
U2Eyes: a binocular dataset for eye tracking and gaze estimation

Sonia Porta

Public University of Navarre

Pamplona, Spain

sporta@unavarra.es

Benoı̂t Bossavit

Trinity College Dublin

Dublin, Ireland

bossavib@scss.tcd.ie

Rafael Cabeza

Public University of Navarre

Pamplona, Spain

rcabeza@unavarra.es

Andoni Larumbe-Bergera

Public University of Navarre

Pamplona, Spain

andoni.larumbe@unavarra.es

Gonzalo Garde

Public University of Navarre

Pamplona, Spain

gonzalogarde3@gmail.com

Arantxa Villanueva

Public University of Navarre

Pamplona, Spain

avilla@unavarra.es

Abstract

Theory shows that huge amount of labelled data are

needed in order to achieve reliable classification/regression

methods when using deep/machine learning techniques.

However, in the eye tracking field, manual annotation is not

a feasible option due to the wide variability to be covered.

Hence, techniques devoted to synthesizing images show up

as an opportunity to provide vast amounts of annotated

data. Considering that the well-known UnityEyes tool pro-

vides a framework to generate single eye images and tak-

ing into account that both eyes information can contribute

to improve gaze estimation accuracy we present U2Eyes

dataset, that is publicly available. It comprehends about 6

million of synthetic images containing binocular data. Fur-

thermore, the physiology of the eye model employed is im-

proved, simplified dynamics of binocular vision are incor-

porated and more detailed 2D and 3D labelled data are

provided. Additionally, an example of application of the

dataset is shown as work in progress. Employing U2Eyes

as training framework Supervised Descent Method (SDM)

is used for eyelids segmentation. The model obtained as re-

sult of the training process is then applied on real images

from GI4E dataset showing promising results.

1. Introduction

Some years ago researchers realized that the users com-

munity of infrared eye tracking systems was reduced due

to the technical and hardware constraints of the technology.

In order to broaden the applications of eye tracking systems

the technology should be cheaper and more “plug & play”,

e.g. webcams or mobile gadgets cameras. Previously, fea-

ture based image processing techniques and gaze estimation

methods were used. Today, one of the main research topics

of the groups working in eye tracking and gaze estimation

technology for low-resolution systems involves developing,

among others, landmark detection and gaze estimation tech-

niques applying machine learning and deep learning algo-

rithms [8] [7].

Among the obstacles that eye tracking community en-

counters when facing the challenge of low resolution gaze

estimation, the lack of large scale labelled datasets to be

used for these purposes is remarkable. Ideally, datasets in-

cluding images of the eye/face area are required where not

only face but also eye area landmarks (eyelids, iris, pupil)

are included. Moreover, images should be annotated with

gaze information and, preferably, head pose should be also

labelled.

Many efforts have been made by researchers in order

to generate large datasets containing the corresponding la-

bels [14] [5]. However, although deep learning techniques

proved to be successful in most areas of research, the accu-

racies obtained using these datasets in terms of gaze estima-

tion are insufficient. One of the hypothesis is that the mod-

els do not learn to generalize because datasets employed

for training purposes lack of enough variability. In order to

enlarge these datasets size and trying to avoid the burden-

some manual labelling option other possibilities have been

proposed, such as image augmentation techniques or syn-

thesizing images [9] [2] [10] [1].

UnityEyes is one of the main contributions to the field of

eye tracking devoted to creating artificial eye images [13].

This open source software provides the possibility of cre-

ating monocular images in which the head shape, skin and

iris texture, head pose, gaze direction and camera param-

eters can be controlled. The eyeball model employed by

UnityEyes is a simplified eye model that resembles most

of the characteristics required by videoculograhpy theory

[3] [11]. However, this model has two cons: first, the kappa



Figure 1: In the upper part of the figure the primary position is shown together with the LaP in the final position. An

imaginary axis is calculated in both, initial and final positions connecting EG to LaPinitial and LaPfinal respectively. After

estimating the rotation between the imaginary axes it is applied to the whole eyeball. In the lower part, both optical and visual

axes have been rotated accordingly to the final position. Now, the visual axis points to the pursued LaPfinal.

angle, κ, which is one of the key aspects of eyeball physi-

ology and was demonstrated to be essential in order to de-

velop feasible gaze estimation models, is always 0. Second,

UnityEyes does not permit to create binocular images, pre-

venting methods from improving the accuracy on low reso-

lution systems by combining the information of both eyes.

