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Abstract

Most existing 3D pose datasets of object categories

are limited to generic object types and lack of fine-

grained information. In this work, we introduce a new

large-scale dataset that consists of 409 fine-grained cat-

egories and 31,881 images with refined 3D pose annota-

tion. Specifically, we augment three existing fine-grained

object recognition datasets (StanfordCars, CompCars and

FGVC-Aircraft) by finding a specific 3D model for each

sub-category from ShapeNet and manually annotating each

2D image with a full set of 7 continuous perspective param-

eters. Since the 2D projection of fine-grained 3D shapes

can be an exact fit of object segmentation, we further im-

prove the annotation quality by initializing from the hu-

man annotation and conducting a local search of the pose

parameters to maximize the IoUs between the projected

mask and the segmentation reference predicted from state-

of-the-art segmentation networks. We provide full statistics

of the annotations with qualitative and quantitative com-

parisons suggesting that our dataset can be a complemen-

tary source for studying 3D pose estimation. The dataset

can be downloaded at http://users.umiacs.umd.

edu/˜wym/3dpose.html.

1. Introduction

Estimating 3D object pose from a single 2D image is an

inevitable step in various industrial applications, such as ve-

hicle damage detection [10], novel view synthesis [36, 23],

grasp planning [28] and autonomous driving [5]. To address

this task, collecting suitable data is of vital importance.

However, due to the expensive annotation cost, most exist-

ing large scale 3D pose datasets such as Pascal3D+ [34] and

ObjectNet3D [33], are collected for generic object types

and may lack of accurate pose information, since different

objects in one hyper class (i.e., cars) are only matched with

a few generic 3D shapes, leading to a high projection error

that affects human annotators to find the accurate pose, as

demonstrated in Figure 1.

In this work, we introduce a new benchmark pose esti-

mation dataset for fine-grained object categories. Specif-

Pascal3D+ ObjectNet3D StanfordCars3D (Ours)

Pascal3D+ ObjectNet3D FGVC-Aircraft3D (Ours)

Figure 1. While both Pascal3D+ and ObjectNet3D contain more

complicated scenarios with more generic categories for 3D pose

estimation, we provide more accurate pose annotations on a large

set of fine-grained object classes as a complementary source for

studying 3D pose estimation.

ically, we augment three existing fine-grained recognition

datasets, StanfordCars [14], CompCars [35] and FGVC-

Aircraft [20], with two types of useful 3D information: (1)

for each object in the image, we manually annotate the full

perspective projection represented by 7 continuous pose pa-

rameters; (2) we provide an accurate match of the computer

aided design (CAD) model for each fine-grained object cat-

egory. The resulting augmented dataset consists of more

than 30,000 images for over 400 fine-grained object cate-

gories. Table 1 shows the general statistics of our dataset.

To the best of our knowledge, our dataset is the very first

one that employs fine-grained category aware 3D models in

pose annotation. To fully utilize the valuable fine-grained

information, we further develop an automatic pose refine-

ment mechanism to improve over the human annotations.

Thanks to the fine-grained shapes, an accurate pose param-

eter also leads to the optimal segmentation overlap between

the projected 2D mask from the 3D model and the target

object ground truth segmentation. We hence conduct a lo-

cal greedy search over the 7 full perspective pose parame-

ters, initialized from the human annotation, to maximize the

segmentation overlap objective. To avoid human effort on

annotating ground truth segmentation, we utilize state-of-

the-art image segmentation models including both Mask R-

CNN [9] and DeepLab v3+ [3] to obtain the as-accurate-as-

possible segmentation references. Figure 2 illustrates this



Dataset # class # image annotation fine-grained

3D Object [25] 10 6,675 discretized view ✗

EPFL Car [22] 1 2,299 continuous view ✗

IKEA [16] 11 759 2d-3d alignment ✗

Pascal3D+ [34] 12 30,899 2d-3d alignment ✗

ObjectNet3D [33] 100 90,127 2d-3d alignment ✗

StanfordCars3D 196 16,185 2d-3d alignment ✓

CompCars3D 113 5,696 2d-3d alignment ✓

FGVC-Aircraft3D 100 10,000 2d-3d alignment ✓

Total (Ours) 409 31,881 2d-3d alignment ✓

Table 1. Comparison between our 3D pose estimation dataset

(StanfordCars3D + CompCars3D + FGVC-Aircraft3D) and other

benchmark datasets. Our dataset can be viewed as a complemen-

tary source to the existing large scale 3D pose dataset (Pascal3D+

and ObjectNet3D) with a different focus on more intra-class cate-

gories and fine-grained details.

process.

