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Abstract

Approximating the distance of objects present in an im-

age remains an important problem for computer vision ap-

plications. Current SOTA methods rely on formulating this

problem to convenience depth estimation at every pixel;

however, there are limitations that make such solutions non-

generalizable (i.e varying focal length). To address this is-

sue, we propose reformulating distance approximation to

a per-object detection problem and leveraging graph in-

formation extracted from the image to potentially achieve

better generalizability on data acquired at multiple focal

lengths.

1. Introduction

Development of a generalized, robust, and scalable

method for estimating the distance between a monocular

camera and the objects present in an observed scene remains

a challenging computer vision problem with numerous ap-

plications in robotics. Currently, state of the art (SOTA)

methods for Monocular Depth Estimation (MDE), utilize

supervised neural network Encoder-Decoder architectures

[1]. While such networks are capable of estimating depth at

every pixel in an input image, some limitations need to be

considered. The supervised nature of an Encoder-Decoder

model requires that all input images be restricted to a prede-

fined width and height. Changing input size requires a new

model to be trained. Secondly, even if dimensions of the

input image remain fixed, representation of object distance

depends strongly on the imaging system’s focal length. Fi-

nally, use of an Encoder-Decoder model presents scalability

concerns with increasing image resolution, as depth is com-

puted at every pixel, regardless of a given pixel’s contribu-

tion to depth segmentation.

The limits posed by Encoder-Decoder frameworks ulti-

mately lead to a generalizability problem for MDE; given

the myriad number of imaging hardware configurations

available, it would be both costly and unstandardized to

train a network for each lens/camera combination. To over-

come these limitations, we propose an architecture which

learns to predict geometric relationships between different

objects in a scene, which we argue is analogous to learning

geometric perspective. By understanding how objects vary

in size with respect to each other, this understanding can be

transferred to other camera specifications. Thus, our main

contributions are as follows:

• Reformulation of the distance estimation problem

from a depth map regression to a multi-object

detection-prediction paradigm, which is better suited

to solutions involving Graph Convolution Networks

(GCNs)

• Construction and training of a GCN, which takes in-

formation from a scene as a graph, to predict object

distances

• A dataset that includes varying focal lengths, to com-

pare our GCN method with per pixel regression

2. Related Work

2.1. Monocular Depth Estimation

Early solutions to the problem of Monocular Depth Es-

timation utilized Multi-Scale deep neural networks [2].

These models were comprised of two components, a Global

Coarse-Scale Network, which learns global image features,

and the Local Fine-Scale Network, which learns small fea-

tures. Such models highlight both the remarkable quantity

and wide variety of feature types present in a given image

when various kernel or ROI scales are considered.

Recent work on Monocular Depth Estimation have still

generally utilized an Encoder-Decoder architecture. Some

have extended the model by using a U-Net, where differ-

ent sized convolution layers from the encoder are connected

with the convolution layers of the decoder [4, 7]. Other

works utilize attention from the output latent representa-

tions of an encoder to create a conditional random field

model to predict the depth map [10]. Multi-task and usage

of multi-frames also have been used to increase accuracy

for these depth estimation models [2].



2.2. DisNet

While current state of the art methods regress the depth

estimation on the pixels of the input image, there are ap-

proaches which directly estimate object distances, such as

DisNet [3]. This work presents a system which utilizes

YOLO v3 [6] to produce bounding boxes of multiple ob-

jects within the image. Once objects have been isolated by

YOLO, information pertaining of these objects and their

bounding boxes are used as features (e.g height, width,

length of the diagonal bounding box, etc.). With this, a

feedforward neural network of 3 layers each containing 100

hidden units predicts the estimated distance for each ob-

ject. However, because DisNet effectively learns relation-

ships between geometric features and the camera’s total

view field, the architecture is limited by focal length.

2.3. Graph Convolutional Neural Networks

A Graph Convolutional Neural Network takes in a graph

G ∈ {V,E,A} and outputs a single classification of the

graph, or in a semi-supervised approach, classifies the indi-

vidual nodes in the network. Importantly, GCNs leverage

relations between entities within an input graph to generate

a classification or regression. [9].

V is defined as the set of vertices or nodes of the graph.

E is defined as the set of edges of the graph. A is defined

as the adjacency matrix for the graph which indicates which

vertices are connected to each other.

3. Methodology

3.1. Problem Reformulation

State of the art Monocular Depth Estimation methods as-

sociate every pixel with a computed depth value. This per-

pixel depth map can then be used to estimate the distance of

any object present in the image. We propose a new method-

ology and neural network architecture that can incorporate

the strategy of DisNet - using the bounding box informa-

tion of an object to determine distance - and generalize for

multiple entities in order to understand the perspective of a

scene. We argue that understanding the geometric relations

between multiple objects in a scene at multiple focal lengths

would lead to robust Monocular Distance Estimation with-

out the computational overhead imposed by a one-to-one

pixel depth map.

