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Abstract

Raindrops adhered to camera lens or windshield are in-

evitable in rainy scenes and can become an issue for many

computer vision systems such as autonomous driving. Be-

cause raindrop appearance is affected by too many param-

eters, it is unlikely to find an effective model based solu-

tion. Learning based methods are also problematic, be-

cause traditional learning method cannot properly model

the complex appearance. Whereas deep learning method

lacks sufficiently large and realistic training data. To solve

it, in our work, we propose the first photo-realistic dataset

of synthetic adherent raindrops with pixel-level mask for

training. The rendering is physics based with considera-

tion of the water dynamic, geometric and photometry. The

dataset contains various types of rainy scenes and partic-

ularly the rainy driving scenes. Based on the modeling of

raindrop imagery, we introduce a detection network which

has the awareness of the raindrop refraction as well as its

blurring. Based on that, we propose the removal network

that can well recover the image structure. Rigorous exper-

iments demonstrate the state-of-the-art performance of our

proposed framework.

1. Introduction

Most computer vision studies assume that the input im-

age is of good visibility and clean content. However, rainy

weather causes several different types of degradation to the

image captured. It is common that the raindrops hit and

flow on a camera lens or a windscreen of the vehicle. These

adherent raindrops can obstruct, deform, and/or blur part

of the area in the imagery of the background scenes, and

then significantly degrade the performances of many vi-

sion algorithms e.g. feature detection [26, 12, 25], track-
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(a) Real-world raindrop image (b) Ours

(c) Qian [24] (d) Pix2Pix [17]

Figure 1. Visual comparison of raindrop removal in real rainy

scenes. Our method removes most of raindrops although the rain-

drops have large variety.

ing [34, 5, 31], stereo correspondence [29, 30, 9], etc. A

method to automatically remove the raindrop and recover

the clear scene is, therefore, desired.

Unlike the rain streaks [36, 21], that mostly are thin and

vertical stripes, adherent raindrops have more varieties in

shape, position, and size, as can be seem in Fig. 1a. You et

al. [39, 38, 37], Roser et al. [27], Eigen et al. [6] and Qian et

al. [24] are a few example approaches focusing on detecting

or removing the adherent raindrops. However, the method

in [39] requires the rich temporal information, whereas the

required video sequence cannot be applied to single image.

Roser et al.’s method [27] can detect raindrop from a sin-

gle image, but the model is over simplified and far from the

real cases. Rather than model based methods, Eigen et al.

[6] first adopt deep neural network, but the network only

contains three layers and cannot properly learn the appear-

ance of real raindrops. Qian et al. [24] integrate attention

mechanism into GAN based CNNs, but their method is only

tested on a small dataset. Although their dataset uses real

raindrop, but the scene is in sunny day, which is not real-

istic. And therefore their method cannot fully handle real



rainy scenes (Fig. 1c).

In this paper, we propose a physics driven as well as

data driven method to detect and remove the adherent rain-

drops jointly. We utilize the realistic adherent raindrops

imagery model proposed by Roser et al. [28] and You et

al. [39]. Based on understanding the physics, we design a

novel deep learning multi-tasks network which does both

end to end detection and removal adherent raindrops from a

single image. Unlike existing networks, the proposed net-

work directly reflects the appearance of raindrop such that it

is partially blended into the image and is a reflection of the

background image. In brief, we separate the difficult task of

restoring image into three sub-problems: (i) detect raindrop

locations and shapes via a deeply supervised sub-network,

and then (ii) restore adherent raindrop regions through deep

learning network, subsequently (iii) a small CNN network

is employed to smooth the blended image.

To enable proper training of the network, a new dataset is

introduced which consisting photo-realistic rendering of the

rainy scenes and clear scenes. The dataset uses Cityscapes

dataset [4] as background image, which contains represen-

tative outdoor scenes. The dataset contains about 30K im-

ages. Each image has 50 to 70 raindrops with size varying

from 0.8 to 1.5 centimeters, and the blurring level varying

from 7 to 20 pixel.

This paper makes the following contributions:

• We propose a physics aware end-to-end neural network

for joint raindrop detection and removal. The architec-

ture is designed in cope with the physics of raindrop

imagery.