To verify the effect of the segmentation based refine-

ment, we conduct quantitative and qualitative comparisons.

Qualitatively, the human evaluation shows that around 50%

of annotations are improved significantly from its original

labels. Quantitatively, our annotation provides a signifi-

cantly tighter segmentation overlap on car and airplane cat-

egories compared to Pascal3D+ [34] and ObjectNet3D [33].

In summary, we collect a new large-scale 3D pose

dataset for fine-grained objects with more accurate anno-

tations. The dataset contains a full perspective model pa-

rameters including the camera focal length, which can be

a more challenging benchmark for developing algorithms

beyond only estimating viewpoint angles (azimuth) [8] or

recovering the rotation matrices [19]. We further propose

a simple but effective way to automatically refine the pose

annotation based on the segmentation cues. With the cor-

rect 3D fine-grained model, this method can automatically

refine object pose while significantly alleviating the human

label effort.

2. Related Work

3D Pose Estimation Dataset. Annotating 3D pose in

2D images requires expensive effort. Due to the 3D ambi-

guity from 2D images, earlier 3D pose datasets are limited

not only in scale but also precision [25]. For example, EPFL

Car dataset [22] consists of 2,299 images of 20 car instances

captured at different azimuth angles with other parameters

including elevation and distance kept almost the same for

all the instances. Pascal3D+ [34] and ObjectNet3D [33]

are probably the only two large-scale 3D pose datasets for

generic object categories. However, both of them assume

a camera model with 6 parameters to annotate. Moreover,

they use only a few CAD models to match all different ob-

jects in one hyper class (i.e., cars, airplanes). The projection

error could be large due to the lack of accurate CAD mod-

Fine-grained 2D Image Fine-grained 3D Model Initial Pose by Human

Initial 2D Segmentation Segmentation Reference Final Adjusted Pose

Figure 2. For an image with a fine-grained category (Top left),

we first find its corresponding fine-grained 3D model (Top mid-

dle) and manually annotate its rough pose (Top right). Since the

problem is to estimate the object pose such that the projection of

the 3D model aligns with the image as well as possible, we fur-

ther optimize the segmentation overlap between the projected 2D

mask (Bottom left) and the “groundtruth” mask (Bottom middle)

estimated from state-of-the-art CNN models to obtain the final 3D

pose (Bottom right).

els and may affect the pose accuracy in human annotation.

Being aware of these problems, we use a full perspective

model and project fine-grained CAD models to match ob-

jects in the 2D images to provide a more accurate pose an-

notation.

Fine-Grained Recognition Dataset. Fine-grained

recognition is a new challenge for automatically discrim-

inating categories with only small subtle visual differ-

ences [31, 14, 27]. Due to its importance in real world

applications, a number of fine-grained datasets has been re-

leased, ranging from plants and animals [30, 1, 13, 11, 24,

18, 21, 32] to human-made objects [29, 20, 35, 7, 14, 17].

Almost all existing fine-grained datasets are lack of 3D

pose or 3D shape labels [14], and pose estimation for fine-

grained object categories are not well-studied. Our work

fills the gap by annotating poses and matching CAD models

on three existing popular fine-grained recognition datasets

including StanfordCars [14], CompCars [35] and FGVC-

Aircraft [20].