3.2. Dataset

In order to test our ideas, we propose the construction

of a toy dataset that utilizes a varifocal lens installed on a

CMOS camera. To the best of our knowledge, there ex-

ists no dataset comprised of images acquired at different

focal lengths from one hardware configuration. It should

be noted that some datasets such as [4] simulate varying fo-

cus lengths through post processing transformations that are

based upon many technical assumptions. For our proposed

dataset, images will be collected at various focal lengths

in an urban setting containing a diverse range of objects

such as cars, pedestrians, and bicycles. Objects will then

be classified by state-of-the-art object detection neural net-

work models. Structurally, our dataset will be comprised

of images from varying locations, where each location con-

tains three batches: 1) short focal length, 2) medium focal

length, and 3) long focal length.

3.3. Models

Figure 1. Blue panel represents the GCN model, while the green

panel represents DisNet.

We define the architectures of DisNet and our proposed

GCN as shown in Figure 1. DisNet is a feedforward neu-

ral network which uses a single object’s bounding box fea-

tures (e.g width, height, and length of diagonal line) as in-

put and estimates the distance of that object. We propose

using a Graph Convolutional Neural Network (GCN) in or-

der to generalize for multiple objects within the image. For

this situation, objects are first detected and classified by a

object detection model, and each classification considered

the feature of a node. Then for the edges of the graph, the

edge weight would be defined as the euclidean difference

between the features of object A and object B.

Since there are numerous state-of-the-art Monocular

Depth Estimation solutions which utilize an Encoder-

Decoder as their core architecture, we will create our own

implementation of the Encoder-Decoder model to compare

against our distance-per-object estimation method. It may

be that our proposed model, which only takes in a graph

representing the scene/image may not be adequate. How-

ever, if we also construct an Encoder-Decoder model that

generally represents the state-of-the-art, we can easily ex-

periment with adding graph information to the model and

report any notable outcome. SOTA models estimate depth

in a variety of ways (e.g multi-task learning, input sequence

through time, etc), but the use of multi-object geometric re-

lationships has not been explored to the best of our knowl-

edge.



4. Experimental Protocol

4.1. Dataset

Raw data will be collected at 10 different sites near a

local university, presenting an urban environment which

contains pedestrians, vehicles, etc. At each site, data

will be collected at short, medium and long focal lengths

(10 minutes each, for a total of 5 hours of raw data)

using a prefabricated hardware platform consisting of a

BASLER puA1280-54uc camera, verifocal lens, and Velo-

dyne HDL32-E LiDAR.

4.2. Models

With 10 different locations, we consider training our

models through a 10-fold cross validation, with a MSE loss

metric based on per-object LiDAR data. All models will

be optimized with ADAM and by a constant learning rate

of 1e-3. Pytorch will be used for the construction of these

models.

4.2.1 DisNet

For the comparison of DisNet, a feedforward neural net-

work is utilized comprised of 3 hidden layers, each contain-

ing 100 neurons. Then we consider training a model for

6 hidden layers, and then 9 hidden layers, each containing

100 neurons, to observe the effects of model scaling when

our data set is used for training.

4.2.2 GCN

In the proposed architecture, input images are first passed

though an object detection model (i.e YOLO v3) to extract

objects and their features. A graph is then constructed from

those detections and passed to a GCN for distance esti-

mation. We will follow the GCN model of [5], and con-

struct different depths for the GCN model. We will con-

sider depths of 3, 6, and 9 hidden layers. In addition, we

would like to consider how many graph kernels are neces-

sary. Each depth will consider varying kernel sizes of 3,6,

and 9.

4.2.3 Encoder-Decoder

For the Encoder-Decoder model, input sizes are equal to

the image width and height. We will consider encoder and

decoder depths of 3,6, and 9. Output depth maps are super-

imposed with objects detected by YOLO v3. Object depth

is then calculated.

4.2.4 Encoder-Decoder with Graph Information

We will use the same architecture design as the Encoder-

Decoder model, but we intend to concatenate scene graph

information through the use of a Graph Attention Network

[8] (with varying amount of layers, e.g 1,3,and 6), applied

to the latent layer after the encoder.

4.3. Evaluation

Models will be evaluated based upon the MSE loss of

all the objects within an image. We argue that with our

proposed dataset, we can evaluate if some models overfit

on a certain focal length if the range of MSE loss values

is large. This can be done by creating a boxplot for the

models based upon the 10-fold cross validation. Even if we

see models that have a particular fold that is the best, but

have a large variance of MSE loss, we argue that this model

doesn’t generalize distance estimation for varying camera

specifications. A negative result with the Encoder-Decoder

with added graph information would indicate that per-pixel

depth regression would be enough to learn the geometric re-

lationship between different objects. A negative result with

our GCN method, would indicate bounding box features as

not adequate, and one possible future direction could be uti-

lizing representations of points that provide higher level fea-

tures.
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[8] Petar Veličković, Guillem Cucurull, Arantxa Casanova,

Adriana Romero, Pietro Lio, and Yoshua Bengio. Graph at-

tention networks. arXiv preprint arXiv:1710.10903, 2017.

[9] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long,

Chengqi Zhang, and Philip S Yu. A comprehensive survey

on graph neural networks. arXiv preprint arXiv:1901.00596,

2019.

[10] Dan Xu, Wei Wang, Hao Tang, Hong Liu, Nicu Sebe,

and Elisa Ricci. Structured attention guided convolu-

tional neural fields for monocular depth estimation. CoRR,

abs/1803.11029, 2018.