In this paper we present U2Eyes dataset. It contains

binocular images created using UnityEyes as starting point

in which essential eyeball physiology elements are included

and binocular vision dynamics are modelled. The images

are annotated with head pose and gaze direction informa-

tion. In addition, 3D and 2D landmarks are provided as part

of the annotated data. In the following section, the basics

about eye modelling required for videoculography are re-

viewed. In sections 3 and 4 details about the database and

its construction are provided. Finally, an example of a pos-

sible application of the database using real images is shown.

2. Binocular vision dynamics

Eyeball geometry plays an important role in a database

like the one described in this paper. Videoculography the-

ory, more specifically those works devoted to gaze estima-

tion using geometrical models, have established the mini-

mum eyeball characteristics that should be modelled in or-

der to obtain a reliable gaze estimation system [3]. Images

and files provided in our dataset were produced according

to this minimum model introducing the corresponding im-

provements with respect to UnityEyes.

First, if we consider the eyeball as a static 3D object, the

following aspects should be modelled in the Unity frame-

work: the cornea is approximated as a single surface sphere.

Corneal refraction is critical and should be carefully mod-

elled. The eyeball center is a fixed point around which the

eye rotates. The Line of Sight (LoS) can be approximated

by the visual axis, connecting the fovea with the focused

point. This imaginary line is modelled as the line present-

ing individual’s specific angle, κ, with respect to the eyeball

symmetry axis and crossing the center of the cornea. Angle

κ presents horizontal (3-7◦) and vertical (2-3◦) components.

Although most of models consider the vertical component

as negligible we included it in our eye model for complete-

ness. The symmetry axis of the eye is named as optical

axis, and it is assumed to contain the eyeball, cornea and

pupil centers.

Second, if we now think about eyes as moving 3D ob-

jects, rotation dynamics should be studied. Several gaze

estimation papers model the minimum eyeball rotation fea-

tures to be included by any eye tracking method based on

geometry [11]. In theory, when moving from a primary

to a tertiary position the eyeball rotates about an axis per-

pendicular to a plane containing visual axes in both posi-

tions. Eyeball dynamics are nicely explained using Don-

der’s Law and more specifically Listing’s Law [4]. Our

proposal, implemented in Unity, is to rotate the eyeball

using as reference an imaginary axis connecting the eye-

ball globe center (WCS origin), EG, and the look-at-point

in the final position LaPfinal, i.e EG − LaPfinal, where

‖EG − LaPfinal‖ = d (see figure 1). In the primary posi-

tion the visual axis Va can be easily calculated by know-

ing both, the vertical and horizontal angular offsets be-

tween optical, i.e. Oa = (0, 0, 1)T , and visual axes. The

LaPinitial is calculated as that fictional point in the visual

axis in the primary position at a distance d from EG. Then,

the imaginary axis in the initial position is calculated as,

EG − LaPinitial. Eyeball rotation is calculated as the ro-

tation between imaginary axes in initial and final positions.

In figure 1 a summary of the implementation is shown.

Since our dataset provides two eyes images gazing at

the same point binocular vision mechanisms were imple-

mented. Once the visual axis of the second eye is defined,

the rest of the eye elements, i.e. optical and imaginary axes,

are calculated and incorporated into the framework. Thus,

the same procedure is applied in order to estimate the pose

and rotation of the second eye.



Figure 2: Folders and files arrangement of U2Eyes.

3. U2Eyes DATASET

U2Eyes database includes 1000 users, at a rate of 5,875

images (in png format) and 503 files (in xml format) per

user, arranged in independent folders in a three levels struc-

ture as shown in figure 2. In total, about 6 million images

are contained in the dataset.

A user’s complete folder requires about 2.5 GB and its

whole generation takes three and a half hours when run-

ning over a 6th Generation Intel Core i5 of 3.2 GHz and

20 GB RAM. Due to space limitations a reduced version

of the dataset is publicly available (link). Each user is

identified by a different face shape, according to a PCA

model offered by UnityEyes, whereas the 20 skin-textures

and 5 eye-textures available in UnityEyes are regularly

distributed over the dataset (individual data saved in the

corresponding userid.xml file). The scene.xml file, that

is also user’s specific, contains information about light

color/direction/intensity and exposure/rotation of the scene.

This file has not changed from the original UnityEyes [13],

so that the same ranges for lighting parameters and identi-

cal 18 available regarded scenes are involved in the dataset

generation. Data such as camera focal length (3.67 mm) and

images resolution (4K=3840x2160 pixels) are stored in the

camera.xml file, which is shared by all the users.

4. Design of the dataset

U2Eyes is an extension of UnityEyes [13] that calcu-

lates the entire user’s eyes area. For this purpose, the mesh

provided by UnityEyes is first duplicated, then transformed

by inverting the scale on the Y-axis in order to be symmet-

ric, and finally translated to match the left side of the face.

