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Abstract

Among the most important prerequisites for creating and

evaluating 6D object pose detectors are datasets with la-

beled 6D poses. With the advent of deep learning, demand

for such datasets is growing continuously. Despite the fact

that some of exist, they are scarce and typically have re-

stricted setups, such as a single object per sequence, or

they focus on specific object types, such as textureless indus-

trial parts. Besides, two significant components are often

ignored: training using only available 3D models instead

of real data and scalability, i.e. training one method to de-

tect all objects rather than training one detector per object.

Other challenges, such as occlusions, changing light con-

ditions and changes in object appearance, as well precisely

defined benchmarks are either not present or are scattered

among different datasets.

In this paper we present a dataset for 6D pose estimation

that covers the above-mentioned challenges, mainly target-

ing training from 3D models (both textured and textureless),

scalability, occlusions, and changes in light conditions and

object appearance. The dataset features 33 objects (17 toy,

8 household and 8 industry-relevant objects) over 13 scenes

of various difficulty. We also present a set of benchmarks

to test various desired detector properties, particularly fo-

cusing on scalability with respect to the number of objects

and resistance to changing light conditions, occlusions and

clutter. We also set a baseline for the presented benchmarks

using a state-of-the-art DPOD detector. Considering the

difficulty of making such datasets, we plan to release the

code allowing other researchers to extend this dataset or

make their own datasets in the future.

1. Introduction

Detection of 3D objects in images and recovery of their

6D poses is crucial for a wide range of computer vision

tasks. In robotics it is essential to determine 6DoF of the

Figure 1: HomebrewedDB scene examples: Our dataset

features 13 RGB-D annotated scenes of various difficulty.

The reconstructed 3D models of the objects are rendered on

top of RGB images with obtained ground truth poses.

object for the tasks of object grasping, manipulation and au-

tomatic assembly. Also, precise 6D poses in RGB images

are of utmost importance in augmented reality (AR) appli-

cations, where overlaying 3D models on top of the real ob-

jects is critical for AR-driven assembly or repair tasks. With

the rise of deep learning methods, demonstrating better per-

formance than traditional template matching approaches or

methods based on handcrafted features, it is essential to

have appropriate datasets, which would encourage devel-

opment and thorough evaluation of the new approaches.

A number of 6D pose object datasets exist, each focus-

ing on one of the aspects of this challenging task. For ex-

ample, datasets like T-LESS [18] and LineMOD [17] cover

textureless and target-specific object types in particular sce-

narios. LineMOD contains mainly toy and household ob-

jects of distinct geometry, concentrating on object detection

in cluttered environments with nonexistent or minor occlu-



sions. It includes a total of 15 separate image sequences,

however each of them features 6D pose annotations only for

a single object. T-LESS is a much bigger dataset, focusing

exclusively on textureless industrial objects, which exhibit

strong inter-object similarities and symmetries. In T-LESS,

separate training and test images are explicitly provided,

while it remains unclear how to sample or produce train-

ing data from LineMOD. This ambiguity has led to wide

inconsistencies in presented results, making it hard to con-

duct a comprehensive assessment of the developed meth-

ods. Striving for the best possible results, researchers tend

to train their detectors on subsets of provided real images

with ground truth poses very similar to those in a test split.

This strategy inevitably leads to overfitting to a particular

dataset, restricts applicability of the detectors and under-

mines fair comparison of various approaches.

One crucial aspect that has often been neglected by 6D

pose detectors is scalability. The majority of the datasets

contain a rather small number of objects. This is natural

since producing large number of 3D models and scenes with

annotated poses is a tedious task, especially when poses

of all the objects in all frames must be available. When

it comes to deep learning methods, training detectors on

real data yields the best results. However, the fact that 3D

models of the objects are available and training data can be

synthesized by rendering them has been used in only a few

studies, most notably using such detectors as SSD6D [20],

AAE [29] and DPOD [34]. It is remarkable that all deep

learning 6DoF object detectors trained either on real or syn-

thetic data use a single neural network per object, in contrast

to 2D object detectors, such as YOLO [24], SSD [21] or R-

CNNs [14, 13, 25, 15], which use one network for all object

classes. A major reason for this issue is the unavailability

of a proper dataset with a variety of sequences and well-

defined benchmarks, causing a fallback to a well-studied

simplistic dataset such as LineMOD. Nevertheless, training

one network per object defeats the scalability aspect that is

naturally a characteristic of deep neural networks. There-

fore, central aspects of our proposed dataset is its ability

to test methods’ scalability by introducing corresponding

benchmarks and to encourage training of detectors on ren-

derings of 3D models instead of using real data.

