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Abstract

Face recognition performance deteriorates when face

images are of very low quality. For low quality video

sequences, however, more discriminative features can be

obtained by aggregating the information in video frames.

We propose a Multi-mode Aggregation Recurrent Network

(MARN) for real-world low-quality video face recognition.

Unlike existing recurrent networks (RNNs), MARN is ro-

bust against overfitting since it learns to aggregate pre-

trained embeddings. Compared with quality-aware aggre-

gation methods, MARN utilizes the video context and learns

multiple attention vectors adaptively. Empirical results on

three video face recognition datasets, IJB-S, YTF, and PaSC

show that MARN significantly boosts the performance on

the low quality video dataset while achieves comparable re-

sults on high quality video datasets.

1. Introduction

An increasing number of videos captured by both mo-

bile devices and CCTV systems around the world1 has gen-

erated an urgent need for robust and accurate face recog-

nition in low quality video. Approaches to face recogni-

tion for high quality still images (controlled capture and

cooperative subjects) are not able to deal with challenges

in face recognition in unconstrained videos. Deep Neu-

ral Networks (DNNs) have shown the ability to learn face

representations that are robust to occlusions, image blur

and large pose variations to achieve high recognition per-

formance on semi-constrained still face recognition bench-

marks [36, 40, 25, 39]. While face recognition in surveil-

lance video and unconstrained still face images share sim-

ilar challenges, video sequences from CCTV are generally

of lower resolution and may contain noisy frames with poor

1Close to 200 million surveillance cameras have already been installed

across China, which amounts to approximately 1 camera per 7 citizens.

Approximately 40 million surveillance cameras were active in the United

States in 2014, which amounts to approximately 1 camera per 8 citi-

zens [42].

Figure 1: Example video frames of three subjects from IJB-S

dataset [21]. Each subject has two rows of frames.

quality and unfavorable viewing angles (See Figures 1 and 5

(d)). Such noisy frames will undermine the overall perfor-

mance of video face recognition if we directly use recogni-

tion methods developed for still images.

In this paper, we address unconstrained template-based2

face recognition. Specifically, we consider the following

five protocols in surveillance scenarios [21] (Figure 2): (i)

surveillance-to-still, where the query is a surveillance video

and each subject has a single frontal still image in the

gallery; (ii) surveillance-to-booking, where each subject has

a booking template (a set of still face images captured at

enrollment) in the gallery; (iii) surveillance-to-surveillance;

(iv) multi-view surveillance-to-booking, where the query is

a collection of surveillance videos of one subject; (v) UAV

surveillance-to-booking, where the query is a video cap-

tured by a small fixed-wing aerial vehicle.

State-of-the-art methods for face recognition in video

represent a subject’s face as an unordered set of vectors and

the recognition is posed as estimating the similarity between

face templates [1, 41, 5, 14, 50]. However, this is not com-

putationally efficient as one needs to compare similarities

on all feature vectors between two face templates. Thus, it

2A template is a set of images from the same person, first introduced in

the IARPA Janus Benchmark [22]
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Figure 2: Surveillance video protocols in IJB-S dataset [21]. The queries are on the left and the galleries are on the right of the arrow. In each protocol, the

query is either one surveillance video or multiple videos of the same person, which needs to be compared with every item in one of the three galleries types

(still images, surveillance videos, and booking photos). The red boxes are used to highlight the ground truth identity. Since faces are difficult to detect in

UAV videos, we only show examples for four of the five protocols.
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Figure 3: Difference between naive LSTM and the proposed Multi-mode

Aggregation Recurrent Network (MARN). LSTM learns new representa-

tions from scratch leading to overfitting. However, MARN utilizes pre-

trained embeddings and integrates them using context information.

is preferable to aggregate feature vectors into a compact fea-

ture vector for each template [46, 44, 34, 38, 51, 26, 33, 27].

Most methods aggregate image sets based on the quality of

each image or video frame. but ignore the contextual infor-

mation and multi-modal attributes in video frames.

To exploit information in a set of face images or video

frames, we propose a Multi-mode Aggregation Recurrent

Network (MARN) for low quality video face recognition.

RNN models capture information from sequential data

via a memory mechanism to utilize the context informa-

tion. However, directly using a RNN for learning video

face representations could drop the discriminative features

learned by embedding CNNs. In contrast, MARN learns

to aggregate the embeddings of face images by leverag-

ing the context-awareness of RNNs. Moreover, to dis-

entangle features of different attributes or capture condi-

tions, MARN introduces a multi-mode attention learning

that maps weight vectors into multiple subspaces and ag-

gregates features in each subspace separately.

