data. Namely, for an equiva-

lent amount of training samples, best-case spatial accuracy

was reduced by only 0.04◦ of the visual angle. Moreover,

we show that achievable spatial accuracy is relatively ro-

bust to large variations in training data scale, with an 80%

reduction in the number of training samples yielding a 27%

degradation in spatial accuracy for subject-specific training.

Finally, the ability of the network to generalize to out-of-

sample shifts is shown. These observations are critical for

supporting practical deployment of this approach in next-

generation HMDs, where lengthy set-up procedures may be

rejected by the user.

2. Related Work

PS-OG sensors operate by actively illuminating the eye

with infrared light, and then capturing subsequent reflec-

tions using an array of directive photosensors. Gaze loca-

tion is estimated by exploiting variations in the captured

reflectivity as the eye rotates. Reviewed work within this

manuscript is limited to efforts attempting to enhance shift

robustness of PS-OG sensors. A more thorough exploration

of the underlying technology may be found in [8].

Rigas et al. demonstrated a hybrid technique in which

a low speed (5 Hz) video sensor was used to correct er-

rors in the PS-OG gaze estimate resulting from sensor shifts

[7]. Denoted as PS-V, this approach achieved a spatial ac-

curacy of less than 1◦ of the visual angle for shifts in a ± 2

mm range. While PS-V may be suitable in certain scenar-

ios, reliance on additional hardware is not ideal in resource-

constrained environments such as wireless HMDs.

Zemblys and Komogortsev proposed a multilayer per-

ceptron (MLP) network for learning a shift-invariant

appearance-based mapping between sensor outputs and

gaze location [10]. The proposed architecture was tested

using a variation of the simulation framework originally in-

troduced in [9], using only the default parameters for the

eye model and periocular region. A best-case spatial ac-

curacy of 0.48◦ was achieved for shifts in a ± 1.75 mm

range. Although this approach eliminates the video sensor

requirement in practice, inference from the provided simu-

lation results is limited by a lack of realism and diversity in

the simulated eye model.

To leverage the spatial structure of the PS-OG array

output, Katrychuk et al. demonstrated a CNN for shift-

invariant gaze mapping. In addition, the authors introduced

a customized training approach, in which network weights



Figure 2: Variation in Signal Intensities Across the Array for Sensor Shifts and Gaze Displacements

were initialized through out-of-subject training, and then

fine-tuned using subject-specific data. The network was

tested on simulated senor outputs computed from real im-

ages obtained from a VOG system for multiple subjects. An

accuracy of 1.07◦ was achieved for shifts in a ± 2 mm range

for a CNN satisfying resource constraints intended to mimic

those encountered in wireless HMDs [3].

While the proposed techniques in [3] were demonstrated

to improve performance versus [10] for an identical testing

data set, both approaches utilized a spatial distribution of

shift training data which may not be realizable in a prac-

tical scenario. Namely, if requisite training data is gener-

ated through manual repositioning of the HMD by an end-

user, the regularity, scale, and spatial distribution of avail-

able training data will vary substantially from the assump-

tions employed in these manuscripts, which considered only

regularly-spaced rectangular distributions.

3. Methods

3.1. Overview of Simulation Workflow

All simulations conducted herein utilized a data set and

simulation workflow nearly identical to that presented in

[7]. While summarized in this section, full process details

are available in the original manuscript, with the entire mod-

ified code base and data set available online1.

Twenty-three subjects were recorded performing a ran-

dom saccade task using a customized VOG eye tracker de-

scribed in [1]. All subjects provided informed consent un-

der an experimental protocol approved by the Institutional

Research Board at Texas State University. Before viewing

the stimulus, participants performed a standard calibration

procedure to ensure the validity of the recorded gaze esti-

mates.

The stimulus provided 25 fixations distributed across the

operating range of the device (± 20.51◦ and 16.7◦ of the vi-

sual angle in the horizontal and vertical directions, respec-

tively). Each fixation was maintained for a random inter-

val of time, yielding an asymmetric spatial distribution of

data. Recorded VOG-based gaze estimates are utilized as

the ground-truth values for all accuracy computations re-

ported in the remainder of this manuscript. A visualization

of these gaze locations for a specific experimental trial is

provided Fig. 3, where blue and red dots are used to de-

note the result of the random train/validation/test partition

described in the forthcoming Machine Learning subsection.