Our dataset may be considered to be aligned with the

OCCLUSION dataset [4], which contains poses of all the

objects present in each frame. However, instead of just

a single sequence with 1214 frames, our dataset contains

13 full-circle scenes filmed with both PrimeSense Carmine

1.09 (structured light) and Microsoft Kinect 2 (time-of-

light) RGB-D cameras resulting in a total of 34,830 fully

annotated frames with poses for all objects in all frames.

The complexity of the scenes increases from simple (sev-

eral separated objects per scene) to heavily-cluttered and

occluded (objects close together or on top of each other and

also mixed with other objects not present as 3D models).

Another aspect that is not addressed in the other datasets

is strong variation of the illumination, including not only

changes in light intensity, but also in light color. Finally,

driven by the fact that in industry objects can undergo severe

appearance changes, we created a benchmark where the ob-

ject appearance is altered compared to the one in available

3D models.

In the following sections, besides describing the steps of

the dataset creation pipeline, we also present detection and

6D pose estimation results for all the newly-defined bench-

marks of one of a recently introduced methods - Dense Pose

Object Detector (DPOD) [34]. This method is trained on

all the objects at once or on all the objects present in the

test scene on strictly synthetic renderings of provided 3D

models. The aim of our experiment was not only to test

scalability of the current methods but also to demonstrate

that even the best-performing methods trained on real im-

ages with one network per object obtain mediocre results

when trained on multiple objects. This establishes a base-

line and opens a new challenge to the community related

mainly to scalability and synthetic training data. Light and

appearance changes are another new aspect of this challeng-

ing dataset.

2. Related Datasets

Given the fact that determining ground truth 6D poses

from RGB images is an ambiguous task requiring manual

interventions, it is not surprising that the majority of 6D

pose datasets are made with the use of RGB-D cameras.

Because these cameras provide depth images aligned with

color images, the task of 6D pose estimation becomes sim-

pler and more automated. The most popular datasets for 6D

pose estimation are discussed in this section.

LineMOD Dataset. One of the most widely used 6D pose

datasets is LineMOD by Hinterstoisser et al. [17]. Essen-

tially, it contains objects embedded in cluttered scenes. It

was acquired with PrimeSense Carmine RGB-D sensor and

in total comprises 15 objects, two of them being symmetric.

For each sequence, poses of only one object are annotated.

The target objects with the existing ground truth poses are

either not occluded, or are subject to very slight occlusions.

The original template matching method [17], which was

published alongside the dataset, performed poorly on RGB

and depth images separately, while the results obtained on

RGB-D images were extremely good and still remain hard

to achieve by many modern deep-learning-based methods.

However, this method suffers from a couple of drawbacks:

it scales poorly and cannot handle occlusions. OCCLU-

SION dataset was created by Brachmann et al. [4] in order

to address the lack of occluded test data. In this extension of

the original LineMOD additional manual annotations of 6D



poses for all the objects in each frame were included. Due to

the necessity of intensive manual labor, it was done for only

a limited number of frames. Availability of RGB and depth

images as well as 3D CAD models with original object col-

ors resulted in probably the widest use of this dataset of all

those targeting 6D pose estimation. Deep learning methods

use RGB images from this dataset for object detection and

6D pose estimation. State-of-the-art results for real and syn-

thetic data were achieved by the recently introduced DPOD

method [34].