• We develop a practical dataset of realistically rendered

adherent raindrop images, which contains the pixel-

level raindrop binary masks.

• The proposed method significantly out performances

existing methods on all existing dataset and real-world

rainy images.

2. Related Work

Removing raindrops from a single image is an ill-

posed problem and would be beneficial to outdoor com-

puter vision systems which work in bad weather, particu-

larly surveillance systems and intelligent vehicle systems.

Although there are many papers focus on removing haze

[13, 2] or rain streaks [22, 21, 42], the researches on rain-

drop removal from a single image are relatively insufficient.

2.1. Adherent Raindrop Modeling

Halimeh et al. [11] introduce a raindrop modeling

method based on ray-tracking. They propose an algorithm

which models the geometric shape of a raindrop by utilizing

its photometric properties. Roser et al. [28] mainly focus on

modeling the raindrop geometric shape. They leverage the

Bézier curves to represent a raindrop surface in low dimen-

sions which is physically interpretable. Von Bernuth et al.

[32] propose a novel method to render these raindrops using

Continuous Nearest Neighbor search leveraging the benefits

of R-trees. They use the synthetic raindrops for robustness

verification of camera-based object recognition.

Recently, You et al. [40] model raindrops by considering

both liquid dynamics and optics. They reconstruct the 3D

geometry of a raindrop by minimizing surface energy con-

straints and total reflection constraint. The accurate rain-

drop model proposed by You et al. can be used in applica-

tions such as depth estimation and image refocusing. Later,

You et al. [39] model adherent raindrops by taking consid-

eration of physical properties such as gravity, water-water

surface tensor and water-adhering-surface tensor.

2.2. Raindrop Removal

Most existing methods for detecting or removing rain-

drops are stereo or video based and therefore not applicable

to a single image. Roser and Geiger [27] propose a method

which detects raindrop in a single image based on a pho-

tometric raindrop model. The raindrop detection can im-

prove image registration accuracy, then removing raindrops

by fusing multiple views into one frame. You et al. [39]

combine video completion technique with temporal inten-

sity derivative to remove raindrops in video after detecting

the locations of raindrops.

Due to the lack of temporal information, raindrop re-

moval from a single image is more challenging. Eigen et

al.’s work [6] is the first one to remove raindrops from a sin-

gle image. They propose a 3-layer CNN network trained on

rainy/clear pairs, the network can remove relatively sparse

and small raindrops as well as dirt. However, the method

suffers from blurred outputs and cannot remove dense rain-

drops. Recently, Qian et al. [24] propose a method based

on GAN [10]. They create an aligned dataset by using a

piece of glass sprayed with water to get images containing

raindrops. With this dataset, they propose a GAN based net-

work which integrates attention mechanism both in gener-

ator and discriminator. The method can produce sharp and

clear image on their test set.

There are also some general Image-to-Image translation

methods such as Pix2Pix [17] can tackle this problem, but

they are not specifically designed for raindrop removal from

a single image.

3. Raindrop Imagery Model and Photorealistic

Dataset

As preliminary, we briefly introduce the raindrop im-

agery model developed by Roser et al. [28] and extended

by You et al. [39] and the implementation detail on our pho-

torealistic dataset generated from such model. It will later
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Figure 2. Refraction model. The light ray colored in green does

not go through any raindrops. The light ray colored in yellow goes

through a raindrop and is refracted twice.

drive us to design the network structure in Sec. 4. Also, we

introduce the detail of the new photo realistic dataset.

Motivation: Data driven methods, particularly deep neu-

ral networks, need a large training data with ground truth.

In particular, we need images with raindrops and the corre-

sponding clear images to perform supervised learning in the

context of raindrop removal from a single image. However,

it is difficult and expensive to get strictly aligned rainy/clear

image pairs of the exact same scene. Qian et al. [24] cre-

ate a dataset contains 1119 pairs in total. The dataset is the

only one for adherent raindrops, but it is relatively small

and lacks the pixel-level masks of raindrops. In order to

train our network, we create the first photo-realistic adher-

ent raindrop dataset with pixel-level mask in autonomous

driving settings based on Cityscapes dataset [4]. Inspired

by [11] and [28], we synthesize adherent raindrop appear-

ance on a clear background image by tracking the ray from

camera to environment through the raindrops.

