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Abstract

This paper aims to learn a compact representation of a

video for video face recognition task. We make the following

contributions: first, we propose a meta attention-based ag-

gregation scheme which adaptively and fine-grained weighs

the feature along each feature dimension among all frames

to form a compact and discriminative representation. It

makes the best to exploit the valuable or discriminative part

of each frame to promote the performance of face recog-

nition, without discarding or despising low quality frames

as usual methods do. Second, we build a feature aggre-

gation network comprised of a feature embedding module

and a feature aggregation module. The embedding mod-

ule is a convolutional neural network used to extract a fea-

ture vector from a face image, while the aggregation mod-

ule consists of cascaded two meta attention blocks which

adaptively aggregate the feature vectors into a single fixed-

length representation. The network can deal with arbi-

trary number of frames, and is insensitive to frame order.

Third, we validate the performance of proposed aggrega-

tion scheme. Experiments on publicly available datasets,

such as YouTube face dataset and IJB-A dataset, show the

effectiveness of our method, and it achieves competitive per-

formances on both the verification and identification proto-

cols.

1. Introduction

Video face recognition has become more and more sig-

nificant in the past few years [41, 39, 31, 18, 25, 27, 42, 28,

19, 23, 38, 12, 44, 11, 32], which plays an important role

in many practical applications such as visual surveillance,

access control, person identification, video search and so

on. Compared to single still image-based face recognition,

further useful information of a single face can be exploited

in the video. However, the video faces exhibit much richer

uncontrolled variations, e.g., out-of-focus blur, motion blur,

occlusion, varied illuminations and a large range of pose

variations, which make video face recognition a challeng-

ing task. Hence, how to design a feature model which can

effectively represent the video face across different frames

becomes a key issue of video face recognition.

In video face recognition task, each subject usually has a

varied number of face images. A straightforward approach

would be to represent a video face as a set of face descrip-

tors extracted by a deep neural network, compare every pair

of face descriptors between two face videos [31, 34], and

fuse the matching results across all pairs. However, this

method would be considerably memory-consuming and in-

efficient especially for a large-scale recognition task. Con-

sequently, an effective aggregation scheme, requiring min-

imal memory storage and supporting efficient similarity

computation, is desired for this task, to generate a compact

representation for a face video. And what is more, the ag-

gregated representations should be discriminative, i.e., they

are expected to have smaller intra-class distance than inter-

class distance under a suitably chosen metric space.

So far, a variety of efforts on integrating information

across different frames have been dedicated [18, 25, 27, 42,

28, 11, 32, 7, 8, 1]. Besides max pooling [8], average pool-

ing [18, 25, 32, 8] may be the most common aggregation

technique. However, it considers all frames of equal im-

portance during feature aggregation, in which case the low

quality frames with some misleading feature would degrade

the performance of recognition. Considering of this prob-

lem, some other methods either just focus on high quality

frames, i.e., feature-rich frames, while ignoring low quality

frames, such as blurred faces, occluded faces and large pose

faces [27, 12] or adaptively high weigh high quality frames

while framesdown weigh low quality frames [42, 44].

Despite that those aggregation strategies have been

shown to be effective in the previous works, we believe

that an optimal aggregation strategy should not simply and
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Figure 1. Network architecture. Input frames of a video are fed into feature embedding module to produce a set of normalized feature

vectors. Then these features are passed through aggregation module to obtain a single fixed-size normalized feature vector for the video.

The aggregation module mainly consists of cascaded two axis-level attention blocks which adaptively weighs the feature vectors along

each feature axis among all frames, fusing the feature vectors organically.

crudely despise the low quality frames, because the low

quality frames might even contain local discriminative fea-

tures which can be complementary to high quality frames.

In some sense, the low quality frames may be beneficial to

video face recognition. Thus, the best aggregation result

should be the composition of local discriminative features

from low quality frames and other parts from high qual-

ity frames. Our intuition is simple and straightforward: an

ideal algorithm should be able to emphasize the valuable

part of the frame feature while suppress the worthless part

of the frame feature irrespective of the face quality during

aggregation, i.e., it adaptively deals with each dimension of

frame feature with different importance, not like NAN [42]

that treats each dimension of equal importance for frame

feature when aggregating. Let us imagine an extreme case:

with some poor quality face images, e.g., a variety of large

pose faces each with different pose, it is possible to aggre-

gate these faces into a discriminative face representation for

video face recognition.