3D Model Dataset. Similar to [33], we adopt the 2d-

3d alignment method to annotate object poses, Annotat-

ing in such a way requires a source for accessing accurate

3D models of objects. Luckily, there has been substantial

growth in the number of 3D models available online over

the last decade [4, 6, 12, 15] with well-known repositories

like the Princeton Shape Benchmark [26] which contains

around 1,800 3D models grouped into 90 categories. In

this work, we use ShapeNet [2], the so-far largest 3D CAD

model database which has indexed more than 3,000,000

models, with 220,000 models out of which are classified

into 3,135 categories including various object types such

as cars, airplanes, bicycles, etc. The large amount of 3D

shapes allow us to find an exact model to many of the ob-

jects in the natural images. For example, ShapeNet provides



(1) human pose annotation

(2) segmentation based pose refinement
Figure 3. An overview of our whole annotation framework which includes two parts: (1) human initial pose annotation, and (2) segmen-

tation based pose refinement. The human annotation provides a strong initialization for the second-stage pose refinement, hence we only

need to conduct local search to adjust the pose.

183,533 models for the car category and 114,045 models for

the airplane category. Although we only annotate three fine-

grained datasets, our annotation framework can be used to

apply to build more 3D pose dataset, thanks to larger-scale

datasets like ShapeNet [2] and iNaturalist [27].

3. Dataset Construction

We build three fine-grained 3D pose datasets. Each

dataset consists of three parts: 2D images, 3D models and

3D poses. The 2D images are collected from Stanford-

Cars [14], CompCars [35] and FGVC-Aircraft [20] respec-

tively. Annotating the 3D model and pose involves two

main steps: (1) human pose annotation, (2) segmentation

based pose refinement. Figure 3 illustrates the whole pro-

cess.

Our human pose annotation process is similar to Ob-

jectNet3D [33] but requires more effort on selecting finer

3D models. We first select the most appropriate 3D model

from ShapeNet [2] for each object in the fine-grained image

dataset. We then obtain the 7 pose parameters by asking

the annotators to align the projection of the 3D model to the

corresponding image using our designed interface.

Although a human can initiate the pose annotation with

reasonably high efficiency and accuracy, we find it hard for

them to adjust the fine detailed poses given a limited amount

of time. Our second-stage segmentation based pose refine-

ment further adjusts the pose parameters by performing a

local greedy search initialized from the human annotation.

We discuss the details of each process in the next subsec-

tions.

3.1. 3D Models

To better annotate the 3D pose, we adopt a distinct model

for each category. Thanks to ShapeNet [2], we can find the

corresponding 3D models with its fine-grained object cate-

gory. If there is no exact match between a category and the

3D model, we manually select a visually similar one for that

category. For StanfordCars [14], we annotate images for all

196 categories, where 148 categories have exact matched

3D models. For CompCars [35], we include 113 categories

with matched 3D models. For FGVC-Aircraft [20], we

annotate images for all 100 categories with more than 70

matched models. To the best of our knowledge, our dataset

is the very first one that employs fine-grained 3D models in

3D pose estimation.

3.2. Camera Model

We define the world coordinate system in accordance

with the 3D model coordinate system. A point X on a 3D

model is projected onto a point x in a 2D image:

x = PX, (1)



Figure 4. An overview of our annotation interface. Our annotation tool renders the projected 2D mask onto the image in real time to

facilitate the annotators to better adjust pose parameters.

via a perspective projection matrix:

P = K [R|T ] , (2)

where K denotes the intrinsic parameter matrix:

K =





f 0 u
0 f v
0 0 1



 , (3)

R encodes a 3 × 3 rotation matrix between the world and

camera coordinate systems, parameterized by three angles,

i.e., elevation e, azimuth a and in-plane rotation θ. We as-

sume that the camera is always facing towards the origin

of the 3D model. Hence the translation T = [0, 0, d]T is

only defined up to the model depth d, the distance between

the origins of the two coordinate systems, and the principal

point (u, v) is the projection of the origin of world coordi-

nate system on the image. As a result, our model has 7 con-

tinuous parameters: camera focal length f , principal point

location (u, v), azimuth a, elevation e, in-plane rotation θ
and depth d. Note that since images are collected online,

the annotated intrinsic parameters (u, v and f ) are approx-

imations. Compared to previous datasets [34, 33] with 6

parameters (f fixed), our camera model considers both the

camera focal length f and object depth d in a full perspec-

tive projection for finer 2D-3D alignment, which allows for

a more flexible pose adjustment and a better shape match-

ing.

