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Abstract

This paper studies the effect of quality degradation,

caused by lossy video compression, on video recognition.

We investigate how the state of the art video enhancement

restores the video quality needed for an effective video

recognition. Furthermore, we study the impact of various

enhancement objectives, namely pixel-level, feature-level,

and adversarial, on action recognition performance. Our

experiments demonstrate that the models trained on pixel-

level loss perform well in terms of visual quality but they

hurt the accuracy of action recognition due to over smooth-

ing discriminative features. On the other hand, models

trained on perceptual and adversarial loss types not only

generate better perceptual quality but also further improve

the action recognition performance.

1. Introduction

A huge amount of videos being captured everyday by

low power devices i.e. IP cameras, dash-cams and drones.

High-level understanding of these videos, i.e. by classifi-

cation, detection and segmentation, involve lots of calcula-

tions to run deep neural networks, which is often beyond

the computational capabilities of low power devices. Hence

many of these devices offload the inference to the cloud,

which requires transmitting of video streams from sensors

to compute servers.

Streaming raw video data would require massive band-

width and lead to a long response time. Therefore, lossy

video compression techniques such as AVC and HEVC are

used to greatly reduce the data size before transmission.

At encoding time, lossy compression transforms each video

into a bit-stream by factoring out the spatio-temporal redun-

dancies and quantizing the signal. The resulting bitstream,

which is often much smaller than the raw data, is transmit-

ted to the computing server for inference. At decoding time,
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Figure 1: Recognizing compressed videos. Video streams

from sensors are compressed then transmitted to a compute

server for inference. Decompressed videos are enhanced

before being fed into the video recognition network.

video pixels are reconstructed from the bit-stream before

being fed into a video recognition network.

Lossy video compression, especially on lower bitrates,

can lead to severe artifacts such as blocking and color

changes. Decompressed videos might look very different

from the uncompressed videos on which the video recog-

nition network is trained. The domain shift between un-

compressed and compressed videos, as train and test exam-

ples, degrades the recognition performance. Domain adap-

tation techniques [38] can alleviate this problem, but they

require re-training of the recognition model, which is not

always possible, e.g. if we don’t have access to the origi-

nal training pipeline. Video enhancement can be used as

a pre-processing step to restore compressed videos before

recognition. A lot of progress has been made on video en-

hancement by using deep convolutional networks to map

noisy decompressed videos into their artifact-free counter-

parts [6, 33, 9, 40, 21, 23, 1]. These methods aim for gener-

ating visually appealing results that look good to the human

eye, which may not be necessarily optimal for the recogni-

tion network.

This paper studies the challenges involved in recogniz-

ing compressed videos using off-the-shelf video recogni-

tion networks relevant for remote inference use cases, as

illustrated in Figure 1. In particular, we empirically study

the following research questions: i) What is the impact of

lossy compression on video recognition? ii) Can video en-



hancement compensate the compression effect on recogni-

tion? iii) What is the relation between visual quality of en-

hanced videos and recognition performance?

The rest of the paper is organized as follows: Section 2

and Section 3 review the state of the art in video enhance-

ment and recognition as used in this paper for experiments.

Section 4 specifies dataset, evaluation metrics, and imple-

mentation details of our models. Section 5 discusses the

experiments and results studying the three aforementioned

research questions. Section 6 concludes the paper.

2. Video Enhancement

Similar to many image and video transformation tasks,

e.g. style transfer [11, 12], super-resolution [32, 3, 26],

and inpainting [39], fully convolutional neural networks are

the state of the art in quality enhancement of compressed

videos [37, 8]. Networks are trained on pairs of compressed

videos (as input) and their corresponding uncompressed

videos (as ground-truth), to enhance videos by removing

their compression artifacts. Most video enhancement meth-

ods can be categorized based on their architecture and loss

function.

2.1. Architecture

Enhancement networks can be divided into three ar-

chitectures: frame-by-frame, multi-frame, and frame-

recurrent. The frame-by-frame architecture, originally pro-

posed for still images, applies a 2D CNN independently to

each frame [22, 31, 36]. This architecture is simple, but

cannot exploit the temporal correlation between frames.

