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Abstract

Neural Networks have been shown to be sensitive to

common perturbations such as blur, Gaussian noise, rota-

tions, etc. They are also vulnerable to some artificial ma-

licious corruptions called adversarial examples. The ad-

versarial examples study has recently become very popular

and it sometimes even reduces the term ”adversarial robust-

ness” to the term ”robustness”. Yet, we do not know to what

extent the adversarial robustness is related to the global ro-

bustness. Similarly, we do not know if a robustness to vari-

ous common perturbations such as translations or contrast

losses for instance, could help with adversarial corruptions.

We intend to study the links between the robustnesses of neu-

ral networks to both perturbations. With our experiments,

we provide one of the first benchmark designed to estimate

the robustness of neural networks to common perturbations.

We show that increasing the robustness to carefully selected

common perturbations, can make neural networks more ro-

bust to unseen common perturbations. We also prove that

adversarial robustness and robustness to common pertur-

bations are independent. Our results make us believe that

neural network robustness should be addressed in a broader

sense.

1. Introduction

Deep Neural Networks have been shown to be very ef-

ficient in image processing tasks such as content classifi-

cation [15], face recognition [31] or object detection [24].

Despite their good performances on academic datasets, ar-

tificial neural networks are vulnerable to common perturba-

tions like blur, lightning variations or colorimetry changes

[14, 3]. These perturbations are often encountered in indus-

trial applications and can make some models useless.

Some techniques can be used to increase neural network

robustness to such perturbations. Data augmentation ap-

proaches [28] or fine tuning techniques [36] are broadly

used to protect neural networks. Regularization techniques

in general are useful to build models robust to traditional

perturbations [35]. Despite recent great advances, neural

networks are not successful enough at dealing with cor-

rupted images coming from real world applications [4].

Deep neural networks are also vulnerable to slightly

modified samples called adversarial examples [30]. They

consist in an addition of malicious patterns that can com-

pletely disturb the behavior of a neural network.

A lot of defense strategies have been proposed to make

neural networks more robust to adversarial examples. Dis-

tillation learning can be used to make neural networks more

stable [23]. Introducing adversarial examples in the train-

ing procedure can decrease neural networks sensitivity to

these attacks [22]. Additional modules such as autoencoder

[9], or GAN [26], have been used to protect neural networks

from adversarial corruptions. Regularization is also a stan-

dard procedure to make neural networks more robust to ad-

versarial samples [25]. However, none of these techniques

succeeds in making a neural network perfectly invariant to

adversarial examples.

In some recent studies, the expression ”noise robustness”

or the expression ”adversarial robustness” are reduced to

”robustness” only [2, 20]. However, we do not know to

what extent these fields are linked. Some recent works show

that the salient points used by adversarially trained models

to understand images are close to the ones used by humans

[33]. Then, one could expect these models to be robust to

the same kinds of perturbations as humans. We wonder if

making neural networks more robust to adversarial pertur-

bations could also make them more robust to common per-

turbations and vice versa. To better understand neural net-



work global robustness, we want to study the hypothetical

correlations between different kinds of robustnesses.

As part of our studies, we provide a thorough method to

build a set of common perturbations in order to estimate the

robustness of neural networks. We carry out experiments

about making neural networks robust to unseen common

perturbations. Finally, we study eventual correlations be-

tween the adversarial robustness and the robustness to com-

mon perturbations.

2. Background and Related Works

2.1. Common perturbations

A few academic datasets are used to compare state of

the art networks: [15, 21, 18]. Academic datasets are re-

ally useful to researchers, but they do not necessarily cover

the various perturbations encountered in real application

cases. In the CelebA dataset for instance, lightning con-

ditions, face positions and colorimetry are constant [21].

But in real application cases, various transformations can

be introduced by sensor characteristics, lighting conditions

or motions. Image processing or data transmission can also

introduce unexpected distortions. We call these distortions

common perturbations. We consider that common pertur-

bations are transformations that are often encountered in in-

dustrial contexts but which are generally absent from aca-

demic datasets. This definition includes traditional addi-

tive noises such as Gaussian or salt-pepper noises. It also

covers global changes in lightning conditions, contrast or

colorimetry. Geometric transformations (translations, rota-

tions...) are also included in this definition.