T-LESS Dataset. T-LESS [18] is a recent dataset that is

gaining popularity. It contains 30 textureless industrial ob-

jects and 20 RGB-D scenes captured with three synchro-

nized cameras (PrimeSense Carmine 1.09 and Kinect 2

RGB-D cameras and Canon RGB camera). The objects in

this dataset have strong inter-object similarity. The acquired

scenes vary from simple (less clutter and several objects per

scene) to complex (heavily cluttered, with piles of objects,

mimicking a typical robotic bin-picking scenario). Both

hand-designed CAD models and reconstructed 3D models

are included in T-LESS. Training images contain isolated

objects on black backgrounds, while test images capture en-

tire scenes with labeled 6D poses for each object in each

frame. The structure of this dataset is exceptional, but due

to symmetry, low texture and the industrial nature of the ob-

jects it is very challenging, which might be the reason why

it has not gained in popularity at the pace it deserves. Truly

inspired by T-LESS [18], we prepared our dataset similar to

this one in terms of structure. However, our dataset covers

a wider range of object types, spanning toys, household ob-

jects as well as industrial objects. Also, we aimed to build

a dataset with occlusion challenges, and that goes well be-

yond OCCLUSION, thereby providing many more frames

and scenes for this task.

YCB-Video Dataset. This dataset is very recent and came

out with the PoseCNN detector [32]. Unlike T-LESS, which

contains images of the scenes from all viewpoints, this

one resembles LineMOD, containing short videos depict-

ing several household objects in the scene. However, the

large number of video sequences (92) as well as the pres-

ence of occlusions in the test scenes make this dataset quite

attractive.

Other Datasets. The following datasets have been spo-

radically used in some publications, but their systematic

use has not been achieved. Tejani et al. [30] contains 2

textureless and 4 textured objects with 700 frames of test

images. A characteristic of this dataset is that it includes

multiple instances of the same object. Clutter and occlu-

sions are moderate, which makes it not particularly chal-

lenging. Doumanoglou et al. [9] presented a bin-picking

dataset with 183 test images and only two objects from the

Tejani dataset, but multiple instances of them. The Chal-

lenge and Willow datasets [33] contain a larger number of

objects (176), but a relatively small number of test images

(353). The TUW dataset [2] is similar with 17 objects in

224 test images. Datasets that are suited for robotic tasks

are the Rutgers [26], the Amazon Picking Challenge [7],

and the BIGBird [27] datasets. Datasets addressing the light

change challenge are TUD-Light and Toyota Light, both

used and referenced in the benchmark paper by Hodan et

al. [19].

Our dataset could be considered to be between OCCLU-

SION and T-LESS. It contains high-quality annotations, a

multitude of objects and a large number of scenes and test

images. In contrast to the recent work of Hodan et al. [19],

who have tried to unify 8 different datasets and have con-

centrated on evaluation of RGB-D methods, we are more in-

terested in RGB methods, even though full RGB-D images

are available in our dataset. With scalability at its core, we

design benchmarks in which one network is trained either

for all the available objects or only for the objects present in

a particular scene. Additionally, we introduce scenes with

severe environment changes, including changes of light col-

ors and intensities as well as changes of object appearance.

We believe that this dataset will push forward research on

scalable object detection and domain adaptation.

3. HomebrewedDB Dataset Creation

Within our HomebrewedDB dataset we introduce the

following:

1. 33 highly accurately reconstructed 3D models of toys,

household objects and low-textured industrial objects of

sizes varying from 10.1 to 47.7 cm in diameter.

2. 13 sequences, each containing 1340 frames filmed using

2 different RGB-D sensors. Scenes span a range of com-

plexity from simple (3 objects on a plain background) to

complex (highly occluded with 8 objects and extensive

clutter) (Fig. 3). Also, two sequences feature drastic light

changes or contain objects with altered textures (Fig. 4).

3. Precise 6D pose annotations for dataset objects in

the scenes, which were obtained using an automated

pipeline (see Section 3.5).

4. A set of benchmarks to facilitate comprehensive evalua-

tion of object detection and 6D pose estimation methods.

The following sections detail the dataset creation, in-

cluding calibration of RGB-D sensors, reconstruction of 3D

models, depth correction, acquisition of image sequences

and creation of ground truth annotations. We believe that

the described steps would serve as a sufficient guide on how

to extend an existing or create a new dataset for 6D pose es-

timation.



Figure 2: Rendered reconstructed 3D models of HomebrewedDB.

3.1. Calibration of RGB-D Sensors

For the footage of validation and test sequences we

used two RGB-D sensors: the structured-light PrimeSense

Carmine 1.09 and the time-of-flight Microsoft Kinect 2. In-

trinsic and distortion parameters of both sensors were es-

timated during the calibration procedure. We used ArUco

board [12], which has yielded better calibration results in

comparison with the classical checkerboard pattern and the

corresponding intrinsic calibration module in OpenCV [5].