Multi-frame architectures enhance each frame, using a

batch of previous and next frames as context [14, 35, 37,

8, 13, 17]. They often rely on optical flow estimation and

warping to align the frames. Although multi-frame meth-

ods are generally more effective than frame-by-frame ones,

they suffer from two major drawbacks: i) There is a lot

of computational redundancy. They process frames in a

moving-window fashion in the temporal direction where

every frame is processed multiple times. ii) Multi-frame

architectures are able to utilize the temporal correlation

within the batch, but the batch and consequently the tem-

poral memory is usually limited to only a couple of frames.

The third approach, frame-recurrent architecture, has

been proposed to address aforementioned drawbacks [24,

26, 3]. It employs recurrent structures to capture the spa-

tiotemporal information across frames. The convolutional

layers capture the spatial information within the frames

while the recurrent structure captures the inter-frame infor-

mation. As a result, the frame-recurrent architecture has a

long temporal memory and processes each frame only once.

While this method is proposed for the task of video super-

resolution, in this paper we employ the frame-recurrent ar-

chitecture for the first time to enhance the quality of com-

Figure 2: Frame-recurrent architecture for one time step.

Blocks in orange are trainable while the yellow blocks are

not. Blue blocks indicate input/output images.

pressed videos. We conducted an ablation study and com-

pared the performance of three architectures on enhancing

compressed videos while keeping the complexities of the

networks about the same. Our study revealed that the frame-

recurrent architecture in comparison to the multi-frame ar-

chitecture performs better in terms of spatial quality and

performs on-par in terms of temporal coherence while be-

ing a lot more computationally efficient. Hence, the frame-

recurrent structure was used in our experiments.

The block-diagram of a recurrent structure for video en-

hancement is shown in Figure 2. xt ∈ [0, 1]H×W×C and

ŷt = G(xt) ∈ [0, 1]H×W×C denote the compressed frame

and the corresponding enhanced frame at time t and G rep-

resents the whole enhancement network shown in dashed-

lines in Figure 2. At each time step, the previously enhanced

frame ŷt−1 is aligned to the current noisy frame xt in Warp
block and fed to the enhancement block ENet together with

xt to predict the current enhanced frame ŷt. Alignment is

done by first estimating dense optical flow Ft using the flow

network FNet, which takes as input xt−1 and xt, and then

warping ŷt−1 using Ft in Warp block. Warp block, which

is based on spatial transformer [15], shifts the pixels of ŷt−1

in both horizontal and vertical directions based on Ft using

bi-linear interpolation. The above steps are summarized in

Eq. 1.

Ft = FNet(xt,xt−1) ∈ [−1, 1]H×W×2

ŷt = ENet(xt,Warp(ŷt−1,Ft))) ∈ [0, 1]H×W×C
(1)

The optical flow estimation and warping are crucial to

mitigate the miss-alignment between consecutive frames

caused by scene dynamics and camera movements. For

training, the network is unrolled through time for multiple

steps due to the recurrent structure. We unroll the network

for 10 time steps chosen by performance and memory.

2.2. Loss function

Enhancement networks rely on three types of loss func-

tions to compare an enhanced frame ŷt to an uncompressed

ground-truth frame yt: pixel-level, perceptual, and adver-

sarial loss.

Pixel-level loss compares two frames based on their in-

dividual pixel values using a norm distance. Pixel-wise loss

functions, ℓ2 in this work as defined in Eq 2, enjoy stable



training and are widely used in the literature [37, 8]. How-

ever if two images are perceptually similar but different

in pixel values, e.g. shifted by one pixel, then their pixel-

level loss functions could be high. Moreover, it is well

known that pixel-level loss often yields smooth enhance-

ments, where texture information might be lost.

ℓpixel = E[‖ŷ − y‖
2

2
] (2)

Perceptual loss (ℓperc) compares two frames based on

high-level features computed by a pre-trained network.

Rather than encouraging the pixels to be similar, this loss

encourages the enhanced and uncompressed frames to have

similar activation maps in a network φ trained for a recog-

nition task (e.g. ImageNet classification [29]). More specif-

ically, perceptual loss is defined as the difference between

φ(yt) and φ(ŷt) using a norm distance, ℓ1 here as defined

in Eq. 3. Perceptual loss often generates perceptually more

convincing enhancements.