2.2. Adversarial Examples

Adversarial perturbations are small artificial corruptions

introduced into clean samples so as to fool deep neural net-

works. A lot of attacks can potentially harm most of the

neural networks: [8, 2, 1]. In our study, we choose to con-

sider four of the most broadly used attacks: FGSM, PGD,

LL-FGSM and LL-PGD. They are efficient, and can be eas-

ily computed to test the neural network robustness.

FGSM (Fast Gradient Sign Method) is one of the sim-

plest method used to build adversarial examples [8]:

xadv = x+ ǫ ∗ sign(∇xL(x, ltrue)) (1)

With x a sample to transform, ltrue the corresponding

label and L the cost function of the model. We note ǫ the

amount of introduced adversarial perturbation.

PGD (Projected Gradient Descent) is an iterative version

of FGSM [1]:

xk+1 = xk +
ǫ

n
∗ sign(∇xL(x

k, ltrue)) (2)

Starting with x0 = x, the upper expression is computed

n times to craft an adversarial example.

Instead of increasing the value of the loss function, it is

possible to target a class in order to make a neural network

associate the received sample with the targeted class. In

particular, LL-FGSM (Least Likely FGSM) is a variation

of FSGM that targets the class for which the targeted neural

network has given the lowest score [1]. Considering lleast,

the label corresponding to the lowest score given by a neural

network, an adversarial example is crafted by computing the

following formula:

xadv = x− ǫ ∗ sign(∇xL(x, lleast)) (3)

Similarily to LL-FGSM, LL-PGD is a variation of PGD

that intends to make neural networks give a high score to

the label lleast [1]. Starting with x0 = x, the adversarial

example is built by computing several times the following

expression:

xk+1 = xk −
ǫ

n
∗ sign(∇xL(x

k, lleast)) (4)

When the targeted model is known (we have access to

its architecture and weights), we can directly use it to com-

pute the gradient required for an adversarial attack. In this

case, it is a white-box attack. These attacks are particularly

harmful because they are built specifically to fool a precise

model.

When the targeted model is unknown, the gradient used

for the adversarial example crafting is computed with a dif-

ferent model. This is called a black-box attack. The model

used for the gradient computing has a different architecture

and different weights than the attacked model. Adversarial

examples are transferable among neural networks [30]. It

means that attacks built on a network generally fool other

networks, even if they are very different. Then, black-box

attacks remain harmful on most models. Making a neural

network robust to any black-box attack is a challenging is-

sue.

2.3. Data Augmentation

Data augmentation is a technique used to make a neu-

ral network more robust to a kind of perturbation. It con-

sists in introducing corrupted samples into the training set.

In other words, a neural network that is trained with data

augmentation, learns on clean samples but also on samples

modified with a perturbation. At the end of the training,

the augmented neural network has been made robust to the

perturbation used during the training [28]. When the pertur-

bation used during the training is an adversarial attack, the

data augmentation procedure is called adversarial training

[8].



2.4. Robustness

The definition of robustness is not a consensus. It can

refer to different concepts depending on the context. In this

paper, the notion of robustness is considered in relation with

some perturbations. We explicitly indicate the perturbations

towards which the robustness is considered. For instance

we study the robustness to translations or the robustness to

adversarial examples etc.

We note Aclean, the accuracy of the neural network N on

a test set. We consider some perturbations φ which are used

to modify the samples of this test set. Aφ is the accuracy

of the model on the test set modified with a φ perturbation.

We measure the robustness of N to a φ perturbation with

the expression:

R
φ
N =

Aφ

Aclean

(5)

We call it a robustness score and it measures the accuracy

loss due to the φ perturbation. The more the robustness

score of a model is close to one, the more it is robust to the

considered perturbation. To measure the robustness score

of a neural network to a set of perturbations S, we use:

RS
N =

∑

φ∈S

R
φ
N (6)

2.5. Related Works

Benchmark to estimate the robustness of neural net-

works.

In [11], the ImageNet-C benchmark is used to measure the

robustness of neural networks to common perturbations.

Their benchmark is built on a set of common perturbations

on which neural networks should be tested. Unfortunately,

some kinds of perturbations in the set are over-represented

and some others are not taken into account. In particular,

ImageNet-C contains three kinds of noises and four kinds

of blurs, but occlusions, translations and rotations are not

present in it. Then, we decided to build another benchmark,

more representative of common perturbations encountered

in real application cases. The method used to build it is

given in Section 3.