All these operations are calculated and drawn in real-time.

This provides a generic application where a new mesh cre-

ated by UnityEyes could also be used by U2Eyes without

manual editing.

Design decisions regarding the number of head poses

and look-at-points for the dataset were taken trying to em-

ulate real situations and reproducing scenarios contained in

Figure 3: In the upper part, the 125 head positions following

a frustum distribution and at five different distances from

the camera are shown. In the lower part, the 125 head posi-

tions once the random component is introduced are shown.

existing datasets with real subjects. A completely random

framework, although computationally possible, could result

in non feasible head pose and look-at-points combinations

in reality. Therefore, carefully studied random components

were introduced in the dataset in order to increase the vari-

ability and avoid overfitting when the database is used in

learning algorithms, as it is detailed next.

For each user 125 head poses combining head center po-

sition and face orientation were modelled and saved in the

corresponding headpose.xml file. The head center positions

were initially distributed over five planes at different depths,

to provide images where the user’s face is in between 30 and

50 cm from the camera. Plane size grows with the distance,

always containing 5x5 points. An example of frustum dis-

tribution is shown in figure 3 (up).

These 125 points are then randomized adding some uni-

form noise in the range [−∆,∆] where, for each spatial

direction and each plane, ∆ equals a fifth of the frustum

size, yielding a distribution as that shown in figure 3 (down).

Dimensions were carefully selected to provide realistic im-

ages, with no eye area clipping and able to resemble those

available in physical datasets. In order to avoid baleful look

images, a facing algorithm was designed to ensure that the

face is directed towards the gazed area. Once the face is

oriented, some additional random noise is added to the rota-

tion components (roll, yaw and pitch), uniformly distributed

in the range of [−5◦, 5◦] for the closest plane and progres-

sively increased up to [−8◦, 8◦] in the farthest one.

At each head pose two gazing grids are observed (see

figure 2), respectively containing 15 points (for training



Figure 4: Left: each user gazes 15 and 32 grids points from

every 125 head poses. Right: representation of random dis-

tributions of look-at-points in the screen.

Figure 5: Images from U2Eyes dataset.

purposes) and 32 points (conceived for test) not uniformly

spread in a 220x220 mm squared surface (see figure 4, left).

In this manner, for each user a total amount of 125x(15+32)

images are generated. While the 15 points grid is kept the

same for all users and head poses, over the 32 points grid

some Gaussian noise, designed independently for each one

of the four quadrants per point, is added. Random distri-

butions calculated for each point after 5000 iterations are

shown in figure 4 (right) having into account the screen lim-

its and the non-uniform distribution of points.

The camera is assumed to be located in the center of the

gazed area. In this way a symmetrical framework is selected

and we can simulate both physical scenarios, i.e. having

the camera in the upper or in the lower part of the gazed

screen. In figure 5 examples extracted from the dataset are

provided.

Regarding eye features, U2Eyes dataset increases the in-

formation provided by UnityEyes. An output xml file stored

in each head pose folder provides information about 2D/3D

landmarks of eyelids, iris and pupil contour points and cen-

Figure 6: U2Eyes image in which the 2D landmarks can be

observed.

Figure 7: In the upper part the original GI4E image is shown

highlighting Region Of Interest (ROI) in blue. In the lower

part the cropped ROI is represented in which the points re-

sulting from the segmentation are plotted in red.

ters, caruncle and eye corners. In figure 6 an example of

an image from U2Eyes dataset is shown, in which 2D eye

landmarks are plotted.

5. Example of application

As mentioned before, this work wants to contribute to the

challenge of obtaining large scale labelled datasets for eye

tracking purposes. We would like to show briefly one of the

potential applications in which we are working at the mo-

ment. The objective is to use Supervised Descent Method

(SDM) as eyelids detection technique [6]. The algorithm is

trained using images and labels from U2Eyes and applied

to real scenarios. This is a “work in progress” project for

which promising results are obtained, that is mentioned here

to show the possibilities offered by U2Eyes. In figure 7 the

algorithm is applied to one of the GI4E images [12]. In

the lower part the result of the segmentation using the SDM

model is provided. As it can be observed the model achieves

to detect eyelids points nicely. Results for the left eye are

shown but information from the right eye was also used in

the SDM model.



6. Conclusions

In this work U2Eyes dataset is presented. U2Eyes is a

binocular database of synthesised images reproducing real

gaze tracking scenarios and including corresponding 2D/3D

labels. It contributes to the area of large scale datasets to

be used in machine/deep learning field for eye tracking. A

potential eyelids segmentation tool is shown as example of

application.