Dataset Generation: Geometric Rendering and Ray-

tracing. As shown in Fig. 2, in order to get the synthetic

adherent raindrop images, we set a scene with a camera at

the origin, a glass plane at N centimeters ahead the camera,

and a background plane at T centimeters ahead the camera.

The angle between the glass plane and the ground is ψ. On

the glass plane, we randomly sprinkle raindrops and ignore

the refraction introduced by glass. A raindrop is modeled

by spherical cap where the radius of the sphere is r and the

angle between tangent and glass plane is τ . These two pa-

rameters determine the volume of the raindrop in glass. If a

light ray determined by origin and the location of a pixel in

image plane does not go through any raindrops, we set the

pixel value unchanged as the background pixel. On the con-

trary, if a light ray goes through a raindrop in glass plane, we

track the light ray by considering the refraction introduced

by the raindrop, and set the pixel to the crossover point of

light ray and the background plane. In Fig. 2, the light ray

represented by the green line does not go through any rain-

drop, so we keep the corresponding pixel in image plane

unchanged. The light ray represented by yellow line is re-

fracted twice and reaches the same point in the background

Figure 3. Samples of our synthetic raindrop images. Top: The

ground truth clear image in Cityscapes dataset [4]. Middle: The

synthetic raindrop image produced by our refraction model. Bot-

tom: The ground truth binary mask of the raindrops.

plane as the green line, so we set the corresponding pixel

in image plane same as the green line. If total reflection

happened when the light ray propagates from the inside of a

raindrop to the air, we set the corresponding pixel in image

plane to black. This phenomenon is quite common at real

world raindrop’s boundary which called dark bands [40].

Dataset Generation: Blurring and Blending. In the real

world, raindrops will be blurred when a camera focuses on

the environment scene. We use a disk blur kernel to blur

the areas occupied by raindrops in synthetic image. As we

observed, it is more realistic for the scene in our dataset to

set the diameter of the disk blur kernel to be 7 ∼ 20 pixels.

Since we already know the locations of raindrops on glass,

it is also very convenient to get the ground truth pixel-level

binary mask of raindrop image.

Dataset Generation: Environment Realness. We use im-

ages in Cityscapes [4] as the background images. Unlike the

dataset created by Qian et al. [24] which is based on campus

scenes, the scenes in Cityscapes are mainly focus on urban

street where most outdoor vision systems work. And there

are many data recorded in cloudy weather in Cityscapes,

while the data in Qian’s dataset is recorded in fine weather.

So our dataset is more suitable for raindrop removal in out-

door vision systems especially autonomous driving.

Summary of the dataset: In order to make the raindrop

appearance close to real ones, we set N ∈ [20, 40], T ∈
[800, 1500], r ∈ [0.8, 1.5], ψ ∈ [30◦, 45◦] and τ ∈
[30◦, 45◦]. For each background image, we generate 50 to

70 raindrops. Finally, we make a dataset containing about

30000 images based on the training set of Cityscapes for

training and 1525 images based on the test set of Cityscapes

for testing.
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Figure 4. Network architecture of our proposed method. The whole architecture consists of three sub-networks for raindrop detection,

raindrop region reconstruction and refining respectively.

4. End-to-End Raindrop Detection and Re-

moval Network

We devise an end-to-end multi-task network which ex-

plicitly incorporate the raindrop imagery model. The ob-

served raindrop degraded image O can be modeled as O =
(1 − M)B + R. Where M is raindrop binary mask, B

is the clear background image and R is the raindrop layer.

Based on this model, it is intuitive to separate the difficult

task into three sub-problems: the first sub-network of our

proposed method is designed to detect the raindrop binary

mask M, the second is designed to restore the regions oc-

cupied by raindrops, the third is designed to smooth and

refine the blended image. As shown in Fig. 4, our proposed

raindrop removal network consists of three sub-networks to

address the three sub-problems respectively. In this section,

we first introduce these sub-networks in detail. Then, by

combining all sub-networks, we describe the whole archi-

tecture of our proposed network and some implementation

details.