The robustness to adversarial examples of a neural

network, is usually measured by testing the performances

of this network against several kinds of adversarial attacks

[32, 16, 26].

Links between adversarial robustness and ro-

bustness to common perturbations.

A few works study the links between the adversarial

robustness and some specific noise robustnesses. For

instance, relations between adversarial perturbations and

random noises are established in [7, 13]. These relations

prove that neural networks can be robust to random noises

and remain vulnerable to adversarial attacks.

Links between small geometric transformations and ad-

versarial examples have been established in [34, 6]. It is

argued that the robustness to additive adversarial perturba-

tions and the robustness to rotations and translations are or-

thogonal concepts.

A few links between some common perturbation robust-

nesses and some adversarial attack robustnesses are estab-

lished in these works. However, they compare adversar-

ial robustness with the robustness to a few specific com-

mon perturbations. In this study, we consider robustness to

common perturbations in a broad sense: most of the com-

mon perturbations are included. We want to know if the

global adversarial robustness could help neural networks

to be globally more robust to common perturbations and

conversely. We intend to enlarge the scope of the previous

works to know more about the way the neural network ro-

bustnesses are related to each other.

3. Construction of the Common Perturbation

Benchmark

3.1. Experiment Set-up

We choose the ImageNet dataset to carry out our exper-

iments [15]. ImageNet is widely used, challenging and big

enough for achieving adversarial trainings [27]. Adversarial

training and data augmentation are computationally expen-

sive, they increase the training times of neural networks. To

speed up the trainings, we decided to use a subset of Ima-

geNet. It is composed of 5 super-classes, each regrouping

several ImagetNet classes. The chosen classes are: bird,

dog, insect, primate and fish. They correspond respectively

to the ImageNet class ranges 80-100, 151-268, 300-319,

365-382 and 389-397. The choice of the classes was made

by drawing inspiration from the experiments conducted in

[33]. We insure the size equality of the classes by split-

ting the biggest classes to fit the smallest one. The result-

ing classes each contain ten thousand images. The obtained

dataset is more suitable for achieving dozens of trainings

in a reasonable amount of time, without loosing generality

regarding the robustness study we want to conduct.

We use the ResNet-18 and ResNet-50 neural networks

[10] for our studies. The results shown in the Tables of the

paper have been obtained with ResNet-18. Yet, the same

experiments conducted with ResNet-50 lead us to the same

conclusions than the ones found with ResNet-18. Those

models are trained to classify the images extracted from

our ImageNet sub-dataset. We use a stochastic gradient de-

scent with a learning rate of 0.01. The learning rate is di-

vided by 10 when the training accuracy reaches a plateau.

We use a weight decay of 0.0001 and a batch size of 128.

The loss used is a cross-entropy function. We call the stan-



dard model, a ResNet-18 trained with these hyperparame-

ters without using any data augmentation. It has an accuracy

Aclean of 0.83 on the ImageNet sub-dataset. We also train

a VGG network [29] and use it to get the gradient for the

black-box adversarial attacks. For the trainings and the tests

introducing adversarial examples, the amount of the corrup-

tion (ǫ) of each example, is randomly chosen. It varies from

0.01 to 0.1 for image pixel values that range from -1 to 1.

3.2. Perturbation Selection Criteria

To conduct the study, we need a method to estimate the

robustness to common perturbations of neural networks. A

natural way to do this is to estimate the network robustness

to diverse kinds of common perturbations. The quality of

the estimation greatly depends on the relevance of the cho-

sen perturbations. We build a set of perturbations based on

three selection criteria: completeness, virulence and non-

overlapping.

Completeness. A complete set of common perturbations

should cover most of the perturbations commonly encoun-

tered in real world applications. To be considered robust to

common perturbations, a neural network should be robust

to as many common perturbations as possible. To build the

most exhaustive list of perturbations, we gather ideas from

several sources. We choose perturbations encountered in

various industrial applications: video surveillance, produc-

tion line, autonomous driving, etc... We also get inspired

by some other works [11, 14]. At this step, we obtain the

following set of perturbations: Gaussian noise, salt-pepper

noise, speckle noise, defocus blur, motion blur, zoom blur,

glass blur, rotations, translations, vertical flips, obstruc-

tions, brightness variations, contrast loss, colorimetry vari-

ations, interference distortions, quantizations and jpeg com-

pression.