Fixation values induced by the stimulus are denoted with

black dots and labeled with numerical identifiers. Gridlines

1https://digital.library.txstate.edu/handle/

10877/8574



are used to bin values within the contained areas for pur-

poses of reporting spatial accuracy as specified in Section

4.1.

A marker was placed on the nasal bridge of each par-

ticipant in order to compute head movements during the

recording process. Planar sensor translations were simu-

lated using a customized cropping strategy which accounted

for these movements. Images were cropped by a fixed pixel

amount corresponding to the desired shift after adjusting for

the determined head movement. The relationship between

image pixels and length was determined by imaging a ruler

at the beginning of the recording process.

A 3 x 5 rectangular array of photosensors was simulated

using a procedure originally introduced in [10]. The re-

ceptive field of each device was modeled using a Gaussian

distribution (zero mean, standard deviation equivalent to 1

4

of the window size). The output of each sensor was deter-

mined by convolving this distribution with a fixed 121 pixel

window of the raw image. The simulation workflow is sum-

marized in Fig. 4.

3.2. Shift Generation Mechanism

To address the limited realism of the shift distribution

employed in previously considered work, random variables

were utilized to generate the input displacements for the

shift-simulating cropping process. Namely, two random

samples were chosen from univariate Gaussian distributions

with equivalent parameterizations. Parameters were chosen

such that the resulting shift values mimicked those antici-

pated to be generated through the proposed mechanism of

manual HMD repositioning. The resulting distribution of

shift values used herein is depicted in Fig. 5, along with the

previously considered rectangular grid values. To promote

comparison with prior studies, initial simulations were con-

ducted using Gaussian distributions with zero mean and 1

mm standard deviation. This latter parameter was selected

to ensure that approximately 95% of simulated shifts were

contained within the previously considered ± 2 mm range.

As discussed in Section 4.3, additional analysis was per-

formed for shifts generated using a zero mean distribution

with a standard deviation of 2.5 mm. This investigation was

completed to assess performance of the proposed technique

for realistic shift values extending beyond those previously

considered in the literature. The standard deviation param-

eter was chosen based upon manual examination of the out-

put images of the cropping process. Shifts extending be-

yond 5 mm were sometimes found to generate images with

eye elements placed beyond the boundaries. As this repre-

sents a fundamental limitation of our simulation workflow,

we have limited our analysis to this shift range. Since larger

values may be encountered during use, further exploration

is required to consider these scenarios.

3.3. Machine Learning

Of the various mapping architectures considered in [3],

only the low-power CNN model was analyzed herein. This

focus is motivated by the desired application within wireless

HMDs, which informed the choice of constraints used to se-

lect network parameters in the grid search procedure. The

CNN consists of two convolutional layers (each with out-

put channel size of four), followed by four fully connected

layers (20 neurons per layer) as shown in Fig. 6.

Both the aforementioned transfer learning (hereby re-

ferred to as fine-tuning (FT)) and individual-specific

(hereby referred to as from scratch (FS)) training ap-

proaches were simulated within this analysis. The FS train-

ing approach uses data collected from the recording ses-

sion of a unique individual for training, with initial network

weights set randomly. The FT approach initializes network

weights through pre-training on the entire out-of-subject

data pool. This procedure is slightly modified from that de-

scribed in [3], where pre-training was conducted on only

a batch of out-of-subject data. The leave-one-subject-out

pre-training strategy employed herein was chosen to maxi-

mize the use of available training data for the initialization

of network weights.

3.4. Experimental Structure

A dedicated experiment was conducted to assess vari-

ability in network performance as a function of the amount

of training data utilized. The entire subject-specific

dataset was initially partitioned into a 60%/10%/30%

train/validation/test split, with the initial partition hereby re-

ferred to as the training superset. Mapping networks were

then trained using both strategies (i.e.: FS and FT) for parti-

tions of this training superset, ranging from 20% to 100% in

increments of 20%. As referenced in Section 4.1, this parti-

tioning strategy allows for comparison with the prior results

presented in [3], where a 24%/6%/70% train/validation/test

split was used.

An additional experiment was conducted to assess the

ability of the network to accommodate shift ranges outside

of those encountered in training. This was accomplished by

first performing a 56%/14%/30% train/validation/test split

for all samples of shifts less than 1.0 mm. Shifts of magni-

tude exceeding 1.0 mm were placed into dedicated testing

bins as a function of shift range. This procedure produced

four dedicated test sets containing the following exclusive

shift ranges 1) [0.0, 1.0], 2) (1.0, 1.5], 3) (1.5, 2.0], and

4) > 2.0 mm. Elements in bin 1 represent shift magnitudes

encountered in the training set, while bins 2 - 4 correspond

to shifts outside of the those included in training.