Experimental results on the real-world low quality IJB-S

dataset [21] and other template/video matching benchmarks

show that the proposed MARN outperforms the face recog-

nition performance of average pooling and other state-of-

the-art aggregation methods. Specific contributions of the

paper are listed below:
• A Multi-mode Aggregation Recurrent Network

(MARN) that aggregates deep feature vectors based

on contextual quality information in various modes

(weights to aggregate image-based feature vectors

instead of directly learning an aggregated repre-

sentation), resulting in discriminative video face

representations.

• The attention scores of one video frame provided by

MARN present the relative discrimination power of

different modes given the other frames in the video.

• State-of-the-art performance on a low quality surveil-

lance benchmark IJB-S [21] and comparable results

on two other face recognition benchmarks, YouTube

Faces [43], and PaSC [4].

2. Related Work

2.1. Facial Analysis with RNN

Existing approaches for facial analysis of videos have

utilized RNNs to account for the temporal dependencies

in sequences of frames. For example, Gu et al. [12] pro-

posed an end-to-end RNN-based approach for head pose

estimation and facial landmark estimation in videos. As

for recognition tasks, Ren et al. [35] attempted to address

large out-of-plane pose invariant face recognition in image

sequences by using a Cellular Simultaneous Recurrent Net-

work (CSRN). Graves et al. [11] employed RNN that ac-

cepts a sequence of face features as input for facial expres-

sion recognition. RNN has also been widely used for face

emotion recognition [49, 9, 8] in videos.

2.2. Video Face Recognition

State-of-the-art methods for video face recognition can

primarily be put into three categories: space-model, clas-

sifier-model, and aggregation-model. Many traditional



space-models attempt to estimate a feature space where all

the video frames can be embedded. Such a feature space

can be represented as probabilistic distribution [37, 1], nth-

order statistics [28], affine hulls [5, 17, 47], SPD matri-

ces [19], and manifolds [23, 14, 41]. Classifier-models [43,

30] learn face representations based on videos or image

sets whereas aggregation-models strive to fuse the identity-

relevant information in the face templates/videos to attain

both efficiency and recognition accuracy. Best-Rowden et

al. [3] showed that combining multiple sources of face me-

dia 3 boosts the recognition performance for identifying a

person of interest. Most recent methods aim to aggregate a

set of deep feature vectors into a single vector. Compared

to simply averaging all vectors [7, 6], fusing features with

the associated visual quality shows more promising results

in recognizing faces in unconstrained videos. Ranjan et

al. [32] utilized face detection scores as measures of face

quality to rescale the face similarity scores. Yang et al. [46]

and Liu et al. [27] proposed to use an additional network

module to predict a quality score for each feature vector

and aggregates the vectors weighted the assigned scores.

Gong et al. [10] extended the aggregation model by con-

sidering component-wise quality prediction. Rao et al. [34]

used LSTM to learn temporal features while use reinforce-

ment learning to drop the features of low-quality images.

[26] proposed a dependency-aware pooling by modeling the

relationship of images within a set and using reinforcement

learning for image quality prediction. None of these ap-

proaches have addressed redundancy in the video frames.

3. Motivation

Image quality of video frames obtained from deployed

CCTV cameras is significantly lower than still images cap-

tured under constrained conditions. In addition, video

frames may suffer severe motion blur and out-of-focus blur

due to camera jitter and small oscillation in the scene. One

way to address the large variations in face quality is to select

key frames and eliminate poor quality images [31]. Has-

sner et al. [15] found that the recognition performance is

undermined by removing low quality images.

To exploit information of an identity whose face im-

ages are sampled sequentially from a video, one simple

idea is to linearly aggregate feature vectors extracted from

images in a template by an adaptive weigthting scheme

to generate a compact face representation for the tem-

plate [46, 27, 45, 10]. We can formulate the feature ag-

gregation in a probabilistic manner. The face space of noisy

embeddings extracted by using a given facial representation

3Face media refers to a collection of sources of face information, for

example, video tracks, multiple still images, 3D face models, verbal de-

scriptions and face sketches.

model can be formulated as:

p(f |I∗,F∗) =

∫
p(f |i, I∗,F∗)p(i|I∗,F∗)di, (1)

where I∗ = {i1, i2, · · · , iM} is the set of training images to

learn the model parameters, F∗ = {f1, f2, · · · , fM} is the

collection of noisy embeddings of the training data (feature

vectors extracted from the image set I∗), p(f |i, I∗,F∗) is the

uncertainty of embedding estimation given the training im-

ages, and p(i|I∗,F∗) is the probability density of face im-

ages in the underlying manifold of noiseless embeddings.