The Gaussian noise may appear because of sensors high

temperature or poor illumination during acquisition. Salt-

pepper noise is generally due to errors caused by a conver-

sion from an analog signal to a digital signal. Speckle noise

often corrupts images captured by radars or medical imag-

ing systems. Defocus blur appears because of bad camera

focusing. Motion blur is caused by camera motions or dis-

placement of observed objects. Zooms of cameras can in-

troduce zoom blur. Glass blur is often observed because of

translucent obstacles. The orientation and the position of

observed objects can change depending on the context. For

instance some pieces in a production line can be displaced

or be inside out. We model this with translations, rota-

tions and vertical flip transformations. Brightness, contrast

and colorimetry vary with lightning conditions and sensors

characteristics. Electrical interferences may appear during

image capturing and perturb images. We model these inter-

ferences with small periodic artifacts. Quantization causes

rounding errors that modify images. Some artifacts can ap-

pear because of jpeg compressions.

Virulence. Some perturbations are very virulent and

disturb significantly neural networks. Some other corrup-

tions are harmless: they do not cause a significative drop in

model performances. Then, being robust to harmless per-

turbations is not an interesting attribute. We test the ro-

bustness of the standard model with all the perturbations

selected in the previous paragraph. Most of these perturba-

tions are virulent. For instance, the robustness score mea-

sured for Gaussian noise is 0.81. However, for quantiza-

tions or jpeg compression distortions, the measured robust-

ness scores are above 0.97. We consider both corruptions

not virulent. They are removed from the set of perturba-

tions.

Non-overlapping. The robustnesses to two distinct per-

turbations can be correlated. Making a neural network more

robust to a perturbation can also make it more robust to an-

other perturbation and conversely. In this case, we consider

that these robustnesses overlap. The presence of some over-

lapping perturbation robustnesses can unbalance the sum

computed with the formula (5). If a kind of robustness is

over-represented, it distorts the robustness measure.

We conduct experiments to show that the robustnesses

to traditional noises overlap. We train three identical

Resnet-18, respectively augmented with Gaussian noise,

salt-pepper noise and speckle noise. For each model, its ro-

bustness score towards each noise is computed: results are

presented in the left part of Table 1. Each line of the table

except the standard one refers to an augmented model. Each

column of the table refers to the noise used to compute the

robustness scores of the line. For instance, the model aug-

mented with a speckle noise, tested on samples corrupted

with a salt-pepper noise, has a robustness score of 0.96. Ev-

ery table of the paper is built this way: the lines refer to

various models, the columns refer to the perturbations to

which the robustnesses of the networks are evaluated.

In our noise study, we observe that if a model is robust

to either the Gaussian noise, the salt-pepper noise or the

speckle noise, it is also robust to the others. Then, these

noise robustnesses overlap and so only the Gaussian noise

is kept for the study.

Similarly, we train four identical Resnet-18, respectively

augmented with defocus blur, zoom blur, motion blur and

glass blur. Taking into account the robustness scores re-

ported in the right part of Table 1, it appears that different

kinds of blur robustnesses also overlap. Therefore, only the

defocus blur is considered in further studies. We simply call

it blur.

Blur and noise perturbations are the only perturbations

of our list for which a robustness overlapping is observed.

Selected Perturbations. Relying on those three criteria,

we finally gather the set of common perturbations shown

in Figure 1. From the upper left image of this Figure to



Model

Noise
gaus salt speck

standard 0.81 0.79 0.87

gaussian 0.98 0.98 0.98

salt pepper 0.99 0.99 0.97

speckle 0.97 0.96 0.99

Model

Noise
defo zoom glass motion

standard 0.61 0.80 0.74 0.74

defocus blur 0.98 0.94 0.98 0.94

zoom blur 0.89 0.98 0.93 0.93

glass blur 0.96 0.94 0.98 0.95

motion blur 0.90 0.93 0.95 0.99

Table 1: Left. Robustness scores towards noise perturbations — Right. Robustness scores towards blur perturbations.