As a result of calibration, the root-mean squared reprojec-

tion error calculated at the corners of the ArUco markers

is ≤ 0.5 and ≤ 0.3 px for Carmine and Kinect 2 respec-

tively. Intrinsic and distortion parameters for both sensors

are provided with the dataset. Because depth and color im-

ages were obtained from two different cameras, depth-to-

color registration was performed using OpenNI 2.2 Driver

for Carmine and Windows SDK 2.0 for Kinect 2. Given

that the scenes were recorded independently with each of

the sensors, there was no need in extrinsic calibration of the

cameras.

3.2. Sequence Acquisition

In total we acquired 1 handheld and 2 turntable se-

quences for each of the scenes with each RGB-D sensor.

Turntable sequences capture a full 360◦rotation of a marker-

board with objects on it using a camera mounted on a tri-

pod. Each turntable sequence has 170 RGB and depth im-

ages filmed with elevation angles of 30◦and 45◦. Together

with the ground truth 6D pose labels they form a valida-

tion dataset. In contrast, the test sequences were recorded

in handheld mode. There were two major reasons for the

handheld recording instead of using a controlled setup simi-

lar to those in T-LESS [18] or BigBIRD [27]. The first clear

advantage is the close resemblance to regular camera use,

while the second one is the ability to introduce more varia-

tion to camera poses in terms of considerable scale changes

as well as in-plane rotation. For the test sequences, a to-

tal of 1000 RGB and corresponding depth images of each

scene were captured with each sensor. While shooting

each of those, a full pass around the markerboard was made.

Within the test sequences, the distance from the camera to

an object was varied from 0.42 to 1.43 m, while the eleva-

tions were within 11◦-87◦. Both color and depth images in

the sequences that were recorded with the Carmine sensor

have a default resolution of 640×480 px, while Kinect 2

RGB images are of size 1920×1080 px and depth images

of 512×424 px. The depth images were resized to the di-

mension of RGB images during registration.

For each of the scenes (Figs. 3 and 4) target objects were

placed on the markerboard with ArUco markers facilitat-

ing camera pose estimation. For the simpler scenarios, we

placed the objects on a monochrome (white or dark-blue)

Lambertian surface, and for the more complicated ones the

objects resided on a multicolor reflective surface, being in

some cases on top of each other. Also, more complicated

sequences featured severe occlusions as well as objects not

present in the dataset to make the scene more cluttered.

One new feature introduced in HomebrewedDB is a se-

quence aiming to test the robustness of detection and pose

estimation methods with respect to significant changes in

lighting conditions. To create it, we used a spotlight to re-

peatedly project series of light patterns with different colors

and intensities onto the scene. We also created a domain

adaptation sequence to evaluate robustness to considerable

texture changes. For that we altered the textures of the ob-

jects by selectively painting some part of them with chalks

of various colors.

3.3. 3D Model Reconstruction

To obtain the 3D models presented in HomebrewedDB

(Fig. 2), we first scanned each object from multiple view-

points using Artec Eva [1], a structured light 3D scanner.



Figure 3: Sample RGB images from the sequences presented in the HomebrewedDB dataset. Complexity of the scenes varies

in terms of number and size of objects, levels of occlusion and clutter.

Figure 4: Sample RGB images from sequences belonging to the domain adaptation benchmark.

We opted for Artec Eva since it provides precise depth mea-

surements and high resolution texture maps, which are cru-

cial for reconstructing high-quality 3D models. The fol-

lowing pipeline for converting the scans to completely re-

constructed 3D models proceeded using Artec Studio soft-

ware. First, raw meshes were reconstructed for each of the

scanned viewpoints. Secondly, we manually removed un-

necessary parts of the meshes and then aligned them. Then

we removed outliers and minor artifacts from the mod-

els. After that we proceeded with global optimization of

the mesh structure, including inpainting minor holes in the

model and as inducing smoothness of the mesh. Next, we

back-projected high-resolution textures onto the resulting

3D model. Finally, we used MeshLab [6] to center and

and axis-align the models and computed surface normals

as weighted sum of normals of the incident facets [23].