3.3. 2D-3D Alignment

We annotate 3D pose information for all 2D images

through crowd-sourcing. To facilitate the annotation pro-

cess, we develop an annotation tool illustrated in Figure 4.

For each image during annotation, we choose the 3D model

according to the fine-grained label given beforehand. We

then ask the annotators to adjust the 7 parameters so that

the projected 3D model is aligned with the target object in

the 2D image. This process can be roughly summarized as

follows: (1) shift the 3D model such that the center of the

model (the origin of the world coordinate system) is roughly

aligned with the center of the target object in the 2D image;

(2) rotate the model to the same orientation as the target

object in the 2D image; (3) adjust the model depth d and

camera focal length f to match the size of the target object

in the 2D image. Some finer adjustment might be applied

after the three main steps. In this way we annotate all 7 pa-

rameters across the whole dataset. On average, each image

takes approximately 1 minute to annotate by an experienced

annotator. To ensure the quality, after one round of annota-

tion across the whole dataset, we perform quality check and

let the annotators do a second round revision for the unqual-

ified examples.

3.4. Segmentation Based Pose Refinement

Although human annotators already provide reasonably

accurate annotation in the first stage, we notice that there

are still potential to further improve the annotation qual-

ity. This is because humans are good at providing a strong

initial pose estimate but finetuning the detailed pose param-

eters is very annoying. Realizing that ultimate problem is

to estimate the object pose such that the projection of the

3D model aligns with the image, we design a simple but

effective iterative greedy search algorithm to automatically

refine pose parameters by maximizing

max
p

IoU(S(p,M), s∗), (4)

where s∗ is the 2D object segmentation reference and

S(p,M) maps a 3D model M to a 2D mask according to



Algorithm 1 Iterative local pose search algorithm:

Input: 3D model M, Human pose annotation p0, seg-

mentation reference s∗, 2D mask generator S(p,M),
segmentation evaluation function IoU(s1, s2), pose pa-

rameter update unit ǫ, update step size α.

Output: Optimized pose parameter p∗.

1: for each image with segmentation reference s∗ do

2: Initialize pose parameters p = p0.

3: Initialize 2D mask s = S(p,M)
4: Initialize iou = IoU(s, s∗)
5: repeat

6: Update ioulast = iou.

7: for each dimension i in p do

8: Update p
+

i = pi + αǫi
9: Update p

−

i = pi − αǫi
10: Render new 2D mask s+ = S(p+,M)
11: Render new 2D mask s− = S(p−,M)
12: Update iou+ = IoU(s+, s∗)
13: Update iou− = IoU(s−, s∗)
14: Update iou = max(iou, iou+, iou−)
15: Update p = argmax(iou, iou+, iou−)
16: end for

17: if iou == ioulast then

18: Update α = α/2
19: if α <= threshold then

20: Set as convergence.

21: end if

22: else

23: Continue.

24: end if

25: until converge

26: end for

Initial Pose by Human Iteration 1

Iteration 2 Final Pose

Figure 5. Iterative local greedy search for the fine detailed pose,

initialized from human annotation. The green highlights are the

2D masks projected by the 3D model during pose optimization.

the pose parameter p = (a, e, θ, d, f, u, v).

The algorithm aims to finetune the 7 pose parameters to

maximize the segmentation overlap between the projected

2D mask from the 3D model and the segmentation refer-

ence. We use the traditional intersection over union as the

segmentation overlapping criterion. The algorithm greedily

updates pose parameters, it is hence a local search algo-

rithm with guarantee to converge to a local optimum. Dur-

ing the local search process, we observe it converges in 3-10

iterations with 1 minute per image on average. Algorithm

1 shows the overall process. Figure 5 illustrates the local

search algorithm.

3.5. Segmentation Reference

To conduct the local greedy search, we ideally need

the ground truth target object segmentation. Although an-

notating segmentation through crowd-sourcing is possible,

we find using existing state-of-the-art image segmentation

models such as Mask R-CNN [9] and DeepLab v3+ [3]

can already provide satisfying segmentation results. For ex-

ample, on the Pascal VOC2012 segmentation benchmark,

DeepLab v3+ can reach average IoUs of 93.2 on the “car”

class and 97.0 on the “aeroplane” class respectively. Mask

R-CNN, although not accurate as DeepLab, can obtain

instance-level segmentation, which is particularly useful for

images with more than 1 instance from the same class. In

the end, we use a combination of both models to find the

most appropriate segmentation reference. Figure 6 illus-

trates the process.