Each line title of the table refers to the model used to compute the robustness score. The line ”salt-pepper” for instance,

corresponds to a model for which the training set has been augmented with salt-pepper corrupted images. Each column

name refers to the perturbation used to compute the robustness scores of the column. We observe correlations between

punctual noise robustnesses and correlations between blur robustnesses.

the lower right one, the corresponding perturbations may be

abbreviated with: gaus, art, obstr, blur, contr, bright, color,

trans, rot and flip.

3.3. Perturbation Intensities

Each of the selected perturbations except flip is associ-

ated with a range of intensity. For instance, square masks

used for the occlusion perturbation can vary from 5 to 15

percent of the image size. We define a procedure to fix

the upper and lower bounds of each perturbation intensity

range. In order to fix the lower bound, the procedure starts

with a very small perturbation. The intensity of the per-

turbation is progressively raised. During this increase, the

behavior of the standard model on the corrupted images is

periodically tested. The lower bound of the perturbation

range is reached when the accuracy of the neural network

starts to decrease. We keep increasing the severity until the

perturbation becomes visually disturbing for humans. At

this point, the upper bound is fixed.

To our knowledge, this is the first set of common per-

turbations built on a such thorough method of selection. It

is sufficiently complete to cover most of the widely spread

perturbations. It can be used either in a data augmentation

procedure or to estimate the robustness to common pertur-

bations of a neural network. It is small enough to be used

without increasing the computational cost of trainings and

tests too much. We believe that using this set of perturba-

tions, could help to build neural networks more stable when

deployed in real environments.

4. Common Perturbation Robustness and Ad-

versarial Robustness

4.1. Robust Network Constructions

To study the links between the adversarial robustness and

the robustness to common perturbations, it is necessary to

build neural networks robust to common perturbations on

the one side, and neural networks robust to adversarial ex-

amples on the other side.

A model robust to common perturbations. We first

train a ResNet-18 augmented with all the common pertur-

bations of our set. We call it the fully augmented model.

We test its robustness to each perturbation of the set. The

robustness scores obtained are compared with the ones ob-

tained with the standard ResNet-18: results can be found in

Table 2. As expected, the fully augmented model is much

more robust to any tested perturbation than the standard

one.

Data augmentation is supposed to make neural networks

robust only to the distortions used in the augmentation pro-

cess [5]. Then, there is no guarantee that the fully aug-

mented model is robust to common perturbations on which

it has not been trained. We build a second experiment to

guarantee that the fully augmented network is more robust

to any common perturbations than the standard model. To

achieve this, we train several ResNet-18, each augmented

with all perturbations of our set but one. For instance, the

no-gaussian model is the model augmented with all pertur-

bations but the Gaussian noise. In a general way, the no-φ

model has been submitted to all perturbations of the set but

φ. We compute the robustness of each no-φ model on sam-

ples corrupted with the φ perturbation. We compare every

robustness score found this way with the ones of the stan-

dard model: results are presented in Table 3.

It appears that even if each no-φ model has never seen

the φ perturbation, it is slightly more robust to it than the

standard model. It is true that the robustnesses to two very

different distortions are usually not correlated: robustness

to blur does not help with Gaussian noise. Yet, we observe

that an increase in robustness to a group of common per-

turbations, can imply a better robustness to a very differ-

ent perturbation. The no-gaussian model is more robust to

Gaussian noise than the standard model.

Therefore, with a sufficiently large and diverse set of



Figure 1: Visualization of the selected common perturbations for the benchmark. These perturbations are fundamentally

different by nature and affect distinct characteristics of images. They cannot be reduced to a smaller set without a significant

loss of diversity. Each perturbation except flip is provided with a continuous range of severity.

Model

Noise
gaus art obstr blur contr bright color trans rot flip mean

standard 0.81 0.81 0.95 0.78 0.87 0.94 0.72 0.89 0.94 0.78 0.85

fully augmented 0.96 0.98 0.97 0.95 0.98 0.97 0.96 0.98 0.98 0.92 0.97

Table 2: Efficiency of data augmentation on robustness. The robustness scores of the standard and fully augmented models

are computed on the perturbations of the benchmark. Data augmentation makes the fully augmented model much more

robust to common perturbations than the standard model.

common perturbations, it is possible to make a neural net-

work more robust to an unseen common perturbation. As

the fully augmented model is trained on more perturbations

than no-φ models, it has even more chances to be robust

to any common perturbations. Consequently, in further ex-

periments, the fully augmented model is considered glob-

ally more robust to common perturbations than the standard

model.