3.4. Depth Correction

As have others [28, 18], we observed that depth mea-

surements by both Carmine and Kinect 2 have systematic

errors: we found that the measured depth values were al-

ways slightly different from those calculated from the mark-

ers in images captured with calibrated RGB cameras. Al-

though it has been reported [28] that a single correction

multiplier is sufficient to address the depth measurement er-

ror, we confirmed in our setup what Hodan et al. [18] had

found - that first degree polynomial works better as a correc-

tion factor for the depth measurements in our setup. Using

regularized least squares to account for noise in the mea-

surements we derived the following linear depth-correction

models: dc = 1.0391 · d − 15.8 for Carmine and dc =
1.0186·d−13.1 for Kinect 2 (measured in millimeters). Af-

ter applying the corrections, we found that the mean abso-

lute difference from expected depth had been reduced from

14.7 mm to 2.03 mm and from 5.81 mm to 2.66 mm for

Carmine and Kinect 2 respectively. We applied the correc-

tions models to the entire dataset, so that no further user

action is required.

3.5. Creation of Ground Truth Annotations

The estimation of 6D ground truth objects poses for

each frame in the sequence proceeded as follows. First,

the markerboard pose was estimated, providing us with

the camera trajectory around the scene. Then we obtained

a dense 3D reconstruction by signed distance field fusion

of depth maps of a scene with a method of Curless and



Levoy [8], using all the images in a sequence.

The next step was to estimate a rigid body transformation

of a 3D model from its own coordinate system to the coor-

dinate system of the scene (i.e., markerboard). Given that

the locations of the objects with respect to the markerboard

did not change when imaged with different sensors, it was

sufficient to get the object pose in the markerboard coordi-

nate system and then transfer it to a new sensor or camera

coordinate system, thereby avoiding performing reconstruc-

tion for each new sensor. For the purpose of estimating 3D

model poses in the reconstructed scene we used a method

by Drost et al. [10], which is based on point-pair feature

representation of a target model used for local matching via

an efficient voting scheme on a reduced 2D search space.

Having a camera pose in each image estimated from the

markerboard as well as having object poses in the marker-

board coordinate system, 6D object poses for each of the

frames can easily be computed. However, rendering the 3D

models on top of RGB images revealed that even though

the method by Drost et al. [10] gives a good initial estimate

of a pose, in many cases there remain visible discrepancies,

which must be mitigated in the process of further refine-

ment.

To improve the poses, we opted for 2D edge-based ICP

[11] refinement. For each object in the sequence we auto-

matically selected RGB images where the object was not

occluded. This was done by rendering all the objects in

the scene with the estimated initial poses and calculating

the fraction of visible pixels for the target object. Mul-

tiview consistency was enforced such that all the camera

poses stayed fixed, and optimization was only done for the

object pose in the scene coordinate system. Edge-based

refinement was performed on RGB images because depth

measurements were relatively noisy and we observed minor

misregistrations between depth and RGB images, particu-

larly for those captured with Kinect 2.

3.6. Accuracy of Ground Truth Poses

To evaluate the accuracy of the computed ground truth

poses, we followed the same procedure as introduced by

Hodan et al. [18]. We rendered the 3D objects using com-

puted ground truth poses and for each pixel pair with valid

depths in both rendered and captured images we computed

the difference δ = dc−dr, where dc and dr are captured and

rendered depth values, respectively. The statistics obtained

over the whole test set are presented in Tab. 1. As in T-

LESS [18], differences exceeding 5 cm were omitted from

the statistics as outliers. In HomebrewedDB, such measure-

ments amounted to 3.7%, mostly caused by the clutter ob-

jects occluding the target objects, sensor measurement noise

or minor discrepancies between reconstructed 3D models

and real-world objects.

From the presented results it can be seen that rendered

Sensor µδµδµδ σδσδσδ µ|δ|µ|δ|µ|δ| med|δ|med|δ|med|δ|

Carmine 0.11 6.25 1.71 2.56

Kinect 2 0.22 7.38 0.87 9.12

Table 1: Differences between the depth of object rendered

models at the ground truth poses and the captured depth (in

mm). µδ and σδ is the mean and the standard deviation of

the differences, µ|δ| and med|δ| is the mean and the median

of the absolute differences.

depth maps align well with the depth maps obtained with

Carmine, resulting in mean depth difference close to zero

and absolute mean of differences ≤ 2 mm. For Kinect 2

depth differences mean and absolute mean values also stay

very close to zero: the absolute median value is notably

higher than the absolute mean, signifying that the distribu-

tion of the depth differences is left-skewed. As noted in T-

LESS [18], this might be caused by slight misregistration

of RGB and depth images captured by Kinect 2, as well as

higher magnitude of noise in the measurements of this depth

sensor based on the time-of-flight principle.