In addition, we assume that there is a deterministic func-

tion that maps the face images of each identity to the corre-

sponding noiseless embedding µ.

Let T = {i1, i2, · · · , iN} denote a template of one iden-

tity, where N is the number of images in the template. Since

N can be large in case of videos, the noiseless embedding

µ can be approximated by the expectation Ê(FT ):

µ ≈ Ê(FT ) =
N∑
i=1

p(f |I∗,F∗)fi, (2)

where FT is the collection of noisy embeddings in the tem-

plate T . However, estimating the probabilistic density of

face embeddings that can account for various sources of

noise in face representations is challenging. An alterna-

tive solution is to estimate an adaptive scalar weight based

on each feature vector (noisy embedding) and the approxi-

mated template embedding is the linear combination of the

vectors based on the weights [46], [27]:

rT =

N∑
i=1

g(fi)fi, (3)

where rT is the template representation, and g(fi) is the pre-

dicted weight for the feature vector of the ith image in the

template. Although this approach can reduce feature noise

to some extent, the output weight is only inferred from the

current feature vector. For videos captured by surveillance

cameras, most of the face frames are corrupted and only a

small proportion is of high quality. Given that frame quali-

ties are seriously unbalanced, such a weighing scheme may

still be affected by observational error. This motivated us

to estimate quality weights based on context information by

using all the images in a template.

In this paper, we propose an RNN guided feature ag-

gregation network which predicts a quality weight for each

deep feature vector based on the other vectors in the same

template. Similar to [10], the proposed RNN-based model

generates different weights for each component (dimen-

sion) of the deep feature vectors. Hence each component

of the template representation is:

rTj =

N∑
i=1

g(f1j , f2j , · · · , fNj)fij , (4)



where rTj is the jth component of the template represen-

tation, and g(f1j , f2j , · · · , fNj) is the predicted weight for

the jth component of the feature vector of the ith image in

the template. By using context information, the overall in-

fluence of poor quality components is diminished; features

with relatively large information can still benefit the final

representation in spite of their lack of quantity.

Following [50], we consider multi-mode feature aggre-

gation, where the weight vectors are mapped into a num-

ber of attention groups, instead of learning a single pooling

mask. Each distinct group learns to employ features of a

certain face attribute or condition that presents small intra-

mode variance. In this way, features are disentangled into

multiple modes increasing the effectiveness of aggregation.

4. Approach

4.1. Overall Framework

The overall framework is presented in Figure 4. A base

CNN model is incorporated for extracting features from

each face image and then MARN aggregates these features

by considering information of each mode in the whole video

sequence. We first train the base CNN on a large dataset of

still face images, namely MS-Celeb-1M [13]. The learned

model is used to extract the features from a video face

dataset, UMDFaceVideo [22], which is further used to train

the MARN to adaptively predict multiple weights for each

deep feature. The feature vectors are aggregated in each in-

dividual mode and then concatenated into a single compact

vector as the template representation.

4.2. Multi-mode Aggregation Recurrent Network
(MARN)

Let F = {f1, f2, · · · , fN} be the set of CNN feature vec-

tors representing face images in a template T , where each

fi is a D-dimensional vector and N is the number of face

images in the template. A hidden state ht of LSTM at time

step t is computed based on the hidden state at time t − 1,

the input ft and the cell state Ct at time t:

ht = σ(Wo[ht−1, ft] + bo) · tanh(Ct), (5)

where σ(·) is the sigmoid function and Wo and bo are the

parameters of the sigmoid gate. The attention vector of the

kth mode for the tth feature vector in F is then inferred

by the subsequent fully-connected layer: H(ht) = qk
t ,

where the dimensionality of qk
t is compressed to D/K and

K is the number of aggregation modes. Correspondingly,

the tth feature vector is also compressed to D/K dimen-

sions by H(ft) = fkt for component-wise feature aggrega-

tion. A softmax operator normalizes all attention vectors

of the same mode in the template along each component.