4.1. Raindrop Detection Network

The purpose of our raindrop detection network is to de-

tect the areas of raindrops from input image. The network

outputs a pixel-level binary mask in which the pixels of

raindrops are marked as ones and the pixels of raindrop-free

background are marked as zeros. We can separate the rain-

drops layer from the background layer by leveraging this

binary mask.

Our raindrop detection network is inspired by I-CNN [7]

and contains stacked residual blocks [14, 15]. Different

from the general semantic segmentation or detection net-

works [41, 12, 3], the binary mask of raindrops has little

semantic information. Hence, we just downsample the in-

ternal feature maps to half size in order to enlarge the recep-

tive field. It makes the feature maps denser and keeps more

accurate location information.

As shown in Fig. 4, the proposed raindrop detection net-

work has 5 convolution layers and 6 residual blocks. In the

second convolution layer which with stride 2, the resolu-

tion of feature maps is reduced to the half of input image.

There is a 1× 1 convolution layer in which the channels of

feature maps increase from 64 to 256. In order to reduce

the training time and memory usage, we use residual block

in bottleneck fashion. The residual block consists of two

1 × 1 and one 3 × 3 convolution layers, where the 1 × 1
layers will reduce/increase the channels of internal feature

maps to 64/256 respectively, and the middle 3× 3 layer has

64-dimensional feature maps in both input and output. All

convolution layers in our proposed network are followed by

batch normalization (BN) [16] and ReLU [23]. We use the

binary cross-entropy as loss function of the raindrop detec-

tion network, and the loss defined as:

Ldet(M,M̂)=−
1

n

n
∑

i

[

Milog(M̂i)+(1−Mi)log(1−M̂i)
]

, (1)

where M is the ground truth binary mask, M̂ is probability

mask predicted by our network, n is the number of pixels in

mask, and i is pixel index.

4.2. Raindrop Region Reconstruction Network

The raindrop region reconstruction network is designed

to recover the areas occupied by blurred raindrops accord-

ing to the contextual information, and it shares the similar

CNN architecture with the proposed raindrop detection net-



work. Different from the raindrop detection network, we

increase the number of residual blocks from 6 to 8. We

combine the input image and the edge of input image to a

4-channel tensor as the input. The edge cues can help tasks

like reflection removal and image smoothing according to

[19, 20, 35]. We compute the edge image E of a raindrop

image R by the equation defined as:

Ex,y =
1

4

∑

c

(|Rx,y,c −Rx+1,y,c|+ |Rx,y,c −Rx−1,y,c|

+ |Rx,y,c −Rx,y+1,c|+ |Rx,y,c −Rx,y−1,c|), (2)

where x, y are pixel coordinates, and c is the color channels

in RGB image.

The loss function of raindrop region reconstruction is de-

fined as:

Lrecons(I, Î) =
1

n

n∑

i

λi|Ii − Îi|, (3)

where I is the ground truth clear image and Î is the image

predicted by our network. The λi is a weight which is set

to 20 when pixel i belongs to a raindrop, otherwise to 1.

By introducing λ, our network will pay more attention to

reconstruct the raindrop region.

4.3. Refine network

Combing the two sub-networks described above, we pro-

pose the refine network. The blended input image B of re-

fine network is defined as:

B = M̂ Î + (1− M̂)R, (4)

where R is raindrop image, M̂ is binary mask produced

by raindrop detection sub-network, and Î is the output of

raindrop region reconstruction sub-network. B consists of

background pixels in R and reconstructed pixels in Î . The

architecture of refine network is relatively simple, it con-

tains two convolution layers and two residual blocks. To

train the refine network by considering both image struc-

ture similarity and color similarity [43], we use loss func-

tion mixed with SSIM [33] loss and ℓ1 loss.

Lref (I, Ĩ) = α(1−Lssim(I, Ĩ)) + (1−α)Lℓ1(I, Ĩ), (5)

where Ĩ is output of our refine network (i.e. final output of

our proposed method). We set the α = 0.3.

Dilated Mask: In experiments, we find that our proposed

raindrop detection network gets a relatively low recall at

the edge of raindrops. Hence, the B will preserve some

raindrop edge pixels if using the original binary mask M̂ .