4. Benchmarks and Experiments

In this section, we present a set of benchmarks assess-

ing the performance of a detector with respect to a variety

of different conditions. In particular, such aspects as scal-

ability and resistance to occlusions, different illumination

conditions and changes in object texture are tested.

4.1. Evaluation Metrics

We use standard metrics for evaluating performance in

2D object detection: precision, recall and mean average

precision (mAP). Conventionally, we consider an object to

be correctly detected if the intersection over union (IoU)

between the ground-truth and predicted bounding boxes is

≥ 0.5. To evaluate the correctness of the estimated 6D

poses, as others have done [16, 20, 34], we use the ADD

score, which is defined as the average Euclidean distance

between the model vertices transformed with ground truth

and predicted poses:

m = avg
x∈M

∥

∥

∥
(Rx+ t)− (R̂x+ t̂)

∥

∥

∥

2

, (1)

where M is a set of vertices of a 3D model, (R, t) and

(R̂, t̂) are ground truth and predicted rotation and transla-

tion, respectively. As mentioned in [16], a predicted pose

is considered to be correct if ADD calculated with this pose

is less than 10% of a model diameter. However, in case of

more complicated scenes, there is only a small fraction of

poses falling into this category. Therefore, we also report

ADD for the thresholds of 30% and 50% to give a broader

overview of pose quality as well as to give an estimate of



Per Scene Texture / Illumination

Scene ID 1 2 3 4 5 6 7 8 9 12 13 5 10 11

P
o
se

ADD 10% 50.85 45.08 33.88 27.25 25.40 19.19 25.85 11.08 7.60 8.68 13.36 25.40 16.73 16.77

ADD 30% 81.34 78.46 64.53 53.10 54.00 45.39 39.99 29.78 20.12 25.68 33.41 54.00 40.32 40.83

ADD 50% 88.71 85.69 75.46 66.98 61.95 55.26 46.76 39.64 29.24 34.49 45.33 61.95 51.66 49.72

D
et

ec
t. Precision 0.79 0.62 0.76 0.76 0.65 0.46 0.68 0.51 0.26 0.33 0.13 0.65 0.57 0.43

Recall 0.95 0.64 0.82 0.92 0.80 0.68 0.84 0.62 0.33 0.40 0.20 0.80 0.63 0.53

mAP 0.82 0.48 0.72 0.78 0.64 0.36 0.64 0.41 0.14 0.20 0.04 0.64 0.42 0.32

Table 2: Result of object detection and pose estimation presented on two benchmarks: (1) per scene benchmark spanning

over 11 scenes of the dataset and the (2) domain adaptation benchmark evaluating the detector’s generalization capabilities.

proportion of the poses which could be still a subject for

further refinement.

4.2. Dense Object Pose Detector

For the performance evaluation we opted for the recently

introduced Dense Pose Object Detector (DPOD) [34], ow-

ing to its excellent performance on LineMOD and OCCLU-

SION datasets and its ability to be trained on both real and

synthetic data. Other detectors also could be used, and we

highly encourage prospective researchers to perform evalu-

ation on HomebrewedDB in order to facilitate progress in

the direction of scalability and training from CAD models.

The DPOD detector is based on DensePose [3] applied

to human pose detection and formalizes the object detection

problem as a dense correspondence estimation problem.

From the input image DPOD outputs the multi-labeled ob-

ject segmentation mask and UV correspondence map. Ob-

tained correspondences are further used as input to PnP and

RANSAC for pose estimation. The more correspondences

obtained, the less prone the detector is to wrong matches,

and the easier and more accurate pose estimation becomes.

4.3. Scalability Benchmark

The first benchmark was introduced with a goal to eval-

uate the method’s scalability with respect to the number of

objects. The main requirement is to train a single network

for all the objects available in the dataset and test it on a

set of sequences containing all the objects. Specifically, for

this purpose we jointly evaluate a method on the sequences

from 1 to 8 (inclusive), which form a minimal subset of se-

quences with all 33 objects present. For this benchmark ob-

ject detection and pose estimation results are reported sepa-

rately for each object.