A model robust to adversarial examples. To build a

ResNet-18 robust to adversarial attacks, we use adversarial

training. We call fgsm, pgd, ll fgsm and ll pgd, the models

respectively augmented with FGSM, PGD, LL-FGSM and

LL-PGD adversarial examples. To estimate their adversar-

ial robustness, we compute their robustness scores on every

attack introduced in section 2.2. These scores are computed

in black-box and white-box settings. Results are provided

in Table 4. Compared to the standard model, the adver-

sarially trained models are more robust to every adversarial

attack we test, in black-box and white-box settings.

Besides, even if each of these models has been trained

only with one kind of adversarial example, all of them are

relatively robust to other kinds of adversarial examples. For

instance the fgsm model is more robust than the standard

model to LL-FGSM, PGD and LL-PGD adversarial exam-

ples. It means that adversarial example robustnesses are

correlated: making a network robust to a specific adversar-

ial attack, helps it to deal with other kinds of adversarial

perturbations.

4.2. Links between Adversarial Robustness and
Common Perturbation Robustness

We can observe correlations between some common per-

turbation robustnesses. Likewise, increasing the robustness

to an adversarial attack makes neural networks less sensi-

tive to other adversarial perturbations. But are there corre-

lations between adversarial robustnesses and robustness to



Model

Noise
gaus art obstr blur contr bright color trans rot flip

standard 0.81 0.81 0.95 0.78 0.87 0.94 0.72 0.89 0.94 0.78

no-φ 0.83 0.84 0.96 0.82 0.94 0.97 0.76 0.92 0.95 0.78

Table 3: Robustness to unseen perturbations. Each score of the second line refers to the robustness of a no-φ model against

the φ perturbation. Various augmentations help the no-φ models to deal with the unseen φ perturbations.

Model

Attack
fgsm fgsm ll pgd pgd ll

standard 0.68 0.70 0.73 0.95

fgsm 0.96 0.97 0.97 99

fgsm ll 0.96 0.97 0.98 0.99

pgd 0.98 0.98 0.98 1.00

pgd ll 0.93 0.94 0.98 0.99

fully augmented 0.67 0.68 0.73 0.95

Model

Attack
fgsm fgsm ll pgd pgd ll

standard 0.02 0.07 0.00 0.04

fgsm 0.62 0.89 0.27 0.67

fgsm ll 0.42 0.75 0.36 0.79

pgd 0.47 0.86 0.42 0.85

pgd ll 0.41 0.79 0.38 0.82

fully augmented 0.02 0.08 0.01 0.05

Table 4: Left. Robustness to black-box attacks — Right. Robustness to white-box attacks

The columns of the tables refer to the adversarial attacks used to perturb a model, either in a black-box (left) configuration

or in a white-box configuration (right). The adversarially trained models are much more robust to adversarial examples than

the standard and fully augmented models.

common perturbations ?

We measure the robustness of the network augmented

with common perturbations to adversarial examples and

vice-versa. In Table 4, it appears that the fully augmented

model is not more robust than the standard model to ad-

versarial attacks: their robustness scores are almost equal.

So, robustness to common perturbations does not protect

from adversarial attacks. Similarly, as showed in Table 5,

the adversarially trained models are not more robust to the

common perturbations than the standard model. Increasing

the robustness to adversarial examples does not increase the

robustness to common perturbations. Therefore, adversar-

ial robustness and robustness to common perturbations are

independent attributes.

5. Discussions

We showed that relations exist between robustnesses to

common perturbations. It also exists correlations between

adversarial examples robustnesses. However adversarial ro-

bustness and common perturbation robustness are not cor-

related.

