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Abstract

Approximating the distance of objects present in an im-
age remains an important problem for computer vision ap-
plications. Current SOTA methods rely on formulating this
problem to convenience depth estimation at every pixel;
however, there are limitations that make such solutions non-
generalizable (i.e varying focal length). To address this is-
sue, we propose reformulating distance approximation to
a per-object detection problem and leveraging graph in-
formation extracted from the image to potentially achieve
better generalizability on data acquired at multiple focal
lengths.

1. Introduction

Development of a generalized, robust, and scalable
method for estimating the distance between a monocular
camera and the objects present in an observed scene remains
a challenging computer vision problem with numerous ap-
plications in robotics. Currently, state of the art (SOTA)
methods for Monocular Depth Estimation (MDE), utilize
supervised neural network Encoder-Decoder architectures
[1]. While such networks are capable of estimating depth at
every pixel in an input image, some limitations need to be
considered. The supervised nature of an Encoder-Decoder
model requires that all input images be restricted to a prede-
fined width and height. Changing input size requires a new
model to be trained. Secondly, even if dimensions of the
input image remain fixed, representation of object distance
depends strongly on the imaging system’s focal length. Fi-
nally, use of an Encoder-Decoder model presents scalability
concerns with increasing image resolution, as depth is com-
puted at every pixel, regardless of a given pixel’s contribu-
tion to depth segmentation.

The limits posed by Encoder-Decoder frameworks ulti-
mately lead to a generalizability problem for MDE; given
the myriad number of imaging hardware configurations
available, it would be both costly and unstandardized to
train a network for each lens/camera combination. To over-
come these limitations, we propose an architecture which

learns to predict geometric relationships between different
objects in a scene, which we argue is analogous to learning
geometric perspective. By understanding how objects vary
in size with respect to each other, this understanding can be
transferred to other camera specifications. Thus, our main
contributions are as follows:

e Reformulation of the distance estimation problem
from a depth map regression to a multi-object
detection-prediction paradigm, which is better suited
to solutions involving Graph Convolution Networks
(GCNs)

e Construction and training of a GCN, which takes in-
formation from a scene as a graph, to predict object
distances

e A dataset that includes varying focal lengths, to com-
pare our GCN method with per pixel regression

2. Related Work
2.1. Monocular Depth Estimation

Early solutions to the problem of Monocular Depth Es-
timation utilized Multi-Scale deep neural networks [2].
These models were comprised of two components, a Global
Coarse-Scale Network, which learns global image features,
and the Local Fine-Scale Network, which learns small fea-
tures. Such models highlight both the remarkable quantity
and wide variety of feature types present in a given image
when various kernel or ROI scales are considered.

Recent work on Monocular Depth Estimation have still
generally utilized an Encoder-Decoder architecture. Some
have extended the model by using a U-Net, where differ-
ent sized convolution layers from the encoder are connected
with the convolution layers of the decoder [4, 7]. Other
works utilize attention from the output latent representa-
tions of an encoder to create a conditional random field
model to predict the depth map [10]. Multi-task and usage
of multi-frames also have been used to increase accuracy
for these depth estimation models [2].



2.2. DisNet

While current state of the art methods regress the depth
estimation on the pixels of the input image, there are ap-
proaches which directly estimate object distances, such as
DisNet [3]. This work presents a system which utilizes
YOLO v3 [6] to produce bounding boxes of multiple ob-
jects within the image. Once objects have been isolated by
YOLO, information pertaining of these objects and their
bounding boxes are used as features (e.g height, width,
length of the diagonal bounding box, etc.). With this, a
feedforward neural network of 3 layers each containing 100
hidden units predicts the estimated distance for each ob-
ject. However, because DisNet effectively learns relation-
ships between geometric features and the camera’s total
view field, the architecture is limited by focal length.