In order to reduce the number of raindrop pixels in B, we

apply dilation, a basic mathematical morphology operation,

to M̂ . It is implemented as a parameter-free layer after the

output of raindrop detection network. Fig. 5 shows the ef-

fect of dilation operation on a binary mask and the blended

input of refine network.

(a) (b)

(c) (d)

(e) (f)

Figure 5. The effect of dilation operation. (a): the original binary

mask produced by raindrop detection network. (b): the dilated

binary mask. (c): blended image produced by (a). Note that there

are many raindrop edge pixels in the road of the blended image.

(d): blended image produced by (b). The raindrop edge pixels in

road are removed. (e), (f): local regions of blended images.

4.4. Implementation Details

Two-Stage Training: Our complete network consists of

three different sub-networks, and we train them in a two-

stage fashion. In the first stage, we train raindrop detection

network and raindrop region reconstruction network respec-

tively because their outputs are dependencies of the refine

network. In the second stage, we combine the networks

trained on the first stage with refine network to construct our

whole network, and we only update the parameters in refine

network when training. Limiting the number of trainable

parameters in the second stage can be beneficial to prevent

our network from overfitting.

Data Augmentation: We do online data augmentation for

all training stages. All the images and masks in our train-

ing set have resolution of 256 × 512. Before feeding into

the network, a training pair or its horizontal flip will be ran-

domly cropped to 100× 100.

Our implementation is built on TensorFlow [1] and

trained on a single NVIDIA TITAN Xp GPU with 12GB

memory. All trainable parameters in proposed networks are

initialized by Xavier initializer [8]. The batch size is set

to 32, and all three sub-networks are trained for 50 epochs

which consists of 50K steps per epoch. We adopt Adam

[18] optimizer with initial learning rate = 0.001 which is

decayed linearly from 20 to 40 epoch until reaching the end-

ing learning rate = 0.0001.



(a) Input image (b) Ground truth mask (c) our mask

Figure 6. Raindrop detection on our synthetic dataset. Above: Vi-

sual result. Below: Precision-Recall curve. We compute pixel-

level accuracy. Curve figure in the right is magnification of figure

in the left. Other methods do not output raindrop detection results

and are therefore not compared.

5. Experiments

In this section, we compare our proposed method to

Eigen [6], Qian [24], DID-MDN [42] and Pix2Pix [17]

along with ablation experiments. Note that Eigen [6] and

Qian [24] are the only methods in the literature dedicated

to this problem to the best of our knowledge. For this rea-

son, we add a general image-to-image translator Pix2Pix

[17] and a rain streak removal method DID-MDN [42] in

the comparison. We report the PSNR and SSIM metrics in

our synthetic dataset and Qian’s dataset.

5.1. Experiments on Synthetic Image

Quantitative Evaluation: Our synthetic test set contains

1525 rainy/clear images pairs and corresponding rain

masks. The test set is synthesized based on the official test

set of Cityscapes. We train all the existing methods on our

synthetic training set to compare to our proposed method.

First, we evaluate the performance of our raindrop detec-

tion network on synthetic dataset which contains the ground

truth of binary raindrop masks. Fig. 6 shows Precision-

Recall curve of our raindrop detection network. The av-

erage precision (AP) of our network prediction is 0.9973.

It indicates that our raindrop detection network works very

well on synthetic images. Because other methods do not

predict the raindrop mask, we cannot compare our raindrop

detection network to them.

Table 1 shows quantitative raindrop removal results. It is

clearly that our complete model outperforms other methods

in terms of both PSNR and SSIM by a large margin.

PSNR SSIM

Eigen [6] 29.02 0.9560

Pix2Pix [17] 31.00 0.9471

DID-MDN [42] 31.32 0.9576

Qian [24] 37.79 0.9692

Ours (3RN only) 37.73 0.9852

Ours (3RN + RDN + RFN) 39.24 0.9848

Ours (3RN + Dilated RDN + RFN) 41.29 0.9921

Table 1. Quantitative evaluation results of raindrop removal on

synthetic dataset. 3RN: Our Raindrop Region Reconstruction Net-

work. RDN: Our Raindrop Detection Network. RFN: Our Refine

Network. The setting in the last row is our complete model.

