
An empirical study of the relation between network architecture and complexity

Emir Konuk Kevin Smith

KTH and Science for Life Laboratory, Stockholm

{ekonuk, ksmith}@kth.se

Abstract

In this preregistration submission, we propose an empir-

ical study of how networks handle changes in complexity of

the data. We investigate the effect of network capacity on

generalization performance in the face of increasing data

complexity. For this, we measure the generalization error

for an image classification task where the number of classes

steadily increases. We compare a number of modern archi-

tectures at different scales in this setting. The methodology,

setup, and hypotheses described in this proposal were eval-

uated by peer review before experiments were conducted.

1. Introduction

The complexity of a learning task is one of the most im-

portant determinants of how well a model performs, yet rel-

atively little is understood about the effects of data com-

plexity in a practical setting. Although we lack a rigor-

ous definition of complexity, many agree that certain fac-

tors contribute to the complexity in a classification problem

including: the dataset size in relation to the dimensionality

of the data, the intrinsic ambiguity of the classes, and how

compactly the decision boundary can be expressed [1].

The capacity of a network describes the complexity of

the functions it can potentially model. Naturally, data with

high complexity require a model with high effective capac-

ity. In recent findings counter to the conventional wisdom,

Zhang et al. [2] showed that high effective capacity models

can both memorize and generalize well whereas Neyshabur

et al. [3] showed that networks with higher capacity also

generalize better.1

In this paper, we perform an empirical study to charac-

terize how generalization error relates to network capacity

when the complexity of the data changes. Our aim is to

improve our understanding of the capacity of various deep

neural architectures and potentially help guide the design

process. Instead of utilizing theoretical bounds to calcu-

late an architecture’s capacity [4] or measures based on the

1We are concerned with a low generalization error, not a small gener-

alization gap (the difference between test and training error).

norms of network parameters for explaining a trained net-

work’s generalization performance [3], we take an empiri-

cal approach and treat the generalization error on a common

image classification problem as an indicator for effective

network capacity. Starting from a very simple, low com-

plexity problem, we repeatedly calculate the generalization

error of architectures with different effective capacities on

increasingly complex data (Fig. 1). While the exact com-

plexity of the data cannot be controlled, we ensure mono-

tonic increases in complexity by repeatedly introducing new

classes to the classification task.

Our empirical analysis will address the following ques-

tions about convolutional neural networks (CNNs) :

• How can we characterize the changes in generalization

error as complexity is increased?

• How does capacity relate to generalization error as

complexity increases? Does scaling the network by a

particular dimension (e.g. depth) offer an advantage?

• How do architectural innovations such as group convo-

lutions affect the capacity/generalization/complexity

relationship?

In a realistic training setting with measures to avoid over-

fitting (i.e. regularization, batch norm, early stopping) we

hypothesize that the generalization error will follow a simi-

lar trajectory to the black curve shown in Fig. 2 as the com-

plexity increases. When the number of classes is small and

the data complexity is low, the capacity of the network al-

lows for generalization to approach the irreducible error.

As the data complexity increases, we expect a faster in-

crease in the error as the relative capacity of the network

becomes insufficient to generalize well. In the final regime

of very complex datasets, as in extreme classification with

over 10,000 classes, generalization error will saturate.

2. Related work

Hestness et al. [5] empirically showed that the gener-

alization error of deep networks scale with a power-law

with respect to the amount of data. These results are



S2 (2 classes) S3 (3 classes)

lowest complexity

S4 (4 classes) SN (N classes)

highest complexity

Figure 1: One way to increase complexity is to add classes to the classifi-

cation task. A training dataset with few classes has a simpler decision func-

tion than a dataset with many classes. We form a low-complexity dataset

by sampling from a dataset containing K classes to create a subset with

only 2 classes, S2. Another class is sampled and added to the subset S3,

and this process is repeated for N ≤ K classes. We attempt to avoid sam-

pling classes with strong ambiguity (e.g. the purple and orange classes) by

inspecting the confusion matrix of a fully trained deep model. Classes that

are easily confused with those already in Si are not sampled.

useful in estimating how much data and computation is

required for a task. However, their study does not address

how generalization is affected the by complexity of the data.