From the results presented in Tab. 3 it can be seen that the

best detection and pose estimation performance is achieved

for bigger objects with distinct textures and geometric fea-

tures (e.g., 28, 30), while detection of smaller low-textured

or glossy industrial objects (e.g., 12, 13, 14) is a consider-

able challenge for DPOD. Besides, pose estimation results

demonstrate that the DPOD detector does not scale particu-

larly well for this task: for 17 out of 33 objects, ADD with

10% threshold is under 10%, and there are no instances for

which the achieved score was higher than 50%.

4.4. Scene Benchmarks

Our dataset presents a collection of 13 scenes with a

varying degree of difficulty, and each of these scenes repre-

sents a separate benchmark, where all the objects it contains

are used for training. Except for the scenes with altered il-

lumination conditions or texture changes (i.e., 10 and 11),

we include all the scenes in the per-scene benchmarks. All

the object detection and pose estimation scores are averaged

over all the objects present in the scene. In Tab. 2 the ob-

jects detection and pose estimation performance per scene is

presented. As expected, DPOD demonstrates significantly

better performance if both tasks in the sequences with the

smaller number of objects, as well as less significant occlu-

sions and no clutter. Also, low scores in both detection and

pose estimation are reported for scene 8, which is composed

exclusively of industrial objects.

4.5. Domain Adaptation Benchmark

The main goal of introducing the domain adaptation

benchmark is to test the robustness of a method to signifi-

cant changes in lighting conditions and objects textures. It is

composed of three scenes (5, 10 and 11) with the same set of

objects, but differing in terms of illumination and the color

of object surfaces. Scene 5 was captured in ambient lighting

conditions with no alteration of the objects’ appearance. In

contrast, in scene 10 we used a spotlight to project light of

different colors and intensity onto the imaged objects to in-

troduce considerable variations in illumination, whereas in

scene 11, we applied paint on the objects’ surfaces to alter

their texture. For this benchmark, object detection and 6D

pose estimation scores are presented per scene.

As can be seen from results in Tab. 2, performance in

both detection and pose estimation is notably better in the

cases of no added illumination or texture changes. Under

normal conditions the resulting poses are 37% more accu-

rate based on ADD with a 10% threshold when compared

to those under altered conditions. Also, object detection

performance falls far behind under altered conditions com-

pared to normal conditions, resulting in 46% and 59% lower



Obj. ID ADD 10% ADD 30% ADD 50% Precision Recall mAP

1 23.04 68.30 81.04 0.86 0.98 0.85

2 17.85 c 58.02 75.87 0.62 0.89 0.56

3 14.18 55.41 72.40 0.93 0.92 0.88

4 9.09 36.74 55.43 0.66 0.79 0.53

5 11.70 43.23 58.60 0.93 0.98 0.91

6 0.00 3.51 12.13 0.67 0.68 0.46

7 15.15 44.12 60.74 0.66 0.68 0.45

8 18.67 42.74 52.28 0.33 0.24 0.08

9 2.26 13.71 27.58 0.60 0.62 0.37

10 3.15 19.63 30.96 0.89 0.86 0.76

11 0.71 4.07 9.87 0.82 0.98 0.80

12 0.50 3.74 7.48 0.47 0.40 0.19

13 2.25 20.22 35.63 0.58 0.62 0.36

14 2.88 24.04 40.19 0.41 0.52 0.21

15 0.00 1.88 5.52 0.33 0.40 0.14

16 0.00 4.70 9.94 0.48 0.36 0.17

17 0.72 3.37 17.35 0.63 0.42 0.26

18 0.16 2.24 4.32 0.49 0.63 0.32

19 7.70 28.63 45.88 0.94 0.92 0.89

20 23.22 63.60 75.73 0.92 0.96 0.91

21 8.37 36.12 50.66 0.39 0.23 0.09

22 10.04 35.97 55.02 0.76 0.78 0.59

23 16.18 62.49 82.20 0.95 0.99 0.95

24 4.08 29.25 55.78 0.19 0.15 0.03

25 9.76 39.50 50.62 0.75 0.88 0.66

26 15.01 51.83 68.98 0.78 0.79 0.63

27 13.47 51.78 71.47 0.68 0.76 0.52

28 26.17 63.30 78.07 0.80 0.92 0.73

29 13.97 38.59 57.68 0.93 0.94 0.89

30 48.63 88.71 96.34 0.80 0.98 0.79

31 6.43 21.85 36.68 0.83 0.86 0.74

32 0.00 5.95 10.71 0.23 0.17 0.04

33 11.40 45.69 64.99 0.93 0.97 0.91

Table 3: Results of object detection and pose estimation on

scalability benchmark.

mAP scores for the scenes with variations in light and tex-

ture, respectively. These results suggest that there is a lot of

room for further adaptation of the DPOD detector to chang-

ing environments.