3.6. Dataset Statistics

We plot the distributions of the 7 parameters in Figure 7

for StanfordCars3D, CompCars3D and FGVC-Aircraft3D

respectively. Unsurprisingly, all the parameters are not uni-

formly distributed due to the nature of the original dataset.

The most challenging parameter across the three datasets is

azimuth (a), which varies across the 360◦, while elevation

(e) and in-plane rotation (θ) are relatively concentrated in

a small range around 0◦ since the images of cars and air-

planes are often taken from the ground view. The distribu-

tion of focal length (f ) and model depth (d) are also not

widespread enough because objects in these fine-grained

images are normalized and cropped to a standard size. Al-

though the parameter distribution issue may raise concerns

about learning trivial solutions, we believe that our effort

still provides a reasonable diversity on pose annotation. For

example, the distribution of azimuth (a) are quite different

across the three datasets and complementary to each other.

This could encourage building a more generalized pose es-

timation model.

3.7. Dataset Split

We split the three datasets in this way. For Stanford-

Cars3D, we follow the standard train/test split provided by



Figure 6. An illustration of our reference segmentation extraction process. Ideally, we can ask human annotators to annotate the ground

truth segment for the target object in a 2D image. However, we find CNNs such as Mask-RCNN and DeepLab can already provide accurate

enough segmentation predictions for the pose refinement.

S
ta

n
fo

rd
C

ar
s3

D
C

o
m

p
C

ar
s3

D
F

G
V

C
-A

ir
cr

af
t3

D

azimuth a elevation e in-plane rotation θ focal length f model depth d principal u principal v

Figure 7. The polar histograms of the three rotation parameters as well as the histograms of the other four parameters in our annotated

dataset.

the original dataset [14] with 8144 training examples and

8041 testing examples. For CompCars3D, we randomly

sample 2/3 of our annotated data as training set and the

rest 1/3 as testing set, resulting in 3798 training and 1898

test examples. We provide the train/test split information in

the dataset release. For FGVC-Aircraft3D, we follow the

standard train/test split provided by the original dataset [20]

with 6667 training examples and 3333 testing examples.

4. Dataset Comparison

4.1. Compare to Existing Dataset

We compare our annotation quality with two existing

large-scale 3D pose dataset, PASCAL3D+ [34] and Object-

Net3D [33]. It is worth to note that we are not aiming to

show the superiority of our dataset, since the two previous

datasets consider more general scenarios with multiple ob-

jects and challenging occlusion in an image. However, we

hope that by comparing to them, we demonstrate our fine-

grained pose dataset can become a complementary resource

for studying 3D pose estimation in monocular images.

Figure 8 and Figure 9 show the qualitative comparison

on the “car” class and the “aeroplane” class respectively.

Overall, we find our annotation more satisfying by visually

comparing the overlay images which maps the 3D model

on the 2D image. To further conduct quantitative compar-

ison, we use segmentation overlap between the projected

2D mask and the ground truth object mask as the evalua-

tion measure. We randomly select 50 “car” images and 50

“aeroplane” images from PASCAL3D+ and ObjectNet3D

respectively. We then randomly pick 50 images from Stan-

fordCars3D and FGVC-Aircraft3D. In total, we select 300
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Figure 8. Qualitative comparison of ground-truth pose annotation between our StanfordCars3D and two existing large scale 3D pose

datatset. We randomly select 5 car images from each dataset. While both Pascal3D+ and ObjectNet3D provide more complicated scenarios

with more generic categories for 3D pose estimation, our pose annotations look more accurate thanks to the fine-grained shape matching.
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Figure 9. Qualitative comparison of ground-truth pose annotation between our FGVC-Aircraft3D and two existing large scale 3D pose

datatset. We randomly select 5 aircraft images from each dataset.

images and annotate them with ground truth segmentation.