ℓperc = E[‖φ(ŷ)− φ(y)‖
1
] (3)

Adversarial loss (ℓadv) compares two frames using a dis-

criminator network learned to distinguish the enhanced and

uncompressed frames. Similar to generative adversarial net-

works (GAN), adversarial loss encourages the enhancement

network to generate frames which reside on the manifold

of uncompressed frames by fooling the discriminator. In

this work, we use the adversarial loss term proposed in Ra-

GAN [16] that takes two inputs and determines which one

looks more realistic. The architecture of our discriminator

D is borrowed from ESRGAN [32]. D loss and ℓadv are

shown in Eq 4.

ℓD = −Ey[log(1−D(y,G(x)))]− Ex[log(D(G(x),y))]

ℓadv = −Ey[log(D(y,G(x)))]− Ex[log(1−D(G(x),y))]
(4)

Adversarial loss generates visually appealing enhance-

ments by recovering the textures lost thought the compres-

sion. However it may cause training instabilities, which re-

quire careful selection of learning hyper parameters. So, it

is often used in a combination with pixel-wise and percep-

tual losses as a weighted sum [20, 7, 32]. Following ES-

RGAN, we define ℓGAN as a weighted combination of the

above loss types as denoted in Eq 5 where β = 0.01 and

γ = 0.005.

ℓGAN = ℓperc + βE[‖ŷ − y‖
1
] + γℓadv (5)

3. Video Recognition

Modern action recognition models are based on 2D and

3D CNN architectures [28, 2]. The seminal work two-

stream networks [28] employ two CNNs to model spatial

(a)

(b)

Figure 3: (a): architecture of ENet, (b): architecture of

FNet. k, n, and s, denote kernel size, number of filters,

and stride.

and temporal features disjointedly. Each stream is a 2D

CNN separately trained on RGB and optical flow frames.

The spatial CNN learns to recognize the actions from its ap-

pearance such as foreground and background objects, while

the temporal CNN classifies the actions based on motion

clues. Despite its simplicity this model outperforms var-

ious more complicated alternatives that employ recurrent

layers for temporal modeling [5]. Recently 3D CNNs with

spatio-temporal kernels has been effectively applied to ac-

tion classification [10]. These models usually have an im-

mense number of parameters, because of their cubic ker-

nels, whose training has been feasible only recently with the

availability of huge video collections such as Kinetics [18].

Since in this work we are investigating the effect of

compression and enhancement on recognition accuracy, we

train recognition networks on uncompressed videos only

and then study how they perform on compressed and en-

hanced videos.

4. Experimental Setup

4.1. Dataset

Kinetics-600 [18] consists of approximately 500k video

clips from YouTube with an average length of 10 seconds,

which we use for pre-training of the enhancement network.

Since the videos of this dataset are already compressed and

suffer from compression artifacts, it is not directly applica-

ble for enhancement and cannot serve as ground-truth. Fol-

lowing [35], we select high-quality 1080p videos and down-

sample them to 640 × 360. The down-sampled videos are

treated as ground-truth uncompressed videos. This leads

to a total of 32,000 video clips divided into subsets with

28,000 and 4,000 clips for training and validation. The first

10 frames of each video are used for training of the enhance-

ment network given that the recurrent structure is unfolded



Figure 4: Per class accuracy of Resnet-S model for uncompressed frames and 12.6 kb/s compressed frames of the action

recognition dataset. The categories are sorted by accuracy degradation between uncompressed and compressed data. In 98 out

of 101 classes recognition performance is higher for uncompressed frames. On three action categories of HandstandWalking,

BoxingSpeedBag, and BreastStroke, the performance of compressed frames is higher than uncompressed frames. After

looking into these cases, we observed that many videos are assigned to these categories, leading to having highest false

positive rate for these classes.

10 times.

Action recognition dataset: we use a widely used

dataset for action recognition containing 13,320 videos

from 101 action classes. We follow the standard partitioning

(split-1) and use 9,537 videos for training and 3,783 videos

for testing. We use this dataset for fine-tuning and evalua-

tion of the enhancement network as well as the evaluation of

the video recognition network. For the video enhancement

task, the original video frames are used as ground truth and

similar to the Kinetics-600 dataset, the first 10 frames of

each video are used for training.

