
Extending Convolutional Pose Machines for Facial Landmark

Localization in 3D Point Clouds

Eimear O’ Sullivan

Imperial College London

e.o-sullivan16@imperial@ac.uk

Stefanos Zafeiriou

Imperial College London

s.zafeiriou@imperial.ac.uk

Abstract

In this work we address the problem of landmark local-

ization in 3D point clouds by extending the convolutional

pose machine (CPM) architecture to facilitate landmark lo-

calization in 3D point clouds. Making use of PointNet++,

we are able to construct an architecture that is invariant to

the ordering of an input point cloud. The sequential CPM

architecture facilitates allows initial heatmaps to be iter-

atively refined in a series of point convolutional stages to

yield robust landmark predictions. We propose to evalu-

ate our approach for 3D facial landmark localization on

benchmark face databases, BU-3DFE, BP4D-Spontaneous

and BP4D+. The robustness of the approach to the size of

the input point cloud will be assessed, and the contribution

of the CPM stages will be evaluated in an ablation study.

1. Introduction

With the recent advancements in 3D capture technolo-

gies, the availability of 3D data in the form of meshes and

point clouds has become ever more prevalent. With this, 3D

landmark localization has become an increasingly studied

topic, and has been applied in a diverse range of fields in-

cluding face verification, facial expression recognition, fa-

cial alignment and morphometric analysis.

Many 2D landmark localization approaches have ben-

efited from the use of heatmaps to accurately encode the

likelihood of a landmark occurring at a given location

[6, 11, 18]. The use of heatmaps has also been success-

fully applied to the prediction of 3D landmarks from 2D

images, both for the face [2, 19] and body [8, 10]. Many

of these make use of residual or stacked hourglass networks

to refine the predicted heatmaps and improve landmark lo-

calization accuracy. One such architecture is the convolu-

tional pose machine (CPM), a sequential heatmap predic-

tion framework that enables increasingly refined landmark

predictions and has been used to achieve state-of-the-art re-

sults in face and body landmark localization [6, 18].
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Figure 1. Overview: a) Initial point cloud, b) Predict heatmaps, c)

Landmark localization. Colour shown for visualization only.

Given the success of the approach in these domains, we

hypothesize that the extension of heatmaps, and CPMs in

particular, could lead to substantial gains for the prediction

of 3D landmarks from 3D point clouds. As methods for

processing unordered point clouds have improved substan-

tially in recent years [5, 13, 20, 22], this concept has become

increasingly feasible. We aim to make the following contri-

butions: a) extend the CPM architecture for landmark local-

ization in 3D point clouds, and b) quantitatively evaluate the

proposed approach via an ablation study and a comparison

to current state-of-the-art in 3D landmark localization.

2. Related Work

Many 3D approaches to landmark localization have ex-

ploited the strength of 2D techniques by rendering images

of a textured mesh from multiple viewpoints and project-

ing detected keypoints onto the 3D space of the mesh [1],

however these approaches can be sensitive to illumination,

pose and expression. Others have combined texture-based

information with spatial information by fitting an active ap-

pearance model (AAM) to intensity and depth maps of a

surface [7]. In [4] ensemble landmarking is used to coalesce

extracted features from texture, depth and height maps.

Approaches that consider only the geometric structure

have also been proposed. Wang et.al. [17], convert 3D data

to attribute maps such as intrinsic curvature, normals and

depth and use these to train a fused Convolutional Neural

Network (CNN). Sun et.al. made use of vertex-flow to cre-



ate an AAM for landmark tracking [16]. In [15], an archi-

tecture for 3D facial annotation based mesh shape is pro-

posed. Curvature analysis is used to detect fiducial points,

which are used to initialize the remaining landmarks via an

Active Normal Map (ANM), prior to a final iterative refine-

ment stage. This approach relies on handcrafted features

however, namely the concavity and the convexity of the eye

corners and nose tip respectively, it is not readily transfer-

able to other domain. A model-based approach is also used

in [3], where curvature about the landmarks is used to create

a shape index-based statistical shape model (SI-SSM).

In the context of point cloud processing, a number

of deep learning approaches that directly consume point

clouds have been proposed. The PointNet++ architecture

has demonstrated great success for classification and seg-

mentation of point clouds [14]. They propose point convo-

lutions, which are invariant to the ordering of input points,

and makes use of a sampling and grouping strategy for pool-

ing. PointNet [13] also been successfully applied to find

correspondences between sets of point clouds [5]. Other ap-

proaches for 3D feature detection in point clouds [20] and

voxels have also been proposed [22] for the purpose of 3D

scene alignment.

3. Methodology

A point cloud, P = [xT
1
, xT

2
, ..., xT

n ], is defined as a set

of n 3D points, xi = [xix, xiy, xiz]
T . The set of m, land-

marks, L, is similarly defined.