2.3. Graph Convolutional Neural Networks

A Graph Convolutional Neural Network takes in a graph
G € {V,E, A} and outputs a single classification of the
graph, or in a semi-supervised approach, classifies the indi-
vidual nodes in the network. Importantly, GCNs leverage
relations between entities within an input graph to generate
a classification or regression. [9].

V' is defined as the set of vertices or nodes of the graph.
E is defined as the set of edges of the graph. A is defined
as the adjacency matrix for the graph which indicates which
vertices are connected to each other.

3. Methodology
3.1. Problem Reformulation

State of the art Monocular Depth Estimation methods as-
sociate every pixel with a computed depth value. This per-
pixel depth map can then be used to estimate the distance of
any object present in the image. We propose a new method-
ology and neural network architecture that can incorporate
the strategy of DisNet - using the bounding box informa-
tion of an object to determine distance - and generalize for
multiple entities in order to understand the perspective of a
scene. We argue that understanding the geometric relations
between multiple objects in a scene at multiple focal lengths
would lead to robust Monocular Distance Estimation with-
out the computational overhead imposed by a one-to-one
pixel depth map.

3.2. Dataset

In order to test our ideas, we propose the construction
of a toy dataset that utilizes a varifocal lens installed on a
CMOS camera. To the best of our knowledge, there ex-
ists no dataset comprised of images acquired at different
focal lengths from one hardware configuration. It should
be noted that some datasets such as [4] simulate varying fo-
cus lengths through post processing transformations that are

based upon many technical assumptions. For our proposed
dataset, images will be collected at various focal lengths
in an urban setting containing a diverse range of objects
such as cars, pedestrians, and bicycles. Objects will then
be classified by state-of-the-art object detection neural net-
work models. Structurally, our dataset will be comprised
of images from varying locations, where each location con-
tains three batches: 1) short focal length, 2) medium focal
length, and 3) long focal length.

3.3. Models
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Figure 1. Blue panel represents the GCN model, while the green
panel represents DisNet.

We define the architectures of DisNet and our proposed
GCN as shown in Figure 1. DisNet is a feedforward neu-
ral network which uses a single object’s bounding box fea-
tures (e.g width, height, and length of diagonal line) as in-
put and estimates the distance of that object. We propose
using a Graph Convolutional Neural Network (GCN) in or-
der to generalize for multiple objects within the image. For
this situation, objects are first detected and classified by a
object detection model, and each classification considered
the feature of a node. Then for the edges of the graph, the
edge weight would be defined as the euclidean difference
between the features of object A and object B.

Since there are numerous state-of-the-art Monocular
Depth Estimation solutions which utilize an Encoder-
Decoder as their core architecture, we will create our own
implementation of the Encoder-Decoder model to compare
against our distance-per-object estimation method. It may
be that our proposed model, which only takes in a graph
representing the scene/image may not be adequate. How-
ever, if we also construct an Encoder-Decoder model that
generally represents the state-of-the-art, we can easily ex-
periment with adding graph information to the model and
report any notable outcome. SOTA models estimate depth
in a variety of ways (e.g multi-task learning, input sequence
through time, etc), but the use of multi-object geometric re-
lationships has not been explored to the best of our knowl-
edge.



4. Experimental Protocol
4.1. Dataset

Raw data will be collected at 10 different sites near a
local university, presenting an urban environment which
contains pedestrians, vehicles, etc. At each site, data
will be collected at short, medium and long focal lengths
(10 minutes each, for a total of 5 hours of raw data)
using a prefabricated hardware platform consisting of a
BASLER puA1280-54uc camera, verifocal lens, and Velo-
dyne HDL32-E LiDAR.

4.2. Models

With 10 different locations, we consider training our
models through a 10-fold cross validation, with a MSE loss
metric based on per-object LiDAR data. All models will
be optimized with ADAM and by a constant learning rate
of 1e-3. Pytorch will be used for the construction of these
models.