4.2. Evaluation metrics

Rate-Accuracy. Inspired by rate-distortion curves we

introduce rate-accuracy to measure how recognition accu-

racy responds to reducing the bitrate by further compress-

ing videos. Recognition accuracy and bitrate are measured

in terms of top-1 accuracy and bits-per-second, respectively.

Peak Signal to Noise Ratio. PSNR is a common met-

ric to measure the quality of enhanced images and video.

It is defined as a normalized ℓ2 distance between the en-

hanced and ground-truth frames in a logarithmic decibel

scale. PSNR measure the video quality only in the spatial

domain ignoring temporal consistencies.

Temporal Consistency. TC measure the temporal con-

sistency between frames in an enhanced video [24]. It is

measured as the PSNR between the current and the warped

previous frame averaged over all frames. The higher TC

score an enhanced video has, the less flickering exist be-

tween the frames.

Learned Perceptual Image Patch Similarity [41].

LPIPS is an image quality metric proposed to better re-

flect the human perception. It is calculated over high level

features from a pre-trained CNN. Subjective studies con-

firm that LPIPS better reflects human image quality mea-

sures compared to classical metrics such as PSNR and MS-

SSIM [34].

4.3. Implementation details

Video Compression We compress videos using the lat-

est High Efficiency Video Coding (HEVC) standard. We

use the ffmpeg implementation [4] with default settings. We

control the compression rate by Constant Rate Factor (CRF)

parameter ranging from 20 to 50 in steps of 5 that corre-

spond to bitrates 364.9, 192.8, 96.6, 48.1, 24.8, 15.2, and

12.6 kb/s, respectively.

Video enhancement network The architectures of

ENet and FNet are shown in Figure 3. ENet is a stack

of residual layers. FNet is a U-net [25] with 3 downsam-

pling/upsampling steps with skip connections. The U-net

architecture makes the network capture both small and large

displacements in the optical flow accurately. We train the



Bitrate
Resnet-S Resnet-ST

Compressed ℓpixel ℓGAN ℓperc Compressed ℓpixel ℓGAN ℓperc

Uncompressed 82.3 82.3 82.3 82.3 87.9 87.9 87.9 87.9

364.9 80.6 79.3 81.4 80.8 87.7 87.4 87.6 87.6

192.8 79.3 76.2 80.4 79.8 87.4 87.2 87.4 87.6

96.6 77.2 70.1 79.7 78.2 87.4 86.8 87.4 87.3

48.1 75.3 66.8 77.0 75.4 86.8 86.2 86.6 86.8

24.8 71.2 57.1 72.1 70.8 85.6 84.1 85.2 85.3

15.2 55.9 43.7 54.9 56.5 79.0 75.9 80.4 79.3

12.6 36.8 32.2 35.0 41.7 68.1 64.1 69.6 69.8

Table 1: Recognition results

enhancement network using a batch size of 16, where each

sample is a sequence of 96× 96 patches randomly cropped

over a video clip. We use the Adam optimizer [19] with

initial learning rate of 10−4. We first train the enhancement

network on Kinetics-600 dataset for 150 epochs using ℓ2
loss. We train individual networks for each of the above

bitrates. Then, each pre-trained network is fine-tuned on

the action recognition dataset using ℓpixel, ℓperc, and ℓGAN

separately. As Perceptual loss, we use the features from

the last convolutional layer of a VGG-19 [29] before acti-

vation, which could provide stronger supervision for bright-

ness consistency and texture recovery [32]. It is also worth

mentioning that we only enhance the luminance channels

of the videos while the chrominance channels remain un-

changed.

Video classification network Our 2D action recognition

network is a ResNet-101 pre-trained on ImageNet then fine-

tuned on RGB frames from the action recognition dataset

training set as in [28]. Following [30], we calculate the

loss over a video-level prediction averaged over 3 randomly

selected frames per video. The network is trained using a

mini batch of size 25, using a SGD optimizer with an ini-

tial learning rate of 5 × 10−4. We evaluate the network on

224 × 224 center crops from 25 frames uniformly sampled

per video.