The heatmaps, h, are constructed by applying a Gaussian

peak at the ground truth landmark location. A 1D heat vec-

tor, h = [h1, h2, ..., hn]
T , is constructed for each of the m

landmarks, where hi ∈ R is the value associated with ver-

tex xi in the mesh based on its proximity to the landmark.

The set of all heatmaps is denoted as H .

3.1. Landmark Localization

The proposed architecture follows that of previous work

on CPMs [6, 18], which iteratively refine landmark predic-

tions in a series of successive convolutional stages. This

architecture is outlined in Figure 2. The feature extraction

block is implemented using PointNet++ [14]. The initial

set abstraction layers of the architecture perform grouping

and pooling, while feature propagation is facilitated by skip

link concatenations. For full details, refer to [14]. The out-

put layer of this block is modified to gives H0, the initial

heatmap estimates.

Three subsequent stages are used for refinement. Stage

1 takes H0 as input and outputs heatmap H1. Stage 2, s2,

and stage 3, s3, take the output of the previous stage con-

catenated with the output of the feature extraction block as

input, as shown in Eq. 1. To calculate the final landmark

predictions, the maximum three points in each hi are cho-

sen. The ith landmark is then calculated as the barycentre

of the three corresponding vertices.

s2(H0, H1) = H2

s3(H0, H2) = H3

(1)

The loss function minimized during training is the sum

of the mean squared error for the output heatmaps at each

of the three prediction stages, z

Loss =

m∑

i=1

∑

z∈1,2,3

‖hi(z)− h∗

i (z)‖
2 (2)

where h is the ideal heat map, and h∗ is the correspond-

ing prediction. The model is constructed with Pytorch [12],

uses a batch size of 8, and Adam optimization [9] with an

initial learning rate of 0.001. All meshes are normalized in

a pre-processing step. During training, the point clouds, and

their corresponding landmarks, are randomly rotated about

the x, y and z axes as a means of data augmentation.

4. Experimental Protocol

We propose to evaluate our approach on the BU-3DFE

[21], the BP4D-Spontaneous (BP4D-S) [23] and BP4d+

[24] databases. BU-3DFE contains the scans of 100 individ-

uals, while BP4D-S consists of 41 subjects. Both have pre-

viously been used to provide a benchmark for 3D landmark

localization. BP4D+ contains the scans of 140 individuals.

All databases include both male and female subjects from a

wide range of ethnicities, displaying a variety of emotions,

and are annotated with 83 facial landmarks.

Precision and absolute error will be used to evaluate the

proposed approach. Precision rate is the proportion of pre-

dicted landmarks within a specified range from the ground

truth landmarks, while absolute error refers to the Euclidean

distance between predicted landmark and the ground truth.

4.1. Ablation Study

The proposed architecture consists of three fully con-

volutional stages in which the landmark heatmaps are pre-

dicted and further refined. In this section we aim to quan-

tify the contribution of each of these stages via an ablation

study by evaluating the accuracy of the landmarks produced

by the heatmaps at each of the three stages.

4.2. Comparison with State-of-the-Art

The precision rate will be evaluated using the BU-3DFE

database, following the precedence in [7, 15]. 80 of the

100 individuals in the database will be randomly selected

to form the training set, while the remaining 20 individuals

will comprise the test set. The experiment will be repeated

5 times, with a different test set each time, so that each in-

dividual is assigned to the test set on one occasion. The



skip link concatenation

Feature Extracion

Stage 1 Stage 2 Stage 3

Input Point Cloud

(n    3)

Stage 1 output

heatmap

Stage 2 output

heatmap

Final output

heatmap

P
o

in
tC

o
n

v
, 

1
2

8

P
o

in
tC

o
n

v
, 

1
2

8

P
o

in
tC

o
n

v
, 
m

P
o

in
tC

o
n

v
, 

1
2

8

P
o

in
tC

o
n

v
, 

1
2

8

P
o

in
tC

o
n

v
, 

m

P
o

in
tC

o
n

v
, 

1
2

8

P
o

in
tC

o
n

v
, 

1
2

8

P
o

in
tC

o
n

v
, 

m

x

Figure 2. Network architecture. PointNet++ architecture is used for initial feature extraction, followed by three point convolutional layers.

The numbers indicating the quantity of output layers in the convolutional stages. ⊕ signifies a concatenation operation.

mean precision and absolute error over all experiments will

be reported and compared to those of [3, 7, 15]

Accuracy on BP4D-S will be compared to [3, 16] us-

ing the mean square error (MSE) between ground truth and

predicted landmarks. The one-point spacing procedure out-

lined in the same paper will be used, where the one-point

spacing is defined as the distance between the closest pair

of points in the 3D scan (≈ 0.5mm).

4.3. Effect of Point Cloud Size

Finally, the performance of the model for a different in-

put sizes will be evaluated, for both landmark localization

accuracy and processing speed of a single point cloud.
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