To this end, we propose a new attention-based aggre-

gation network which adaptively and fine-grained weighs

the feature along each feature dimension among all frames

to form a compact and discriminative face representation.

Different from previous methods, we neither focus only on

high quality frames nor simply weigh the feature on frame-

level. Instead, we design a neural network which is able to

adaptively and fine-grained measure the importance of each

dimension of the feature among all frames.

Our major contributions can be summarized as follows:

• We propose a novel feature aggregation scheme for

video face recognition, and reveal why it could work

better. It is a generalized feature aggregation scheme,

and may also serve as a feature aggregation scheme for

other computer vision tasks.

• Based on the proposed aggregation scheme, we con-

struct a feature aggregation network (as shown in Fig-

ure 1) composed of two modules trained end-to-end or

one by one separately. One is the feature embedding

module which is a frame-level feature extractor using

deep CNN model. The other is the aggregation mod-

ule which adaptively integrates the feature vectors of

all the video frames together. Our feature aggregation

network inherits the main advantages of the pooling

techniques (e.g., average pooling and max pooling),

could handle arbitrary input size and produces order-

invariant, fixed-size feature representation.

• We demonstrate the effectiveness of our proposed ag-

gregation scheme in video face recognition by various

comparative experiments. Trained on publicly avail-

able dataset, such as YouTube face dataset and IJB-

A dataset, our method takes a lead over the baseline

methods and is a competitive method compared to the

state of the art methods.

2. Related works and preliminaries

Since our work is concerned with order-insensitive video

or image set face recognition, any other methods exploiting

the temporal information of video sequence will not be con-

sidered here.

Early traditional studies attempt to represent the face

videos or image sets as manifolds [1, 14, 16, 36, 35, 37] or

convex hulls [6] and compute their similarities under cor-

responding spaces. While those methods may work well

under constrained scenarios, they are usually incapable of

dealing with large face variations.

Some other methods extract the local features of frames

and aggregate them across multiple frames to represent the

videos [18, 17, 24]. For example, PEP-based methods

[18, 17] take a part-based representation by extracting and

merging LBP or SIFT descriptors, and the method in [24]

applies Fisher vector encoding to represent each frame by

extracting RootSIFT [3, 22] and fuses across multiple dif-

ferent video frames to form a video-level representation.



These years, still image-based face recognition has

gained great success thank to deep learning techniques

[31, 38, 34, 10, 20]. Based on this, some simple aggre-

gation strategies are adopted in video face recognition. The

methods in [31] and [34] utilize pairwise frame feature simi-

larity computation and then fuse the matching results. Max-

or average-pooling is used to aggregate the frame features

in [25, 11, 7, 8]. Though DAN [27] proposes a GAN-like

aggregation network which takes the video clip as input and

reconstructs a single image as output to represent the video,

the average pooling result of the video frames is employed

to supervise the aggregation training. What is more, DAN

is not suitable to tackle image set face recognition due to

that a video face discriminator is used inside the GAN.

Recently, a few methods take a lead over the sim-

ple pooling techniques. The method in [12] utilizes dis-

crete wavelet transform and entropy computation to select

feature-rich frames from a video sequence and learns a joint

feature from them. GhostVLAD [44] employs a modified

NetVLAD [2] layer to down weigh the contribution of low

quality frames. NAN [42] proposes an attention mecha-

nism to adaptively weigh the frames, so that the contribution

of low quality frames to the aggregation is down weighed.

However, NAN considers each dimension of the feature

vector to be of equal importance. These methods may lose

some valuable information of the low quality images. This

motivates us to seek a better solution in this paper.

Our work is inspired by NAN [42]. However, our ag-

gregation scheme is a more generalized strategy, can fine-

grained handle the feature vector on dimension level. Now,

let us review the feature aggregation scheme of NAN [42].

