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Abstract

The current most accurate models of image object cat-

egorization are deep neural networks trained on large la-

beled data sets. Minimizing a classification loss between

the predictions of the network and the true labels has proven

an effective way to learn discriminative functions of the ob-

ject classes. However, recent studies have suggested that

such models learn highly discriminative features that are

not aligned with visual perception and might be at the root

of adversarial vulnerability. Here, we propose to replace

the classification loss with the joint optimization of invari-

ance to identity-preserving transformations of images (data

augmentation invariance), and the invariance to objects of

the same category (class-wise invariance). We hypothesize

that optimizing these invariance objectives might yield fea-

tures more aligned with visual perception, more robust to

adversarial perturbations, while still suitable for accurate

object categorization.

1. Introduction

Image object categorization performance dramatically

increased with the successful training of deep artificial

neural networks. Instead of using handcrafted features,

DNNs automatically learn highly discriminative features

from large labeled data sets. Such impressive performance,

reminiscent of human visual object categorization, and the

fact that some similarities have been found [7] between the

features learned by DNNs and the activations measured in

the high-level visual cortex can make us think that neural

networks solve visual object recognition in a similar way to

how the brain does. However, important differences remain.

A remarkable example of the mismatch between DNNs

and primate visual perception is the well-known vulnera-

bility of the former to adversarial perturbations [14], which

make DNNs classify instances in a perceptually implausible

way. Recent work [6] has suggested that adversarial vulner-

ability might be caused by highly discriminative features

present in the data yet incomprehensible to humans. No-

tably, this is only one example of the differences between

current artificial and biological visual object perception.

While for many applications a high discriminative per-

formance is enough, disciplines such as computational neu-

roscience demand models that reasonably match some as-

pects of human perception. Besides, we believe that explor-

ing the connections between computer vision and biological

vision [11] and pushing the development of artificial neural

networks towards more perceptually aligned solutions, can

help us better understand the generalization properties of

DNNs and, potentially, obtain better, more robust models.

One step towards the integration of deep learning and

neuroscience is to incorporate properties of visual percep-

tion and the visual cortex into the computer vision algo-

rithms. Rather than the architectural aspects, here we focus

on the learning objective. While the most accurate models

for image object recognition are trained by minimizing a

loss between the predicted and the true class of the image

samples, it has been argued that the visual brain develops

with little supervised information [1]. Although the specific

mechanisms that yield robust object recognition in the brain

are yet to be well understood, a well established theory is

that invariance may play an important role.

It has been proposed [15] that a major property of biolog-

ical vision is the increasing invariance of neural populations



along the processing hierarchy towards identity-preserving

transformations of the objects. Moreover, it is widely ac-

cepted that higher areas of the visual cortex form similar

patterns of activation within relevant object categories [3].

In this paper, we propose to incorporate these invariances

into the optimization of DNNs trained on object categoriza-

tion data sets. In particular, we combine data augmenta-

tion invariance [5] and class-wise invariance [2] as a single

semi-supervised objective. We hypothesize that the features

obtained through invariance learning may be more aligned

with visual perception, less vulnerable to adversarial pertur-

bations, while still suitable for object categorization.

2. Related work

The semi-supervised learning (SSL) literature (see [12]

for a review of recent methods) offers a wide range of ap-

proaches that aim at exploiting desirable invariance prop-

erties in the data and the learning algorithm. Ladder net-

works [13] jointly optimize the classification objective and

a layer-wise denoiser. Data augmentation has been used be-

fore as a source of stochastic variability during training, to-

gether with dropout, random max-pooling and other sources

of randomness [9]. Typically in SSL, the unsupervised ob-

jective is used to complement the classification objective to

more efficiently learn from fewer labeled examples.

In contrast, our focus is on learning representations with

desirable properties inspired by biological vision and per-

ception, by fully replacing the classification objective with

data augmentation and class-wise invariance. Thus, we do

not use perceptually irrelevant sources of variability, such as

dropout. Our method may also be able to efficiently learn

from fewer data and, for that purpose, we explore the trade

off between the unsupervised (data augmentation) and the

supervised (class-wise) invariance objectives.

3. Methods

This section introduces the two learning objectives that

we propose as an alternative to the classification loss: data

augmentation and class-wise invariance.

3.1. Data augmentation invariance

Data augmentation invariance has been recently pro-

posed [5] as a simple way of learning features robust to

identity-preserving transformations. The authors showed

that the deep features learned by a standard convolutional

neural network are not more robust than in the pixel space

to the transformations used in data augmentation schemes,

such as rotation, scaling or brightness adjustment. How-

ever, adding a term to the loss function that promotes the

similarity between the representations of transformations of

the same object enables learning robust features while keep-

ing the same categorization performance or higher.

We believe that learning such invariant representations

is a desirable property and is motivated by the invariance

observed along the visual ventral pathway of the primate

brain [15]. Interestingly, data augmentation invariance is

a fully unsupervised objective, since it does not require la-

beled data. Yet, data augmentation invariance alone may

bias the model towards learning trivial, useless features. We

believe that some degree of supervision might be necessary

and this can be provided by class-wise invariance.