Complexity measures: Direct measures of the complexity

of a problem such as the Kolmogorov measure are infeasible

to compute in most cases, and though approximate metrics

have been suggested, they are not useful for deep networks

[6]. Various theoretical studies prove the bounds on the ca-

pacity of neural networks ranging from VC complexity to

bounds for fully connected ReLU networks [4].

Even though these methods provide insights into the re-

lationship between complexity and architecture, they do not

help much in choosing an architecture or how to scale it

to have lower generalization error. In this direction, Gus

et al. [7] used persistent homology to characterize differ-

ent architectures’ generalization capabilities. They created

increasingly more complex datasets, as measured by persis-

tent homology, and compared the performances of differ-

ent architectures on these datasets. Unfortunately, this ap-

proach also has limited practical use as persistent homology

is not feasible to compute for high dimensional data.

In this paper, we forego attempts to directly measure

dataset complexity. Instead, we rank datasets by complex-

ity using a relatively simple heuristic.

Network scaling: Tan et al. [8] report that when scaling a

Figure 2: Generalization error vs. data complexity. Regions I, II and III

are under-complex, complex, and over-complex relative to the model’s ca-

pacity. Generalization error approaches irreducible error when the data is

under-complex, starts to break down in the complex region, and saturates

when data is over-complex. The black curve represents expected perfor-

mance of the base model, and the dashed curves represent scaled models

with higher capacity (approximately constant scaling factor). We expect

the improvement due to scaling to have diminishing returns, and expect to

find less benefit from scaling in regions I and III.

network, accuracy suffers from diminishing returns. They

propose a compound scaling scheme to mitigate the effect to

some degree. Note that their analysis focuses on a dataset

with static complexity, corresponding to a vertical line in

region II of Fig 2. We investigate how the effect of dimin-

ishing returns changes when data complexity changes, cov-

ering the x-axis in Fig 2.

3. Methodology and experimental protocol

In order to assess the effect of capacity, we measure the

generalization error of a modest sized network starting from

a very simple, low complexity problem. As we gradually

increase the problem complexity, we expect the generaliza-

tion error to increase as well, reflecting the reduced capacity

of the network to generalize. By repeating the experiment

with larger, scaled networks and different architectures, we

empirically investigate the effect of architecture on the gen-

eralization capacity. The main experiment is to train a net-

work on a subset of ImageNet, where the number of classes

gives an indication of complexity. The networks tested will

be scaled versions of small base networks. The experiment

will be repeated multiple times:

• on increasingly more complex data subsets,

• with different scaling factors along different dimen-

sions (width, depth, cardinality, growth parameter),

• with a different base network architecture (vanilla

CNN, ResNet, ResNeXt, DenseNet).

Base networks: We test five different base models. The

first two are based on ResNet [9], which defines two types

of convolutional blocks: basic and bottleneck blocks. For

our experiments, these two block types are treated as



different base network architectures. We also use ResNeXt

[10] as a base architecture block. All residual base models

have 10 convolutional layers. DenseNet [11] is included

as another base model, with 85 layers. Finally, a vanilla

CNN without any skip connections is included. Base

model comparisons are only made between these five, for

networks with similar number of total parameters.

Generating increasingly complex data sets: To examine

the network’s response to complexity, we generate datasets

with different numbers of classes, as depicted in Fig. 1. We

sample subsets of ImageNet to form these working datasets.

Starting from a low-complexity subset Si=2 with two ran-

domly sampled classes, we repeatedly sample a class k

from ImageNet’s K classes without replacement, and add

the corresponding set of examples Ek to the working set

Si+1 = Si ∪ Ek. In this manner, we create subsets of Im-

ageNet {S2, . . . , Si, . . . , SN} with exponential increases in

number of classes, and by proxy, complexity.