PSNR SSIM

Eigen [6] 28.59 0.6726

Pix2Pix [17] 30.14 0.8299

DID-MDN [42] 27.06 0.8830

Qian [24] 30.82 0.9050

Ours (3RN only) 29.28 0.9016

Ours (rough mask) 30.17 0.9128

Table 2. Quantitative evaluation results of raindrop removal on

dataset proposed in Qian [24]. Ours (3RN only): Our Raindrop

Region Reconstruction Network only. Ours (rough mask): Our

model trained with low-quality rough mask which is produced by

subtracting raindrop image with the ground truth.

Qualitative Evaluation: Fig. 7 shows the qualitative re-

sults of different methods. Our proposed method, Qian [24]

and DID-MDN [42] remove the most of raindrops success-

fully while the results produced by Pix2Pix [17] and Eigen

[6] still contain many raindrops. In the first row of Fig. 7,

there are artifacts in the center of Qian and DID-MDN re-

sults. In the second row, there are some raindrops in the bot-

tom of results of Qian and DID-MDN. Our method achieves

better performance in both removing raindrops and avoid-

ing artifacts.

Ablation Study: We run a number of ablations in order to

demonstrate the effectiveness of different modules in our

proposed method. The quantitative results are shown in

Table 1. We use the raindrop region reconstruction net-

work as baseline. By adding the raindrop detection net-

work and refine network to the baseline, both PSNR and

SSIM are increasing. Then, by replacing the mask with

dilated mask, we get our complete proposed architecture

which archives the highest PSNR and SSIM. The results

of ablation study indicate that all our proposed modules do

contribute to the raindrop removal. Our complete architec-

ture improve PSNR by 9.4% compare to the 3RN only. It is

a substantially large improvement.

Efficiency: The running speed is critical in many outdoor

computer vision systems. In order to show the efficiency of
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Figure 7. Comparison of raindrop removal on our synthetic dataset. It can be seen that the proposed method achieves better performance

in both removing raindrops and avoiding artifacts. Best viewed with zoom.



Raindrop Image Ground Truth Ours (3RN only) Ours (rough mask) Qian [24]

Figure 8. Comparison of raindrop removal results on Qian’s dataset [24]. All three models remove raindrops successfully and produce

clear images.

our method, we also evaluate the inference speed of prior

methods and ours. For a single 256 × 512 image, the in-

ference time of our method is 69.74ms, Pix2Pix [17] is

79.1ms, Qian [24] is 97.16ms, Eigen [6] is 107.712ms and

DID-MDN [42] is 133.64ms. The results indicate that our

method is not only effective but also efficient. All the meth-

ods are tested on a single NVIDIA TITAN Xp GPU, and the

time reported is the average of 20 repeats.

5.2. Experiments on Real-world Image

We evaluate the proposed method on real-world dataset

introduced in Qian [24]. Due to the lack of the ground-truth

raindrop mask, we cannot train our complete architecture

directly. Instead, we only use low-accuracy masks roughly

estimated by subtracting raindrop images with ground truth.

We also train our Raindrop Region Reconstruction network

(3RN) which do not need raindrop masks. As shown in

Table 2, our methods get competitive results quantitatively

that is on par with Qian [24]. Note the dataset is not very

challenging because the data in training set and test set is

too similar. Thus all three models can produce compelling

visual quality raindrop removal as shown in Fig. 8.

6. Conclusions

In this paper, we propose a novel end-to-end network to

detect and remove adherent raindrop jointly. Since the su-

pervised deep learning in raindrop removal suffers from the

lacking of sufficient paired training data, we also develop

a practical and realistic dataset for adherent raindrop which

contains the pixel-level raindrop binary masks. There are

two stages in our proposed multi-task network. In the first

stage, two sub-networks detect raindrop locations and re-

store adherent raindrop regions respectively. In the sec-

ond stage, a blended image is produced by using the lo-

cation clues, then a refine network is employed to smooth

the blended image. Our experiment results show that the

proposed method outperforms the state-of-the-art and can

handle both synthetic data and real-world data. In the fu-

ture, we would like to enhance our raindrop imagery model

and extend our experiments to further validate the benefit

of using our method on computer vision systems working

under the rainy scenes.
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