Consider the video face recognition task on n pairs of

video face data (Si, yi)
n
i=1

, where Si is a face video se-

quence or image set with varying image number Ki, i.e.,

Si = {xi
1
, xi

2
, ..., xi

Ki
} in which xi

k, k = 1, 2, ...,Ki is the

k-th frame in the video, and yi is the corresponding subject

ID of Si. Each frame xi
k has a corresponding normalized

feature representation F i
k extracted from the feature em-

bedding module, and the aggregated feature representation

becomes

r = ΣKi

k=1
aikF

i
k, (1)

where aik is the linear weight generated from all feature vec-

tors of a video, it can be formulated as

aik =
exp(eik)

ΣKi

j=1
exp(eij)

, (2)

where eik is the corresponding significance yielded via dot

product with a kernel filter q for each feature vector, it can

be formulated as

eik = qTF i
k. (3)

Obviously, if aik =
1

Ki

, Eq. (1) degrades to average

pooling strategy.

3. Method

3.1. The proposed aggregation scheme

We argue that each dimension of the feature vector

shares the common weight as NAN does is not optimal.

The ideal strategy should be able to adaptively weigh each

dimension of feature vector separately. So we leverage a

kernel matrix Q to filter the feature vector F i
k via prod-

uct, yielding a significance vector Ei
k, which describes the

importance of each dimension of F i
k. Assuming F i

k is an

M -dimension vector, then, we can formulate Q as

Q =

⎡

⎢

⎢

⎢

⎣

qT
1

qT
2

...

qT
M

⎤

⎥

⎥

⎥

⎦

M×M

, (4)

and formulate Ei
k as

Ei
k =

⎡

⎢

⎢

⎢

⎣

ei
1k

ei
2k
...

eiMk

⎤

⎥

⎥

⎥

⎦

M×1

= QF i
k =

⎡

⎢

⎢

⎢

⎣

qT
1
F i

k

qT
2
F i

k

...

qT
MF i

k

⎤

⎥

⎥

⎥

⎦

M×1

. (5)

After softmax operation along each dimension, a positive
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Figure 2. Element-wise weighted sum of features.



weight vector Ai
k is generated as following

Ai
k =

⎡

⎢

⎢

⎢

⎣

ai
1k

ai
2k
...

aiMk

⎤

⎥

⎥

⎥

⎦

M×1

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

exp(ei
1k)

ΣKi

j=1
exp(ei

1j)
exp(ei

2k)

ΣKi

j=1
exp(ei

2j)
...

exp(eiMk)

ΣKi

j=1
exp(eiMj)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

M×1

, (6)

where aimk denotes the linear weight of that m-th dimension

of the feature vector contributes to aggregation result, and

ΣKi

k=1
aimk = 1, ∀m ∈ {1, 2, ...,M}. So that the aggregated

feature representation becomes

r = ΣKi

k=1
Ai

k

⊙

F i
k, (7)

where
⊙

represents element-wise product. Figure 2 shows

the calculating process of r. r turns out to be r̃ after L2-

normalization. Either cosine or L2 distance can be used to

compute the similarity.

From above formulas and Figure 2, we can clearly see

the difference between our method and NAN is that we

use a kernel matrix instead of a kernel vector to adaptively

weigh the feature. Therefore, we can measure the impor-

tance of feature on dimension level without constraining

each dimension to share the same weight just as NAN [42]

does. Compared to NAN and other pooling techniques, our

method is more flexible, and can make each dimension of

one feature vector adaptively contribute to the aggregation

feature. In theory, it can realize optimal feature aggrega-

tion after well trained. So, our method can deal with every

frame fairly regardless of face quality, and make the best

to exploit its any valuable or discriminative local feature to

promote the video face recognition.

What is more, our method is a more generalized feature

aggregation scheme. Obviously, if ai
1k = ai

2k = · · · =

aiMk, Eq. (7) degrades to NAN, and if aimk =
1

Ki

, Eq. (7)

degrades to average pooling. And max pooling can also be

regarded as a special case of our method.

3.2. The proposed feature aggregation network

Based the on proposed aggregation scheme, we construct

a feature aggregation network comprised of two modules.

As shown in Figure 1, the network can be fed with a set of

face images of a subject and produces a single feature vec-

tor as its representation for the recognition task. It is built

upon a modern deep CNN model for frame feature embed-

ding, and adaptively aggregates all frames in the video into

a compact vector representation.