3.2. Class-wise invariance

Class-wise invariant representation learning [2] was in-

troduced as a regularization term that encourages similarity

in the representations of objects from the same class. The

authors showed that class-wise invariance helps improve

generalization, especially when few examples are available.

Class-wise invariance is interesting because, in spite of

being a supervised algorithm, it sets the learning objective

on the intermediate features, rather than solely on the clas-

sification with the top-most features. However, used on its

own it would possibly be subject to some of the same un-

desirable properties of purely supervised methods. We hy-

pothesize that combined, data augmentation and class-wise

invariance alone may learn robust, discriminative features.

3.3. Learning objective

Let L
(l)
DA be the data augmentation invariance loss and

L
(l)
C the class-wise invariance loss at layer l of a neural net-

work model with L layers. We propose to optimize, through

stochastic gradient descent, the following overall objective:

L =
L∑

l=1

α(l)L
(l)
DA +

L∑

l=1

β(l)L
(l)
C (1)

where α(l) and β(l) are scalars that control the degree of

similarity between the features of augmented samples and

of objects of the same category, respectively, at each layer l

of the architecture. Given a data set of size N , we construct

each mini-batch B by randomly sampling K images and

generating M stochastic augmentations for each of them.

Thus, each batch consists of |B| = K ×M data points.

We define the data augmentation invariance loss identi-

cally as in [5]:

L
(l)
DA =

∑
k

1
|Sk|2

∑
xi,xj∈Sk

d(l)(xi, xj)

1
|B|2

∑
xi,xj∈B d(l)(xi, xj)

(2)

where Sk are the subsets from B formed by augmented

versions of the same seed sample xk. For the class-wise

invariance loss, instead of using the exact definition from

[2], we rather use a parallel definition to Equation 2, for

convenience, which keeps the same spirit—to promote the

similarity of representations of images from the same class:



L
(l)
C =

∑
r

1
|Tr|2

∑
xi,xj∈Tr

d(l)(xi, xj)

1
|B|2

∑
xi,xj∈B d(l)(xi, xj)

(3)

where Tr are the subsets from B formed by images of

the same object class r. Regarding the similarity metric,

d(l)(xi, xj), the authors of [5] tested the mean squared dif-

ference and in [2] three metrics were tested, but the squared

Euclidean distance was identified as the most successful.

Therefore, we consider the mean squared difference a rea-

sonable, meaningful and computationally efficient choice.

Nonetheless, the proposed method allows for other metrics,

which would be interesting to explore in the future.

4. Experimental protocol

This section first describes the essential experiments that

we will perform to assess our proposal and then some other

desirable tests that would shed more light on our algorithm.

4.1. Essential experiments

To the extent possible and applicable, we will follow the

guidelines in [12] to assess SSL algorithms. Initially, we

will test our invariance learning on two architectures, Wide

ResNet and All-CNN, and train on CIFAR-10/100. First,

we will need to verify that the objective defined in Equa-

tion 1 is optimized and thus the model converges. Ideally,

the model should learn representations such that the classes

form separate clusters and, in turn, transformations of the

same data point are close to each other (see Figure 1).

Figure 1. Simulation of a desirable projection of the features in

two dimensions. Augmented versions of the same data point are

plotted with exactly the same color.

Such a visualization of the learned features could be ob-

tained through techniques such as t-SNE [10]. Yet, we plan

to perform additional tests. To assess the robustness of

the features, we will compute the similarity of augmented

test images with alternative metrics, for instance the re-

cently proposed centered kernel alignment (CCK) [8]. To

test whether the learned features are indeed useful for cat-

egorization, we will train both a linear model and a neu-

ral network with one hidden layer with the features of the

last layer (L) of our invariance learning model. A success-

ful model should not perform significantly worse than the

baseline model trained with the cross entropy loss.

Although it is improbable that our proposal completely

solves the adversarial vulnerability, it may help increase the

robustness. Therefore, we will assess the adversarial ro-

bustness of our invariance learning model by creating both

white- and black-box attacks, using the fast gradient sign

method (FGSM) and projected gradient descent (PGD).

Regarding the hyperparameters, we will explore which

α(l) and β(l) guarantee the joint optimization of L
(l)
DA and

L
(l)
C and good classification performance. A reasonable ap-

proach would be to set α =
∑

l α
(l) and β =

∑
l β

(l) such

that α = 1 − β and progressively increase the value of β

during training, such that the class-wise invariance becomes

more important only provided the features are sufficiently

robust. Similarly to [5], both α(l) and β(l) could be dis-

tributed exponentially, such that higher layers become more

invariant, as it is thought to occur along the visual cortex.

We will use the data augmentation schemes used in [5, 4]

and, in the spirit of [4], we will not include any explicit reg-

ularization (e.g. weight decay and dropout) in our models.

4.2. Other desirable experiments

In addition to the essential experimental setup described

in 4.1, other tests would shed more light on the benefits and

limitations of the proposal. In particular, the priority should

be to train the models on ImageNet.

Interesting, yet out of the scope of this paper, would be

to compare the representations learned with the proposed

model to the activations measured through fMRI in the vi-

sual cortex [7], since one motivation for this proposal is to

learn more human-like features.
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