4.6. Drawbacks of Training on Real Data

The main reason we exclusively use synthetic data for

training in our benchmarks comes from the inability of the

detectors trained on a small-scale set of real data to gener-

alize to different environments, which may differ in back-

ground, illumination, texture and other scene characteris-

tics.

To support our claim, we selected 2 recent state of the

art detectors, YOLO6D [31] and DPOD [34], trained on

real LineMOD data and tested them on our new sequence

containing 3 LineMOD objects - a benchvise, a drill and a

phone (Scene 2 in Fig. 3). This sequence contains a minimal

number of occlusions and no clutter; it may be regarded as

one of the simplest scenes in the dataset. Besides, this se-

quence was captured with the same camera as LineMOD

sequences (PrimeSense Carmine 1.09), making it similar in

terms of color scheme and noise. Performance compari-

son of both these detectors on LineMOD sequence and our

sequence can be seen in the ”Real” section of Tab. 4. In

spite of demonstrating very good performance when tested

Dataset Method Benchvise Phone Driller

R
ea

l

LM
YOLO6D [31] 81.80 47.74 63.51

DPOD [34] 95.34 74.24 97.72

HB
YOLO6D [31] 15.30 6.50 0.10

DPOD [34] 57.24 33.09 62.82

S
y

n
th

et
ic LM

SSD6D + Ref. [22] 44.30 26.20 26.90

DPOD [34] 66.76 29.08 66.60

HB
SSD6D + Ref. [22] 59.40 29.30 25.10

DPOD [34] 70.89 35.56 66.42

Table 4: Pose estimation results in terms of ADD 10%

metric on LineMOD sequences (LM) and HomebrewedDB

(HB) sequence with the same objects.

on sequences from LineMOD, when run on our sequence

with LineMOD objects, both detectors experience a signifi-

cant drop in pose estimation accuracy in terms of the ADD

10% metric for all the objects. Specifically, the pose esti-

mation accuracy of DPOD [34] dropped more than 2 times

for the phone, while for YOLO6D [34] there were nearly no

correctly predicted poses for the drill.

As the second part of the experiment, we evaluated 2 de-

tectors designed for training on synthetic data, DPOD [34]

and SSD6D with model-based refinement [22], on the same

new sequence with LineMOD objects. From the results

presented in the ”Synthetic” section of Tab. 4 one can see

that there is no significant difference between the results

obtained on LineMOD and HomebrewedDB sequences,

meaning that there is no overfitting to a particular dataset.

In 5 out of 6 cases, the detectors demonstrated better perfor-

mance on a simpler HomebrewedDB sequence, thus show-

ing more predictable behavior than in the case of training

on real data. Moreover, when trained on synthetic data,

DPOD [34] can boast higher ADD 10% scores for all the 3

objects in the HomebrewedDB test sequence. This fact once

again supports the claim that training detectors on synthetic

data leads to better generalization, in contrast to training on

real data, when even a seemingly insignificant changes in

the environment turn out to be a decisive factor leading to a

significant decrease in pose estimation accuracy.

5. Conclusion

In this work, we have presented a new challenging

dataset for 6D object detection, covering the most impor-

tant properties a solid object detector should have, namely

scalability with respect to the number of objects and robust-

ness to occlusions, illumination and appearance changes.

This new dataset contains 33 objects spanning 13 scenes

of various difficulty. To be able to compare the detectors to

each other, we defined a set of benchmarks that test all of

the above mentioned properties. Finally, we developed and

presented a comparably simple, yet robust and fully auto-

mated pipeline that we used to build our dataset. We hope

it will allow other researchers to be able to create their own

datasets and thus promote research in 6D pose estimation.
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