The addition of each class introduces some unknown

amount of complexity to the data. This presents two prob-

lems. First, if the subsets are not consistent between exper-

iments, comparisons are difficult. To address this we keep

the series of subsets constant for each experiment (classes

added in the same order). The second problem is that

adding randomly sampled classes introduces an inconsis-

tent amount of complexity at each step based on semantic

density [12]. While we cannot strictly control the amount of

complexity added at each step, we would like avoid adding

overly complex steps (e.g. ambiguous classes). To accom-

plish this, we use importance sampling to add easier classes

first, and stop at N classes once a certain ambiguity is

reached, determined by the aggregate confusion matrices of

ResNet152, DenseNet201 and ResNeXt101 models trained

on the full ImageNet. Confusing classes are sampled with

less probability when growing the working set. We repeat

the training set generation procedure multiple times and re-

peat all experiments to minimize effects of class ordering.

To control for confounding effects from increased data

size in the previous setup, we conduct a second set of

experiments using an alternative method for increasing

classes, in which the total number of training samples is

fixed (∼50,000 samples). Starting from ∼50 classes, we

introduce new classes by replacing some of the existing

samples while keeping the training set balanced.

Network scaling: We consider two main kinds of net-

work scaling: width and depth. To increase depth, we

add more convolutional layers to the network before the

downsampling layers. We keep the number of channels and

feature size constant, i.e., we keep the number of blocks in

a network constant when adding new layers. The scaling

schedule will be determined through an initial parameter

search described below. The standard method to increase a

network’s width is to simply create more feature channels.

The width scaling schedule is determined through an initial

parameter search. For ResNeXt, the scaling method is to

increase cardinality, i.e. the number of grouped convolu-

tions in each ResNeXt block. For DenseNet, the growth

parameter and number of layers are scaled in tandem.

Training: For training, we use an Adam optimizer along

with cyclical learning rates [13] to simplify hyperparameter

selection. Early stopping and various data augmentations,

e.g. random crop, flip, rotation, color, brightness, noise are

employed for regularization.

Initial parameter search: We do a hyperparameter search

using the base model to choose the number of classes to

add per subset at each growth step. For determining scal-

ing schedules, we first find a suitably large subset so that

the error of a modest sized network is in region II of Fig.

2. Then we do a hyperparameter search to determine the

scaling schedule that ends up near region III.

Acknowlegements: This work was supported by WASP-AI and the

Swedish Research Council (VR) 2017-04609. We also thank C. Matsoukas

for helpful discussions.

References

[1] T. Ho and M. Basu. Complexity measures of supervised clas-

sification problems. PAMI, (3):289–300, 2002. 1

[2] C. Zhang et al. Understanding deep learning requires re-

thinking generalization. CoRR, abs/1611.03530, 2016. 1

[3] B. Neyshabur et al. Exploring generalization in deep learn-

ing. CoRR, abs/1706.08947, 2017. 1

[4] N. Harvey et al. Nearly-tight vc-dimension bounds for piece-

wise linear neural networks. In CoLT, 2017. 1, 2

[5] J. Hestness et al. Deep learning scaling is predictable, em-

pirically. arXiv:1712.00409, 2017. 1

[6] A. Lorena et al. How complex is your classification problem?

arXiv:1808.03591, 2018. 2

[7] W. Guss and R. Salakhutdinov. On characterizing the

capacity of neural networks using algebraic topology.

arXiv:1802.04443, 2018. 2

[8] M. Tan and Q. Le. Efficientnet: Rethinking model scaling

for cnns. arXiv:1905.11946, 2019. 2

[9] K He et al. Deep residual learning for image recognition.

computer vision and pattern recognition. In CVPR, 2016. 2

[10] S. Xie et al. Aggregated residual transformations for deep

neural networks. CVPR, 2017. 3

[11] G. Huang, Z. Liu, and K. Weinberger. Densely connected

convolutional networks. CVPR, 2017. 3

[12] J. Deng et al. What does classifying more than 10,000 image

categories tell us? In ECCV, 2010. 3

[13] L. Smith. Cyclical learning rates for training neural net-

works. arxiv:1506.01186, 2015. 3