Our 3D action recognition network is a ResNet-34 with

cubic 3D kernels as in [10]. The network is pre-trained

on Kinetics and fine-tuned on the action recognition dataset

training set. We follow [10] for training and evaluation. The

network is trained with mini batch of size 128, where each

sample is a 16 × 112 × 112 clip cropped over 16 consecu-

tive frames. At train time, we use random scaling, flipping,

and cropping. For evaluation, we split each video as non-

overlapped 16-frame clips and feed their center crops into

the network. Video-level predictions are calculated by av-

eraging the classification scores over clips. The network is

trained using a SGD optimizer with an initial learning rate

of 0.1.

5. Experiments

We first study the impact of video compression on recog-

nition performance. Then, we apply the enhancement

method described in section 2 on compressed videos and

show the effect of enhancement in terms of video qual-

ity metrics. Finally we measure the effect of enhance-

ments on recognition and relation between common en-

hancement metrics like PSNR and recognition metrics like

rate-accuracy.

5.1. Impact of compression on recognition

We employ two action recognition models, both based

on Resnet architecture. Resnet-S is an appearance-based

architecture that receives an RGB frame at a time and just

captures spatial information. Resnet-ST receives 16 frames

at a time and takes into account both spatial and temporal

information. Both models are kept fixed after fine-tuning on

uncompressed frames of the action recognition dataset.

We start with evaluating the models on uncompressed

frames. As shown in Table 1, the performance of un-

compressed frames is 82.3% and 87.9% for Resnet-S and

Resnet-ST respectively. Not surprisingly, as compression

rate increases, the drop in performance becomes higher.

With both models, recognition degradation is exponential

on highly compressed videos. However, performance drop

is much higher on Resnet-S compared to Resnet-ST par-

ticularly for high compression rates (45.5 vs. 19.8 for 12.6
kb/s). This is mainly because compression operates on spa-

tial domain while keeps motion information relatively in-

tact. Resnet-ST can exploit such temporal cues to compen-

sate spatial degradation on highly compressed videos.

To have a more in-depth analysis, we compute per-

category accuracy using Resnet-S model for uncompressed

frames and 12.6 kb/s compressed frames. Figure 4 shows

top 15 and bottom 15 classes with highest recognition

accuracy degradation. As expected, in 98 out of 101

classes recognition performance is higher for uncompressed

frames. Among top 15 classes, for compressed frames, in

some cases like SkiJet the model is confused with similar

classes of Rowing and Surfing, while in some cases like



Bitrate
PSNR (dB) TC (dB) LPIPS

Comp ℓpixel ℓGAN ℓperc Comp ℓpixel ℓGAN ℓperc Comp ℓpixel ℓGAN ℓperc

364.9 27.91 28.87 27.84 27.92 27.80 28.96 27.78 27.91 0.068 0.083 0.068 0.070

192.8 27.73 28.57 27.55 27.22 27.94 29.01 27.73 28.04 0.084 0.108 0.083 0.085

96.6 27.35 27.98 26.96 26.91 28.04 29.16 27.84 28.11 0.096 0.131 0.097 0.095

48.1 26.58 27.20 26.29 26.25 28.14 29.05 27.69 28.36 0.136 0.168 0.132 0.139

24.8 25.34 25.92 24.64 25.17 28.38 29.45 27.21 28.47 0.207 0.248 0.204 0.202

15.2 23.68 24.22 22.58 23.63 28.79 29.82 27.31 28.64 0.311 0.331 0.262 0.281

12.6 22.50 23.02 21.07 22.35 28.88 29.92 26.03 28.50 0.415 0.422 0.353 0.368

Table 2: Enhancement results for the action recognition dataset test-set.

(a) (b)

Figure 5: (a): Accuracy vs. bitrate on the action recognition dataset for Resnet-S. (b) log loss vs bitrate for the action

recognition dataset.

Taichi and Haircut, videos are assigned to high false pos-

itive rate categories of HandstandWalking, BoxingSpeed-

Bag. Among bottom 15 classes, surprisingly, on three

action categories of HandstandWalking, BoxingSpeedBag,

and BreastStroke, the performance of compressed frames is

higher than uncompressed frames. After looking into these

cases, we observed that many videos are assigned to these

categories, leading to having highest false positive rate for

them as well.