A final experiment was conducted to assess network per-

formance for an expanded range of shift values. Shift inputs

were generated using the aforementioned Gaussian distri-

butions with standard deviations of 2.5 mm. Data gener-



Figure 3: Spatial Distribution of Stimulus Fixations (Black Dots) and Corresponding Gaze Locations Across Screen (Blue

and Red Dots Used to Denote Train+Validation and Test Split)

Figure 4: Simulation Workflow

Figure 5: Distribution of Shift Values (Axes in mm)

ated using these distributions was segmented using the same

train/validation/test split (i.e.: 24%6%10%) as used in [3].

4. Results and Discussion

4.1. Performance Variability Versus Scale of
Available Training Data

Variation in mean spatial accuracy across subjects versus

available training data is depicted in Fig. 7. For both train-

ing methods considered, spatial accuracy is monotonically

decreasing (i.e.: increasing system performance according

to the definition of this metric), with network generaliza-

tion improving with further exposure to training data as ex-

pected. For purposes of comparison, the mapping network

produced a spatial accuracy of 1.07◦ (FT) and 0.77◦ (FS)

with 4,273 average training examples using the less realistic

uniform rectangular grid to simulate shift values in [3]. For

the more-realistic distribution of spatial distributions intro-

duced herein, a performance of 0.89◦ (FT) and 0.73◦ (FS)

was achieved for an equivalent amount of training data (note

that 40% of the 60% training superset yields an equivalent

training percentage of 24% as was used in [3]).

For the smallest subset of training data considered, re-

sults are comparable to previously demonstrated solutions

(i.e.: PS-V). These observations may be exploited to reduce

set-up duration for applications in which marginal accuracy

degradations are acceptable. For example, under the as-

sumption of a constant training data collection rate, reduc-

ing the initialization duration by 80% results in a relative

accuracy reduction of only 34.8% (FT) and 26.9% (FS).

Variation in spatial accuracy (i.e.: mean ± one standard

deviation) across the operating range of the device is shown

in Fig. 8. These values were generated using a 40% par-

tition of the training superset, with training accomplished



Figure 6: Low Power CNN Architecture
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Figure 7: Mean Spatial Accuracy Versus Available Training

Data

using the FS method. Reported values are obtained by dis-

cretizing the test set in the spatial domain using the bin-

ning structure introduced in Fig. 3 for each subject, and

then averaging across subjects. Spatial accuracy is worst

for the four diagonal bins located off of center. This may

be explained through examination of the stimulus and gaze

locations depicted in Fig. 3. Namely, as no fixations were

located within these bins (i.e.: gaze locations that likely cor-

respond to saccadic eye movements), the scale of available

testing and training data is minimal versus those bins where

stimulus fixations were located.

4.2. Performance Variability For Out-of-Training
Shifts

Network performance for both in- and out-of-training

shifts is depicted in Fig. 9. For both training methods

considered, spatial accuracy degrades when out-of-training

shifts are introduced in testing as expected. Shifts of mag-

nitude slightly exceeding those encountered in training pro-

duce some accuracy degradation. For the (1.0, 1.5] test set,

which corresponds to a maximum shift extension of 0.5 mm

beyond the training set, spatial accuracy is reduced by 0.33◦

(FT) and 0.26◦ (FS) versus the in-training benchmark.

As the range of test shifts increases, performance degra-

dation is more considerable. For shifts exceeding 2.0 mm

(with an upper bound dictated by the roll-off of the random

distributions used as input to the shift simulating process),

performance degrades by 2.46◦ (FT) and 2.34◦ (FS) against

the in-training benchmark. The maintenance of reasonable

spatial accuracy for slight out-of-training shifts is promis-

ing, as such scenarios may arise in practical deployment,

especially when the initialization duration is limited to en-

hance user convenience.

4.3. Performance for Extended Shift Range

For the experiment exploring an expanded range of sen-

sor shifts, a spatial accuracy of 1.31 ◦ (FT) and 1.18 ◦ (FS)

was achieved using the two training methods considered.

The improved accuracy using the FS approach is consis-

tent with the other experiments conducted herein. An ex-

ploration of the potential source of performance discrepan-

cies across training strategies is provided in the following

section.