Specifically, given a set of attention vectors of kth mode

{qk
1 ,q

k
2 , · · · ,q

k
N}, the jth component of the tth vector is

normalized by wk
tj =

exp(qktj)∑
N
i=1

exp(qk
ij
)
. The template represen-

tation of kth mode is the weighted mean vector of elements

in F:

rk =
N∑
i=1

fki ⊙wk
i , (6)

where ⊙ denotes the element-wise multiplication, and the

final template representation is the concatenation of all K
rk to obtain a D-dimensional feature vector for template T
(rT ).

4.3. Network Training

The architecture of MARN consists of a bi-directional

LSTM networks with 2 ∗ K layers and a fully-connected

layer. The fully-connected layer is needed to project

both CNN feature vectors and LSTM embeddings into

the target dimension. To optimize the weight prediction,

we adopt a template-based triplet loss. The triplet com-

prises one anchor template, one positive template of the

same subject as the anchor, and one negative template of

a different identity. All the templates are randomly se-

lected to form a mini-batch and average hard triplet is

utilized. Here, the hard triplet means the non-zero loss

triplets [16]. The loss function is formulated as Ltriplet =
1
M

∑M

i=1 [‖r
Ta

i − r
Tp

i ‖
2

2 − ‖rTa

i − rTn

i ‖
2

2 + β]
+

, where M
is the number of hard triplets in a mini-batch, and

{rTa

i , r
Tp

i , rTn

i } stands for the ith triplet with anchor, posi-

tive, and negative template representations derived by Equa-

tion 6. [x]+ = max(0, x), and β is the margin parameter.

5. Experiments

5.1. Datasets and Protocols

We train MARN on UMDFaceVideo dataset [2], and

evaluate it on three other video face datasets (IJB-S [21],

YTF [43], and PaSC [4]) without further fine-tuning.

UMDFaceVideo contains 3,735,476 annotated video

frames extracted from a total of 22,075 videos of 3,107 sub-

jects. The videos are collected from YouTube. The dataset

is only used for training.

IJB-S is a surveillance video dataset collected by IARPA

Janus program for unconstrained face recognition system

evaluation. The dataset is composed of 350 surveillance

videos with 30 hours of recording in total, 5,656 enroll-

ment images, and 202 enrollment videos. The videos were

captured under real-world environments to simulate law en-

forcement and security applications. The evaluations con-

sist of five identification experiments as mentioned in sec-

tion 1. We report the close-set Identification Rate (IR) and

open-set performance in terms of TPIR @ FPIR 4. Due to

the poor quality of video frames, only 9 million out of 16

4True positive identification rate and false positive identification rate.
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Figure 4: Overview of the proposed MARN. A sequence of face video frames are first input to a CNN model to extract deep face features.

This is followed by bidirectional a LSTM model to predict multi-mode attention scores for each feature. The network finally outputs a

single feature vector as the face representation of the set of frames for face recognition.

(a) YoutubeFaces [43] (b) PaSC [4] (c) UMDFaceVideo [22] (d) IJB-S [21]

Figure 5: Example images from four different video datasets. YoutubeFaces, PaSC and UMDFaceVideo contain only video frames. IJB-S

includes both still images and real-world videos. The first column of IJB-S shows still images of three subjects, followed by video frames

of the respective subjects in the next three columns.

million faces could be detected. Failure-to-enroll face im-

ages do not get utilized in template feature aggregation, and

we use zero-vector as the template representation if no faces

can be enrolled in the template.

YTF contains 3,425 videos of 1,595 different subjects.

Unlike surveillance scenario of IJB-S, most videos in YTF

are obtained from social media, where faces are more con-

strained and have higher quality. We report 1:1 face verifi-

cation rate of the specific 5,000 video pairs.

PaSC contains 2,802 videos of 265 subjects. The dataset

consists of two subsets of videos captured by control 5 and

handheld cameras 6, respectively.

5.2. Implementation Details

Pre-processing: All the faces in the video are automat-

ically detected by MTCNN [48]. Detected face regions

are cropped from the original images and are resized into

112×96 after alignment by similarity transformation based

5A high quality Panasonic camera on a tripod
6Five hand held cameras with various resolutions

on five facial landmarks 7 provided by MTCNN.

Training: Our base CNN model is a 64-layer residual

network [25] trained on a clean version8 of MS-Celeb-1M

dataset [13] to learn a 512-dimensional face representation.

The parameters of MARN are then trained on UMDFace-

Video [2] with Adam optimizer, whose first momentum is

set to 0.9 and the second momentum is 0.999. The margin

of triplet loss is 3.0. During training, we define a template

as the frames in the same video of one subject; the number

of frames in each template is fixed. Each mini-batch incor-

porates 384 templates that are randomly sampled from 128

subjects with 32 images per template. The model is trained

for 20 epochs. We remove the subjects which appear in the

testing datasets; a small subset of the training set is held as

validation set for tuning the hyper-parameters. We conduct

all the experiments on a Nvidia Geforce GTX 1080 Ti GP;

the average time of feature extraction is 1ms per image.