5.2. Impact of enhancement on video quality

We study how enhancements introduced in section 2 im-

prove video quality metrics introduced in section 4. Table 2

compares the different configurations when applied to the

action recognition dataset test-set, in terms PSNR, Tempo-

ral Consistency (TC), and LPIPS. Also Figure 6 provides a

side-by-side visual comparison of the networks trained on

ℓpixel, ℓperc, and ℓGAN for bitrate 15.2 kb/s. The results

confirm that the ℓpixel model removes the compression ar-

tifacts to a high extent, but the enhanced video looks over-

smooth. The ℓperc and ℓGAN models generate better results

in terms of perceptual quality but a closer comparison re-

veals that the ℓGAN results look sharper and more realistic.

Based on the results in Table 2, the ℓpixel models generate

the highest PSNR and TC. The best PSNR is expected as the

models are trained on ℓ2. Highest TC could be due to the

over-smoothness of the enhanced frames. The ℓGAN mod-

els perform very well in terms of LPIPS and visual quality

but they deliver very poor TC results. That could be because

GAN-based models might add some content to the frames

to make them look more realistic. The added content could

vary across frames and lead to poor temporal consistency.

The performance and visual quality of the ℓperc models are

somewhat between the ℓpixel and ℓGAN models.

5.3. Impact of enhancement on recognition

In this section, we show how enhancement can influ-

ence action classification accuracy. To do this, we com-

pare three different enhancement objectives. The recogni-

tion performance for the three different enhancement ob-

jectives is shown in Table 1 and Figure 5. An interesting

observation is that ℓpixel enhancement hurts the accuracy

on both Resnet-S and Resnet-ST. This attributes to high

blurriness of enhanced frames due to using ℓ2 loss for pixel



Uncompressed Compressed ℓpixel ℓperc ℓGAN

Figure 6: Visual comparison of the studied loss functions. The uncompressed video is compressed using bitrate 15.2 kb/s

and then restored using the networks trained on ℓpixel, ℓperc, and ℓGAN .
[Video by Gari Gonzalez, licensed under Creative Commons Attribution license (reuse allowed) via YouTube]

reconstruction. Also, we observe that ℓGAN and ℓperc based

enhancements perform better particularly on highly com-

pressed videos. This is expected as ℓperc optimizes the en-

hancement on feature space rather than pixel space. ℓGAN

also generates sharper frames which might be helpful for

recognition.

One drawback of rate-accuracy as metric is that is does

not take into account the confidence scores generated by the

model. To take into account uncertainty of the predictions

based on how much it varies from the actual label, we use

Log Loss metric as another recognition metric. It is de-

fined as − 1

N

∑N

i=1

∑L

j=1
yij log(pij) where N is number

of samples, L is number of labels, y is true label and p is

confidence score. A perfect classifier (with confidence 1 on

each prediction) will have log loss of 0 and a completely

random classifier will have log loss log(L). Figure 5 shows

the classification log loss for both compressed and enhanced

videos using Resnet-S predictions. On low-rate compres-

sion, all models expect ℓpixel have almost same prediction

confidence, however, we observe that the ℓperc model is

more confident about its predictions on high-rate compres-

sion while predicted probability of other methods diverges

more from actual label.

We previously showed in Figure 6 how the enhance-

ments appear in video frames. Here, we show how the ac-

tion recognition network “sees” these transformations. To

visualize how the trained model “sees” the frames, we use

Grad-CAM [27] to highlight the important regions in the in-

put image with respect to the predicted category. As shown

in Figure 7, model focuses on interested regions better with

ℓGAN and ℓperc enhancement. This is consistent with quan-

titative results where ℓGAN and ℓperc performs better in

highly compressed frames.

6. Conclusion

We study the impact of quality degradation of videos,

caused by lossy compression, on action recognition perfor-

mance. We investigate how the state of the art video en-

hancement methods, trained by various loss types, restore

the video quality needed for an effective action recogni-

tion. Our experiments demonstrate that the models trained

on pixel-level loss, which is a popular loss in enhancement

domain, perform well in terms of PSNR and temporal con-

sistency but they hurt the accuracy of action recognition.

On the other hand, models trained on perceptual and adver-

sarial loss types not only generate better perceptual quality

i.e. in terms of LPIPS, but also further improve the action

recognition performance.
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