The image embedding module of our network adopts

the backbone network of Arc-Face [10] which greatly ad-

vances the image-based face recognition recently. The em-

bedding module mainly consists of a ResNet50 which has

an improved residual unit: BN-Conv-BN-PReLu-Conv-BN

structure, while using BN-Dropout-FC-BN after the last

convolutional layer. The embedding module produces 512-

dimension image features which are first normalized to be

unit vectors then fed into the aggregation module.

In order to obtain a better aggregation representation,

a cascaded two attention blocks with nonlinear transfer is

designed inside aggregation module as shown in Figure 3.

Each attention block consists of a kernel filter and a non-

linear transfer. The kernel filter is implemented with a FC

layer, while nonlinear transfer with a tanh activation layer.

Then Ei
k becomes

Ei
k = tanh(Q

2
E

i

k + b2), (8)

where E
i

k is the output of the first block, it can be formu-

lated as

E
i

k = tanh(Q
1
F i

k + b1). (9)

Therefore, besides kernel matrices Q
1

and Q
2
, biases b1

and b2 are also trainable parameters of aggregation module.

We have to point out that our cascaded attention blocks are

totally different from NAN [42]’s in that our attention block

uses an importance matrix while NAN uses an importance

vector to weigh the feature vectors. In comparison, our

method is more fine-grained than NAN to aggregate feature

vectors. Furthermore, NAN aggregates the feature vectors

twice, where the second attention block takes the aggrega-

tion result of the first attention block as input. However, our

method only makes aggregation once.

In addition, our network has several other favorable

properties. First, it is able to tackle arbitrary number of

images for one subject. Second, the aggregation result r

which is of the same size as a single feature F i
k is invariant

to the image order, keeps unchanged when the image se-

quence are reshuffled or even reversed, i.e., our network is

insensitive to the temporal information of the video or im-

age set. Third, it is adaptive to the input faces and whose all

parameters are trainable through supervised learning with

standard backpropagation and gradient descent.

i

k
F

i

k
E i

k
E

i

k
A

Q Q

Figure 3. Cascaded two attention blocks.



3.3. Network training

To make the training faster and more stable, we divide

it into three stages(as shown in Fig.4). Firstly, we train the

embedding module for single image face recognition task.

In this stage, the cleaned MS-Celeb-1M dataset [10, 13] is

used. Secondly, we train the whole network end-to-end for

set-based face recognition task, and the VGGFace2 dataset

[5] is used in this stage. In order to boost the capability

of handling images of varying quality that typically occur

in the wild, the VGGFace2 datatset is augmented in the

form of image degradation, such as blurring or compres-

sion. Finally, we finetune the whole network end-to-end on

the training set of the benchmark dataset.

Figure 4. Network Training. In stage 1, only embedding module

is trained; then the trained embedding module is copied to stage

2 for end-to-end training; finally, the whole network is copied to

stage 3 for end-to-end finetuning.

4. Experiments

4.1. Datasets and protocols

We conduct experiments on two widely used datasets

including the YouTube Face dataset (YTF) [40], IJB-A

dataset [15]. In this section, we will first introduce our im-

plementation details, and then report the performance of our

method on above two datasets.

4.2. Training details

Embedding module training: As aforementioned, the

cleaned MS-Celeb-1M dataset [10, 13] which contains

about 3.8M images of 85k unique identities is used to train

our feature embedding network for the single image face

recognition task. MTCNN [43] is employed to detect 5 fa-

cial landmarks in the face images. The faces are aligned to

112 × 112 by using similarity transformation according to

the landmarks detected, and then fed into embedding net-

work for training. The Additive Angular Margin Loss [10],

which is a kind of modified softmax loss is used to super-

vise the training. After training, the classification loss layer

is removed from the trained network. The rest network is

fixed and used to extract a single fixed-size representation

for the face image.

End-to-End training: We use the VGGFace2 dataset

[5] to train the whole network end-to-end for the set-based

face recognition task. The VGGFace2 Dataset [5] consists

of about 3 million images, covering 8631 identities, and

there are on average 360 face images for each identity. To

perform set-based face recognition training, the image sets

are built by repeatedly sampling a fixed number of images

which belong to the same identity. All the images sampled

are aligned using the same way as in the embedding mod-

ule training. After alignment, the data augmentation is per-

formed by image degradation. Following the same strategy

as in GhostVLAD [44],four methods: isotropic blur, mo-

tion blur, decreased resolution and JPEG compression are

adopted to degrade the face image for training. The Addi-

tive Angular Margin Loss [10]is also adopted to supervise

the end-to-end training. In order to speed up the training,

we initialize all the parameters of the aggregation module

to be zero. That means the aggregation module begins with

average pooling to search the optimal parameters.