Since both PASCAL3D+ and StanfordCars3D consider

more complicated scenarios such as multiple objects with

cluttered background, we filter out those images containing

more than one object with reasonably large size for a fair

comparison. Hence the average IoUs can be an optimistic

estimate for both baseline datasets. Even with that, our an-

notation shows a clear segmentation improvement on aver-

age IoUs on both “car” and “aeroplane”, as demonstrated in

Table 2. Particularly, both the mean and the standard devi-

ation of the segmentation IoUs get significantly improved,

indicating that our annotations are not only more accurate

but more stable as well.

4.2. Compare to Human Annotation

We also analyze how much gain we get by conducting

segmentation based pose refinement. To understand this,

we utilize the manually annotated ground truth 2D segmen-

car PASCAL3D+ [34] ObjectNet3D [33] StanfordCars3D

78.5% ± 8.6% 84.1% ± 6.0% 90.4% ± 3.3%

airplane PASCAL3D+ [34] ObjectNet3D [33] FGVC-Aircraft3D

62.7% ± 13.1% 65.1% ± 11.0% 78.9% ± 9.4%

Table 2. Comparison on the average IoUs with the standard devi-

ation on the “car” category and “aeroplane” category. Note that

in this evaluation, we manually annotate around 50 ground truth

segmentation masks for each dataset.

tation on the randomly select 100 images from the Stan-

fordCars and FGVC-Aircraft. We then compare the average

IoUs between human annotated pose and the refined pose.

Table 3 shows the improvement of segmentation overlap on

the three datasets. On StanfordCars3D, our second-stage

refinement improves average IoUs from 84.1% to 90.4%,

which is significant. On FGVC-Aircarft3D, the improve-

ment is even more, from 65.3% to 78.9%. Figure 10 and

Figure 11 illustrate the pose improvement qualitatively.
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Figure 10. Selected examples illustrating the second-stage automatic pose refinement improving the initial human pose annotation on

StanfordCars3D dataset.
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Figure 11. Selected examples illustrating the second-stage automatic pose refinement improving the initial human pose annotation on

FGVC-Aircraft3D dataset.

Average IoUs Human Annotation Refined Annotation

StanfordCars3D 84.1% ± 6.2% 90.4% ± 3.3%

FGVC-Aircraft3D 65.3% ± 19.9% 78.9% ± 9.4%

Table 3. Segmentation evaluation of initial human annotation and

after iterative pose refinement on the two datasets. Note that in

this evaluation, we manually annotate around 50 ground truth seg-

mentation masks for each dataset.

Considering segmentation overlap may not be the only

appropriate quantitative measure, we further conduct a hu-

man study to compare the pose annotation quality. To do

this, we hire 5 professional annotators, show them the 2D-

3D alignment of the same image with annotation in the two

stages simultaneously and let them rate the relative quality

for the 50 selected images in each dataset. The relative com-

parison consists of “Worse”, “Equal” or “Better”, indicating

the second-stage pose is either significantly worse, roughly

equal or significantly better than the first-stage human anno-

tation from the subjective point of view. Table 4 shows the

human study result. Surprisingly, the second-stage refined

pose is either roughly equal or significantly better than the

initial human annotation, suggesting the benefit of utilizing

segmentation cues to facilitate the pose search.

5. Conclusions

In this work, we annotate three popular fine-grained

recognition datasets with 3D shapes and poses, ending in

total 31,881 images with 409 classes. By utilizing image

Worse Equal Better

StanfordCars3D 13.0% 28.3% 58.7%

FGVC-Aircraft3D 12.8% 40.4% 46.8%

Table 4. Human satisfaction rate by comparing original human an-

notation with refined pose. “Worse” means refined pose is worse

than initial pose. “Better” means refined is better. “Equal” mean-

ing the annotation are roughly the same. From the table, we can

see humans are much more satisfied with the refined pose annota-

tion.

segmentation as an intermediate cue, we further improve

the pose annotation quality. It is worth to note that given

unlimited time human may ultimately produce high qual-

ity annotation, but the segmentation based pose refinement

provides a better trade-off between cost and accuracy. In

the future, we would like to develop a new annotation sys-

tem that combines the segmentation based refinement in the

loop with the human annotation interface.
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