7. Acknowledgment

We would like to acknowledge the Spanish Ministry of

Science, Innovation and Universities for their support under

Contract TIN2017- 84388-R.

We gratefully acknowledge the support of NVIDIA Cor-

poration with the donation of the Titan X Pascal GPU used

for this research.

We also thank Erroll Wood for his useful comments.

References

[1] Shaharam Eivazi, Thiago Santini, Alireza Keshavarzi,

Thomas Kübler, and Andrea Mazzei. Improving real-time

CNN-based pupil detection through domain-specific data

augmentation. In Proceedings of the 11th ACM Sympo-

sium on Eye Tracking Research and Applications, ETRA’19,

pages 40:1–40:6, New York, NY, USA, 2019. ACM.

[2] Chao Gou, Y. Wu, Kang Wang, Fei-Yue Wang, and Q. Ji.

Learning-by-synthesis for accurate eye detection. In 23rd

International Conference on Pattern Recognition (ICPR’16),

pages 3362–3367, Dec 2016.

[3] Elias Daniel Guestrin and Moshe Eizenman. General the-

ory of remote gaze estimation using the pupil center and

corneal reflections. IEEE Trans. on Biomedical Engineer-

ing, 53(6):1124–1133, 2006.

[4] Amir A. Handzel and Tamar Flash. The geometry of eye

rotations and Listing’s law. In Proceedings of the 8th In-

ternational Conference on Neural Information Processing

Systems, NIPS’95, pages 117–123, Cambridge, MA, USA,

1995. MIT Press.

[5] Kyle Krafka, Aditya Khosla, Petr Kellnhofer, Harini Kan-

nan, Suchendra Bhandarkar, Wojciech Matusik, and Anto-

nio Torralba. Eye tracking for everyone. In Proceedings of

the 2016 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR’16), 2016.

[6] Andoni Larumbe-Bergera, Sonia Porta, Rafael Cabeza, and

Arantxa Villanueva. SeTA: Semiautomatic tool for anno-

tation of eye tracking images. In Proceedings of the 11th

ACM Symposium on Eye Tracking Research and Applica-

tions, ETRA’19, pages 45:1–45:5, New York, NY, USA,

2019. ACM.

[7] J. Lemley, A. Kar, A. Drimbarean, and P. Corcoran. Con-

volutional neural network implementation for eye-gaze es-

timation on low-quality consumer imaging systems. IEEE

Transactions on Consumer Electronics, 65(2):179–187, May

2019.

[8] Seonwook Park, Xucong Zhang, Andreas Bulling, and Ot-

mar Hilliges. Learning to find eye region landmarks for re-

mote gaze estimation in unconstrained settings. In Proceed-

ings of the Symposium on Eye Tracking Research and Ap-

plications, (ETRA’18), pages 1–10, Warsaw, Poland, 2018.

ACM.

[9] Yusuke Sugano, Yasuyuki Matsushita, and Yoichi Sato.

Learning-by-synthesis for appearance-based 3D gaze esti-

mation. In Proceedings of the 2014 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR’14), pages

1821–1828. IEEE Computer Society, 2014.

[10] Lech Świrski and Neil A. Dodgson. Rendering synthetic

ground truth images for eye tracker evaluation. In Proceed-

ings of the Symposium on Eye Tracking Research and Ap-

plications, ETRA’14, pages 219–222, New York, NY, USA,

2014. ACM.

[11] Arantxa Villanueva and Rafael Cabeza. A novel gaze esti-

mation system with one calibration point. Trans. on Systems,

Man and Cybernetics, Part B, 38(4):1123–1138, Aug. 2008.

[12] Arantxa Villanueva, Victoria Ponz, Laura Sesma-Sanchez,

Mikel Ariz, Sonia Porta, and Rafael Cabeza. Hybrid method

based on topography for robust detection of iris center and

eye corners. ACM Trans. on Multimedia Computing, Com-

munications and Applications, 9(4):25:1–25:20, Aug. 2013.

[13] Erroll Wood, Tadas Baltrusaitis, Louis-Philippe Morency,

Peter Robinson, and Andreas Bulling. Learning an

appearance-based gaze estimator from one million synthe-

sised images. In Pernilla Qvarfordt and Dan Witzner Hansen,

editors, Proceedings of the Symposium on Eye Tracking Re-

search and Applications, ETRA’16, pages 131–138. ACM,

2016.

[14] Xucong Zhang, Yusuke Sugano, Mario Fritz, and An-

dreas Bulling. MPIIGaze: Real-world dataset and deep

appearance-based gaze estimation. IEEE Trans. on Pattern

Analysis and Machine Intelligence, Early Access, 2018.