4.2.1 DisNet

For the comparison of DisNet, a feedforward neural net-
work is utilized comprised of 3 hidden layers, each contain-
ing 100 neurons. Then we consider training a model for
6 hidden layers, and then 9 hidden layers, each containing
100 neurons, to observe the effects of model scaling when
our data set is used for training.

4.2.2 GCN

In the proposed architecture, input images are first passed
though an object detection model (i.e YOLO v3) to extract
objects and their features. A graph is then constructed from
those detections and passed to a GCN for distance esti-
mation. We will follow the GCN model of [5], and con-
struct different depths for the GCN model. We will con-
sider depths of 3, 6, and 9 hidden layers. In addition, we
would like to consider how many graph kernels are neces-
sary. Each depth will consider varying kernel sizes of 3,6,
and 9.

4.2.3 Encoder-Decoder

For the Encoder-Decoder model, input sizes are equal to
the image width and height. We will consider encoder and
decoder depths of 3,6, and 9. Output depth maps are super-
imposed with objects detected by YOLO v3. Object depth
is then calculated.

4.2.4 Encoder-Decoder with Graph Information

We will use the same architecture design as the Encoder-
Decoder model, but we intend to concatenate scene graph

information through the use of a Graph Attention Network
[8] (with varying amount of layers, e.g 1,3,and 6), applied
to the latent layer after the encoder.

4.3. Evaluation

Models will be evaluated based upon the MSE loss of
all the objects within an image. We argue that with our
proposed dataset, we can evaluate if some models overfit
on a certain focal length if the range of MSE loss values
is large. This can be done by creating a boxplot for the
models based upon the 10-fold cross validation. Even if we
see models that have a particular fold that is the best, but
have a large variance of MSE loss, we argue that this model
doesn’t generalize distance estimation for varying camera
specifications. A negative result with the Encoder-Decoder
with added graph information would indicate that per-pixel
depth regression would be enough to learn the geometric re-
lationship between different objects. A negative result with
our GCN method, would indicate bounding box features as
not adequate, and one possible future direction could be uti-
lizing representations of points that provide higher level fea-
tures.

References

[1] Amlaan Bhoi. Monocular depth estimation: A survey. CoRR,
abs/1901.09402, 2019.

[2] Vincent Casser, Soeren Pirk, Reza Mahjourian, and Anelia
Angelova. Unsupervised learning of depth and ego-motion:
A structured approach. In Thirty-Third AAAI Conference on
Artificial Intelligence (AAAI-19), 2019.

[3] Muhammad Abdul Haseeb, Jianyu Guan, Danijela Risti¢-
Durrant, and Axel Griser. Disnet: A novel method for dis-
tance estimation from monocular camera.

[4] Lei He, Guanghui Wang, and Zhanyi Hu. Learning depth
from single images with deep neural network embedding
focal length. [EEE Transactions on Image Processing,
27(9):4676-4689, 2018.

[5] Thomas N Kipf and Max Welling. Variational graph auto-
encoders. arXiv preprint arXiv:1611.07308, 2016.

[6] Joseph Redmon and Ali Farhadi. Yolov3: An incremental
improvement. CoRR, abs/1804.02767, 2018.

[7] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net:
Convolutional networks for biomedical image segmentation.
CoRR, abs/1505.04597, 2015.

[8] Petar Velickovi¢, Guillem Cucurull, Arantxa Casanova,
Adriana Romero, Pietro Lio, and Yoshua Bengio. Graph at-
tention networks. arXiv preprint arXiv:1710.10903, 2017.

[9]1 Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long,
Chengqi Zhang, and Philip S Yu. A comprehensive survey
on graph neural networks. arXiv preprint arXiv:1901.00596,
2019.

[10] Dan Xu, Wei Wang, Hao Tang, Hong Liu, Nicu Sebe,
and Elisa Ricci.  Structured attention guided convolu-
tional neural fields for monocular depth estimation. CoRR,
abs/1803.11029, 2018.