Finetuning: All the video face dataset are also aligned

by using MTCNN [43] algorithm and similarity transfor-

mation.Then the whole network is finetuned on the training

set of each video face dataset using the Additive Angular

Margin Loss [10].

4.3. Baseline methods

Since average pooling is a widely used aggregation

method in many previous works [18, 25, 32, 8], we choose

average pooling as one of our baselines. For fairness, the

average pooling method shares common embedding mod-

ule with our method after the whole network is finetuned on

each benchmark dataset. We also choose NAN [42] as our

Method Accuracy(%) AUC

EigenPEP[18] 84.80 ± 1.40 92.60

DeepFace-single[34] 91.40 ± 1.1 96.30

DeepID2+[33] 93.20 ± 0.20 92.30

FaceNet[31] 95.12 ± 0.39 92.30

Wen et al.[38] 94.90 92.30

TBE-CNN[11] 94.96 ± 0.31 92.30

NAN[42] 95.72 ± 0.64 98.80

ADRL[29] 96.52 ± 0.54 -

Deep FR[25] 97.30 92.30

AvgPool 95.70 ± 0.61 98.69

NAN* 95.93 ± 0.62 98.92

Ours 96.21 ± 0.63 99.1

Table 1. Performace evaluation on YTF benchmark. (NAN* rep-

resents the NAN [42] method we reproduce with our embedding

module.)



another baseline. We reproduce the NAN which consists of

cascaded two attention blocks as [42] describes. The repro-

duced NAN is trained in the same way as our method. The

two baselines as well as our method produce 512-d feature

representation for each video and compute the similarity in

O(1) time. Besides the above two baselines, we also com-

pare with some other sate-of-the-art methods.

4.4. Results on YouTube Face Dataset

We first evaluate our method on the YouTube Face

Dataset [40] which contains 3425 videos of 2595 differ-

ent subjects. The lengths of videos vary from 48 to 6070

frames and the average length is 181.3 frames per video.

The dataset is splitted into 10 folds, and each fold consists

of 250 positive (intra-subject) pairs and 250 negative (inter-

subject) pairs. We follow the standard verification protocol

to test our method.

Table 1 shows the results of our method, the baseline and

some other state of the art methods. We can see that our

method outperforms the two baselines, reducing the error

of the best-performing baseline:NAN* by 6.88%. This can

be regarded as a proof of the effectiveness of our method.

Our method also performs better than all the other state-of-

the-art methods (including the original NAN [42] )except

the deep FR methods and ADRL method [29]. The rea-

son is that, the deep FR method benefits a lot from front

face selection and triplet loss embedding with carefully se-

lected triplets, and ADRL method [29] benefits from ex-

ploiting the temporal information from the video sequence.

Compared to deep FR method, our aggregation method

is more straightforward and elegant without hand-crafted

rules. And compared to ADRL method [29], our method is

order-invariant, can be used in more potential scenarios. It

is noteworthy that our reproduced NAN also performs bet-

ter than original NAN [42]. That is because both the em-

bedding module and aggregation module of the reproduced

NAN is trained end-to-end instead of separately, and com-

pared to separate training, more training data is used during

the end-to-end training stage.

4.5. Results on IJB-A Dataset

The IJB-A Dataset [15] contains 5712 images and 2085

videos, covering 500 subjects in total. The average numbers

of images and videos per subject are 11.4 images and 4.2

videos. This dataset is more challenging than YouTube Face

dataset [40] due to it covers large range of pose variations

and different kinds of image conditions.

We follow the standard benchmark procedure for IJB-A

to evaluate our method on both the ‘compare’ protocol for

1 : 1 face verification and the ‘search’ protocol for 1 : N
face identification. The true accept rates (TAR) vs. false

positive rates (FAR) are reported for verification, while the

true positive identification rates (TPIR) vs. false positive

identification rates (FPIR) and the Rank-N accuracies are

reported for identification. Table 2 and Table 3 show the

evaluation results of different methods for verification task

and identification task respectively.