These results indicate that reasonable performance may

be maintained for shifts larger than those previously consid-

ered within the literature, assuming the network is exposed

to such values during the training process. As noted in Sec-

tion 3.2, limitations of the image-based workflow employed

herein do not allow for the assessment of shifts extending

beyond 5 mm.

4.4. Comparative Performance for Different
Training Approaches

As demonstrated in the prior subsections, spatial accu-

racy for FS training is superior to the FT approach for each

simulation considered. The source of this discrepancy is not

immediately obvious, as both the FS and FT techniques uti-

lize an identical subject-specific dataset within the training

process, differing only in the technique utilized to initial-

ize network weights. Additional improvements to the FT



Figure 8: Spatial Accuracy Map (Boundary Values Represent Gaze Location, Interior Values Represent Mean Spatial Accu-

racy ± One Standard Deviation. Both Quantities are Measured in Degrees of the Visual Angle
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Figure 9: Mean Spatial Accuracy Versus Shift Range

approach are of particular value for the target application,

given its previously demonstrated ability to accelerate train-

ing convergence [3].

To further assess the training efficiency of the FT tech-

nique, spatial accuracy was computed for a varying num-

ber of training epochs for both the FS and FT method. As

demonstrated in Fig. 10, the FT technique produced supe-

rior accuracy versus FS through the first 50 training epochs

due to the transfer of knowledge from the pre-training pool.

At approximately 50 epochs, FS training begins to exhibit
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Figure 10: Mean Spatial Accuracy Versus Number of Train-

ing Epochs

superior performance.

Spatial accuracy for the FT technique is presented in

Fig. 11 on a per-subject basis for a varying number of

training epochs at the initialization of user-specific training.

As noted, variability amongst subjects is considerable (i.e.:

ranging from 1.64◦ to 4.57◦), indicating that the accuracy

afforded by pre-training is highly person-specific (i.e.: the

level of generalization of gaze maps learned out-of-subject

varies across individuals). Additionally, the rate of accu-
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Figure 11: Variation in Spatial Accuracy Across Subjects for Multiple Training Duration

racy improvement upon exposure to subject-specific train-

ing data also exhibits significant variability across the sub-

ject pool.

Future work will attempt to reduce the performance dis-

crepancy between the two training techniques. One pos-

sible approach of interest is the restriction of the FT pre-

training pool to a subset of individuals exhibiting anatomi-

cal similarity to the user. It is hypothesized that this tech-

nique may reduce the inter-subject variability in the initial

accuracy achieved by the FT approach during training. The

ultimate goal of this effort is to produce a reasonable level

of accuracy through pre-training alone, thereby allowing for

the possibility of off-the-shelf use without user-specific cus-

tomization.

4.5. Limitations

While the presented results are promising for advancing

the understanding of the gaze mapping network, they are

characterized by several limitations. Simulated shifts us-

ing the current processing workflow are restricted to trans-

lations in two-dimensions only, whereas practical shifts will

involve more complex displacements (i.e.: slippage along

the nose, rotations, etc.). Furthermore, the observed signal

quality in hardware will be degraded versus the simulations

performed herein using a high-quality image. Additionally,

a full assessment of the trade-off between accuracy and ini-

tialization duration must also analyze the spatial distribu-

tion, display duration, and number of targets used during

training. Finally, the feasibility of the proposed manual dis-

placement technique for inducing shift training data must

be thoroughly tested using prototype hardware.

5. Conclusions

The research described herein demonstrates the ability of

a CNN to provide shift-invariant gaze mapping for PS-OG

EM sensors in the presence of more realistic shift training

data. Simulated shifts were generated using coordinate val-

ues sampled from two normal distributions. This method

was chosen to better reflect the spatial variability of shifts

which would be realized in practice through manual trans-

lations of an HMD by the end-user during a calibration pro-

cedure. Observed spatial accuracy was comparable to prior

results obtained using an unrealistic rectangular shift grid.

This result suggests that the proposed mechanism of gener-

ating training data through manual HMD repositioning may

be feasible in practical scenarios.

Variability in network performance versus training data

scale was also assessed. Results indicate that reasonable

accuracy may be achieved with limited training data, allow-

ing for an operational trade-off in which initialization dura-

tion is reduced for applications with less stringent accuracy

requirements. The ability of the network to generalize to

shifts extending beyond those observed during training was

also demonstrated. While achieved accuracy degrades con-

siderably for testing samples with significantly out-of-range

shifts, best-case spatial accuracy was maintained at less than

one degree of the visual angle for shift ranges extending up

to 50% beyond those encountered in training.
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