7Left eye, right eye, center of nose, left and right edge of mouth
8https://github.com/inlmouse/MS-Celeb-1M_

WashList



5.3. Baseline

We design three baseline experiments to evaluate the

proposed network, MARN.

• AvgPool uses average pooling of the base CNN fea-

tures to generate the template representation.

• LSTM is a two-layer LSTM network to predict

the template representation directly without attention

based feature aggregation. The output of the last cell

is used as the representation.

• QualityPool is a two-layer fully-connected network

with ReLU as the activation function in between. Sim-

ilar to previous work [46, 27, 10], the model also pre-

dicts quality weights and takes the weighted sum of all

vectors as the template representation.

5.4. Ablation Study on Multi-mode Attention

In this section, we analyze the impact of using differ-

ent number of modes for MARN. The recognition results

on IJB-S dataset are reported in table 1. We observe that

models with small or large number of modes (K) lead to

poor identification performance. For small K values, the

intra-mode variations are large. On the other hand, a large

number of modes results in over-compressed observation

vectors that may not provide sufficiently discriminative fea-

tures. In the following experiments, we use the 4-mode

MARN by default.

Table 1: Different number of modes on IJB-S.

Test Protocol K
a

Closed-set (%) Open-set (%)

Rank-1 Rank-5 1.0 % FPIR

SV* to B†

1 58.52 65.21 31.25

2 58.03 65.78 30.64

4 59.26 65.93 32.07

8 59.19 64.59 31.32

16 57.86 64.16 31.88

SV* to SV*

1 21.96 33.79 0.21

2 22.04 34.05 0.11

4 22.25 34.16 0.19

8 19.87 31.93 0.09

16 19.22 32.57 0.06

a The number of aggregation modes
* Surveillance videos
† Booking images

5.5. Qualitative Analysis of IJB-S

To evaluate the effect of context-aware pooling by

MARN, we visualize the attention distribution on two ex-

ample video sequences from IJB-S and PaSC. The two se-

quences are composed by randomly sampling 16 frames

from the original video. Then the two models, Quality-

Pool and MARN, are used to compute the attention for the

images in the sequence. For visualization purpose, the at-

tention vector (for different components) of each image is

averaged into one scalar. Two example results are shown

in Figure 6. While QualityPool can effectively predict the

quality of the given image, but without context information,

it is easily distracted when the number of identical (with lit-

tle change in the frames) video frames is large. The first 6
frames in the IJB-S video are nearly identical in content, but

overall they have a larger weight than the two higher quality

faces. Similarly, in the PaSC case, the last 5 frames almost

contain the same information, but overall they receive 41%
attention. However, MARN is robust against redundancy.

5.6. Quantitative Analysis on IJB-S

Table 2: Comparisons of MARN with baselines on IJB-S.

Test Name Method
Closed-set (%) Open-set (%)

Rank-1 Rank-5 1.0 % FPIR

SV to still

C-FAN [10] 50.82 61.16 16.44

AvgPool 50.80 59.60 11.60

LSTM 2.90 17.46 0.12

QualityPool 51.61 62.78 17.33

MARN 58.14 64.11 21.47

SV to B

C-FAN [10] 53.04 62.67 27.40

AvgPool 50.82 59.73 19.19

LSTM 4.49 16.40 1.31

QualityPool 52.66 62.95 25.60

MARN 59.26 65.93 32.07

C-FAN [10] 96.04 99.50 70.79

Multi-view AvgPool 96.53 98.51 66.33

LSTM 4.95 19.80 3.21

SV to B QualityPool 97.03 99.50 75.62

MARN 98.87 99.50 76.89

SV to SV

C-FAN [10] 10.05 17.55 0.11

AvgPool 7.71 14.34 0.08

LSTM 11.13 21.07 0.08

QualityPool 5.69 9.43 0.09

MARN 22.25 34.16 0.19

C-FAN [10] 7.59 12.66 0.00

UAV AvgPool 2.53 6.33 0.00

LSTM 1.30 2.66 0.00

SV to B QualityPool 7.59 10.85 0.00

MARN 7.63 12.28 3.13

Table 2 reports identification results on the five protocols

of the IJB-S dataset. The proposed approach achieves bet-

ter performance than the baselines in nearly all cases. In

particular, the proposed approach outperforms C-FAN [10]

by 11.91% and 15.24% on the closed-set surveillance-to-

surveillance protocol at rank 1 and rank 5, respectively.