This discrepancy could be explained by the significant

difference of nature between adversarial perturbations and

common perturbations. An adversarial perturbation is an at-

tack. It is made to disturb neural networks and it depends on

the sample it corrupts: see formula (1). Adversarial exam-

ples are based on an addition procedure and they are made

with very small perturbations. On the other hand, common

perturbations do not adapt to the neural networks they af-

fect. They are not necessarily additive and can be very se-

vere. Therefore, the way common perturbations and adver-

sarial perturbations affect neural networks might be drasti-

cally different.

Recent works show the difference of nature between two

kinds of features of images called robust and non-robust

features [12]. The none-robust features are the features ex-

ploited by adversarial examples to disturb the neural net-

works they attack. The robust features are the features that

are not modified by adversarial perturbations. In [12], it

is shown that adversarially trained models rely on robust

features while the models not augmented with adversarial

perturbations rely on non-robust features in addition to the

robust features. We think the differences of features used

by these networks could explain the independence between

adversarial robustness and robustness to common perturba-

tions.

Be that as it may, robustness cannot be reduced to the

sole adversarial robustness or the sole robustness to com-

mon perturbations. Those robustnesses are too poorly re-

lated. This independence is restrictive for industrial appli-

cations. Both robustnesses have to be addressed and ad-

dressed independently. It means that it would be necessary

to introduce more regularization techniques or diversify the

samples used in the augmentation procedures. This solution



Model

Noise
gaus art obstr blur contr bright color transl rot flip mean

standard 0.81 0.81 0.95 0.78 0.87 0.94 0.72 0.89 0.94 0.78 0.85

fgsm 0.91 0.89 0.93 0.91 0.78 0.87 0.69 0.82 0.91 0.78 0.85

fgsm ll 0.96 0.87 0.95 0.91 0.73 0.88 0.67 0.83 0.92 0.78 0.85

pgd 0.95 0.88 0.94 0.94 0.75 0.87 0.69 0.81 0.91 0.79 0.85

pgd ll 0.94 0.85 0.95 0.93 0.75 0.86 0.61 0.83 0.92 0.79 0.84

Table 5: Robustnesses of adversarially trained models to common perturbations. The adversarially trained models are not

more robust to common perturbations than the standard model.

is time-consuming and computationally expensive.

From a theoretical point of view, we expect robust neural

networks to extract relevant features. These features should

be stable and should not change with common perturbations

or adversarial attacks. Then, methods to make neural net-

works more robust should not depend on the nature of the

corruption. They should naturally cover most common per-

turbations and adversarial attacks at the same time. Then,

we believe that neural network robustness should be ad-

dressed in a broader sense: covering adversarial examples,

common perturbations or even unexpected kinds of distor-

tions simultaneously.

A possible approach to address robustness in a broad

sense is to use alternative adversarial example definitions.

Some new formulations have been proposed to enlarge the

scope of adversarial perturbations [6], [19]. These defini-

tions include small rotations, translations or lightning vari-

ations into the adversarial attack scope. Using more general

adversarial examples in trainings could be a way to erase

the discrepancy between the adversarial robustness and the

robustness to common perturbations. If we can find a wide

enough definition of adversarial attacks, both robustnesses

could be addressed simultaneously.

Generative Adversarial Networks have been used to in-

crease the adversarial robustness of some neural networks

[17]. A generator is used to submit disturbing samples to

another trained neural network. The generator is supposed

to target the weaknesses of the other model. It automatically

finds relevant attacks that help the other neural network to

increase its robustness. The advantage of GAN is that the

allowed range of perturbations is almost unlimited. Pertur-

bations introduced by the generator are not made by hand:

they are not restricted to a few common perturbations or to

some adversarial attacks. Generated attacks can contain a

complex mix of common perturbations and adversarial pat-

terns. GAN should be a good solution to introduce auto-

matically a lot of kinds of perturbations in order to address

robustness in a broader sense.

6. Conclusion

We carried out original experiments to better understand

the links between the neural network robustnesses to differ-

ent kinds of perturbations. We propose a new benchmark to

estimate robustness to common perturbations. We showed

that using data augmentation with a carefully chosen set

of common perturbations, can increase the robustness of

a model to an unknown common perturbation. We also

demonstrated that adversarial robustness and robustness to

common perturbations are independent attributes. We be-

lieve that the key to address neural network robustness in a

broad sense, is to enlarge the scope of the perturbations used

in trainings and tests, by considering corruptions that are in

between common perturbations and adversarial attacks.
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