From above two tables, we can see that our method out-

performs the two baselines by appreciable margins in both

verification task and identification task, especially reducing

the error of best-performing baseline by 7.12%,11.97% and

17.83% at FAR=0.001, FAR=0.01 and FAR=0.1 respec-

tively in verification task. These solidly prove the effec-

tiveness of our method. Compared to all the state-of-the-art

methods except for Ranjan et al. [26], our method performs

a little better at FAR=0.001 and FAR=0.01, performs on par

with them at FAR=0.01 where TAR values have almost sat-

urated to a 99% mark, and beats all of them except on Rank-

10 metric where our method is on par with them and the

TPIR values have saturated to a 99.4% mark. Though Ran-

jan et al. [26] performed better than our method in three

of all the eight metrics, they fused two deeper networks

for feature embedding. One is ResNet101, the other is In-

ception ResNet-v2 that has 244 convolution layers, both of

which are much deeper than our backbone ResNet50. What

is more, they used more diverse datasets than us to train the

feature embedding module. Not only the still image dataset

but also other additional video dataset which is beneficial to

video face recognition were utilized to train the networks.

Besides, the reproduced NAN also outperforms the original

NAN [42] as on YTF benchmark. It is noteworthy that the

gap between our method and the original NAN [42] on IJB-

A dataset is larger compared to the results on YTF dataset.

This is because the face variations in IJB-A dataset is much

larger than in YTF dataset, our method can extract more

beneficial information for video face recognition.

5. Conclusion

We introduced a new feature aggregation network for

video face recognition. Our network can adaptively and

fine-grained weigh the input frames along each dimension

of the feature vector and fuse them organically into a com-

pact representation which is invariant to the frame order.

Our aggregation scheme can make the best to exploit any

valuable part of the features regardless of the frame quality

to promote the performance of video face recognition. Ex-

periments on YTF and IJB-A benchmarks show our method

is a competitive aggregation method.
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NAN* 93.12 ± 1.16 96.91 ± 0.83 98.71 ± 0.599

Ours 93.61 ± 1.51 97.28 ± 0.28 98.94 ± 0.31

Table 2. Performance evaluation for verification on IJB-A benchmark. The true accept rates (TAR) vs. false positive rates (FAR) are

reported. (NAN* represents the NAN [42] method we reproduce with our embedding module.)

Method
1:N identification TPIR(%)

FPIR=0.01 FPIR=0.1 Rank-1 Rank-5 Rank-10

DREAM[4] - - 94.6 ± 1.1 96.8 ± 1.0 -

Triplet Embedding[30] 75.3 ± 3 86.3 ± 1.4 93.2 ± 1 - 97.7 ± 0.5

Template Adaptation[9] 77.4 ± 4.9 88.2 ± 1.6 92.8 ± 1.0 97.7 ± 0.4 98.6 ± 0.3

NAN[42] 81.7 ± 4.1 91.9 ± 0.9 95.8 ± 0.5 98.0 ± 0.5 98.6 ± 0.3

VGGFace2[5] 88.3 ± 3.8 94.6 ± 0.4 98.2 ± 0.4 99.3 ± 0.2 99.4 ± 0.1

GhostVLAD[44] 88.4 ± 5.9 95.1 ± 0.5 97.7 ± 0.4 99.1 ± 0.3 99.4 ± 0.2

Ranjan et al. [26] 92.0 96.2 97.5 98.6 98.9

AvgPool 86.43 ± 4.81 94.05 ± 1.02 95.69 ± 0.62 98.52 ± 0.45 99.04 ± 0.33

NAN* 87.92 ± 5.44 94.83 ± 1.01 97.23 ± 0.57 99.05 ± 0.58 99.24 ± 0.44

Ours 88.51 ± 5.86 95.18 ± 1.02 97.92 ± 0.32 99.23 ± 0.36 99.39 ± 0.25

Table 3. Performance evaluation for identification on IJB-A benchmark. The true positive identification rate (TPIR) vs. false positive iden-

tification rate (FPIR) and the Rank-N accuracies are presented.(NAN* represents the NAN [42] method we reproduce with our embedding

module.)
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