Moreover, with the proposed technique, the open-set proto-

col results are also improved by 3.62%, 3.85%, and 5.45%
on surveillance-still, surveillance-to-booking, and multi-

view surveillance-to-booking at 1% FPIR, respectively. It

is worth noting that MARN is trained on video frames

data with temporal information. However, the booking im-

ages in IJB-S are still face images with high quality, on

which the quality prediction is not as useful as surveillance
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Figure 6: Attention distribution of one-mode MARN and quality-aware pooling on two video sequences from IJB-S and PaSC. The summation of the weight

percentage is given below each clustering of the frames. The darker the blue box is, the higher the attention weight of the corresponding frames. Although

“QualityPool” is able to assign larger weights to higher quality images, it can be distracted by redundant low-quality images if there is a sufficiently large

fraction of them (red numbers). MARN stays focused on high quality frames via the context information. The attention is computed by averaging across all

components of the weight vector.

Table 3: Verification Accuracy on YTF

Method Accuracy (%) Method Accuracy (%)

EigenPEP [24] 84.8± 1.4 DeepFace [40] 91.4± 1.1

DeepID2+ [39] 93.2± 0.2 C-FAN [10] 96.50± 0.90

FaceNet [36] 95.52± 0.06 DAN [33] 94.28± 0.69

NAN [46] 95.72± 0.64 QAN [27] 96.17± 0.09

AvgPool 96.24± 0.96 LSTM 60.00± 2.81

QualityPool 96.38± 0.95 MARN 96.44± 0.99

frames. Therefore, for booking images, we use average

pooling instead of quality aggregation. In comparison with

the three baseline methods, MARN achieves higher identifi-

cation rates than LSTM on all five protocols. Obviously, the

LSTM over fits to the video frames in UMDFaceVideo and

is not able to generalize to the booking images. Quality-

Pool achieves similar performance as C-FAN, since both of

the approaches use component-wise attention scheme. Both

QualityPool and the proposed MARN outperform average

pooling of the base CNN features.

5.7. Performance Comparison on YTF and PaSC
Table 3 reports the face verification performance of

the proposed method and other state-of-the-art methods on

YTF dataset. MARN outperforms all of our three baselines.

The performance of MARN is slightly higher than previ-

ous approaches such as NAN [46] and C-FAN [10]. Since

YouTube Face videos are not captured by typical surveil-

lance cameras, instead, most of them are recorded by pro-

fessional photographers. As a result, they are free from very

low quality frames. For this reason, the proposed context-

aware attention network does not offer obvious advantages

Table 4: Comparisons of the verification rate (%) on PaSC

at a false accept rate (FAR) of 0.01.

Method Control Handheld

DeepO2P [29] 68.76 60.14

SPDNet [18] 80.12 72.83

GrNet [20] 80.52 72.76

Rao et al. [34] 95.67 93.78

TBE-CNN [7] 95.83 94.80

TBE-CNN + BN [7] 97.80 96.12

AvgPool 91.27 74.30

LSTM 3.07 1.28

QualityPool 96.48 92.39

MARN 96.67 95.13

over some of the state-of-the-art approaches.

Table 4 reports the verification results on PaSC dataset.

In comparison with YTF, PaSC is more challenging since

the faces in the dataset have full pose variations. By com-

paring the proposed MARN with the three baseline models,

we can observe that combining context information with at-

tention aggregation is capable of improving the discrimina-

tive power of video face representations. We can also ob-

serve that the proposed approach achieves comparable per-

formance to other state-of-the-art methods.

6. Conclusions

To address face recognition in low quality unconstrained

surveillance videos, we propose a Multi-mode Aggrega-

tion Recurrent Network (MARN) that adaptively predicts

context-aware quality weight vectors for each deep feature

vector extracted by CNN face model. Each face in a video



is represented as a compact deep feature vector aggregated

by MARN under the weighted attention scheme. Experi-

mental results on three video face datasets, i.e., IJB-S, YTF,

and PaSC show that the attention values provided by the

proposed MARN enables utilizing discriminative features

while discarding the noisy features by leveraging the con-

text information in the video learned by LSTM. Our method

shows advantages on video face benchmarks, especially low

quality videos in IJB-S benchmark.
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