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Abstract

This paper proposes a two-stream network with a

novel spatial-temporal multi-head self-attention mech-

anism for action recognition in extreme low resolution

(LR) videos. The new approach first utilizes a super

resolution (SR) mechanism to provide better visual in-

formation to facilitate the network training. To pro-

vide more discriminative spatio-temporal features, a

knowledge distillation scheme that consists of teacher

and student models is employed to enhance the network

model using the knowledge from a high resolution (HR)

model. Moreover, the two-stream network is combined

with a new spatial-temporal multi-head self-attention

network to efficaciously learn the long-term temporal

dependency. Simulations demonstrate that the proposed

method surpasses the state-of-the-art works for extreme

LR action recognition on two widespread HMDB-51 and

IXMAS datasets.

1. Introduction

Action recognition in extreme low resolution (LR)

videos has received growing interests in security and

surveillance [1–5], where privacy-preserving issues are

the main concern. However, analyzing LR videos is not

a simple task due to their substantial loss of visual infor-

mation, which can engender misleading cues. Simulta-

neously, action recognition in extreme LR videos, which

suffers some common issues encountered in high reso-

lution (HR) videos such as view point changes, back-

ground clutter, inter-class similarity, and occlusion, is a

challenging issue.

Over the past few years, a number of convolutional

neural-network (CNNs) has been addressed for action

recognition in extreme low resolution (LR). For in-

stance, Yu et. al. [1] introduced a low rank represen-

tation for videos and a data-driven learning to speed

up the convergence of training for LR videos. Ryoo et

al. [6] introduced an inverse super resolution paradigm

to learn the image transformation for generating multi-

ple low resolution videos from a single video, and then

later further improved the action recognition accuracy

by using a multi-Siamese network to learn the shared

embedding space in [4]. Chen et al. [7] made use of a

filter sharing scheme to jointly train both of the HR and

LR networks. Also, Rahman et al. [5] combined textu-

ral features and classical shape and motion features to

enhance the action recognition accuracy in LR videos.

However, the aforementioned methods did not consider

long-term temporal dependency information for action

recognize, which is particular important when the visual

qualities is severely degraded. Xu et al. [8] integrated

a 3D ConvNet and recurrent neural network to exploit

the temporal dependency information. However, RNN

in general has a slow converge rate and requires a vari-

ety of large training data, so it is not effective in learning

temporal dependency of distant temporal positions [9].

In this paper, we present a two-stream CNN for ac-

tion recognition in extreme LR videos. It first utilizes

a super resolution (SR) mechanism, which can provide

better visual information than the distorted extreme LR

images, to facilitate the two-stream network training. To

provide more discriminative spatio-temporal features, a

knowledge distillation scheme that consists of teacher

and student models is employed to enhance the network

model using the knowledge from a HR model. More-

over, the two-stream network is integrated with a new

spatial-temporal multi-head self-attention network to ef-

ficaciously learn the long-term temporal dependency,

which is essential when the action contains several sub-

actions or the spatial information is severely impaired.

Note that in contrast to [10], which relies on an object

detector and thus is not suitable for extreme LR videos,

our self-attention incorporates SR and knowledge distil-

lation to guide the network to provide more discrimina-



Figure 1: Overall architecture of the proposed method, which consists of a super resolution mechanism to enrich

the visual information, knowledge distillation to assist the network training using high resolution videos, spatio-

temporal feature extraction with two-stream I3D, and spatial-temporal multi-head self-attention to leverage the long-

term temporal dependency.

tive features. Simulations reveal that the new method

surpasses the state-of-the-art works on the widespread

extreme LR HMDB-51 and IXMAS datasets.

The contributions of this paper include: i) a two-

stream CNN together with a new multi-head self-

attention is addressed to learn the temporal dependency

across the frames in extreme LR videos; ii) a knowledge

distillation mechanism, which possesses the advantage

of teacher and student models, is utilized to obtain more

discriminative features. To the best of authors’s knowl-

edge, it is the first time that knowledge transfer from HR

to LR is considered by utilizing knowledge distillation

in action recognition; iii) an SR mechanism is employed

to provide richer visual information to expedite the two-

stream network training for LR videos.

2. Related Work

Recently reported approaches for action recognition

and detection in extreme LR videos rely on deep spatio-

temporal CNN features [5, 11–13]. For example, Her-

rmann et al. [13] took advantage of large-scale datasets

for effective training in face recognition. Wang et al.

[14] developed a partially coupled network to enhance

the robustness of the CNN features. Dimiccoli et al. [15]

investigated the trade-off between recognition accuracy

of daily activity using a combination of CNN features

and a random forest classifier, and the privacy level cap-

tured by wearable cameras. Recently, Ren et al. [16]

devised an adversarial training that renders human face

anonymous while detecting actions to preserve privacy-

sensitive information. Recently, Wu et al. [17] trained

deep network directly on the compressed video to re-

move superfluous information and obtain more repre-

sentative motion information.

Numerous methods have been proposed for restoring

LR images using an SR mechanism. For instance, Dong

et al. [18] used a deep convolutional network to learn

a mapping between high- and low-resolution images to

reconstruct HR images. Lim et al. [19] performed an

optimization algorithm on residual networks by remov-

ing redundant modules from the conventional networks.

Huang et al. [20] introduced a wavelet-based fully con-

volutional network that is able to learn wavelet coeffi-

cients from LR images. Ledig et al. [21] used a gen-

erative adversarial network (GAN) with perceptual loss

function to preserve the texture of a single image. Re-

cently, Haris et al. [22] developed a dense up-and-down

projection unit that allows an efficient accumulation of

multi-resolution features.

Integrating temporal dependency information into

CNN has shown to be beneficial to recognize actions

with several sub-actions and high inter-class similarity.

In order to capture various temporal dependency from

skeletal coordinates, Lee et al. [23] incorporated tem-

poral sliding windows into a long short-term memory

(LSTM) network. Martinez et al. [24] employed gated

recurrent unit (GRU) to model human motion from mo-

tion capture (mo-cap) data. Tanfous et al. [25] applied

a bidirectional LSTM to sparse coding to represent 3D

skeletal sequences for action recognition. Zhu et al. [26]



Figure 2: Illustration of knowledge distillation.

introduced a variant of convolutional LSTM, in which

the spatial convolution map is passed on to the input-to-

state transition with the same gates as the conventional

fully connected LSTM. Different from the aforemen-

tioned approaches, our method combines a two-stream

network with a self-attention mechanism to effectively

model the long-term temporal dependency without en-

countering the vanishing gradient problem.

Recent progress in knowledge distillation has demon-

strated that it is possible to transfer knowledge from

a complex CNN model into a more compact one with

a small performance gap. To construct more compact

filters, Iandola et al. [27] reduced the number of net-

work parameters and squeezed the number of the input

channels. Also, Shang et al. considered a concatenated

ReLU, which uses pairing filters in the lower layers, to

reduce the number of network parameters. Zhang et

al. [28] proposed an extension of MobileNet [29] based

on Interleaved Group Convolution (IGC), in which two

complementary group convolutions are performed alter-

natingly. In this paper, aside from reducing the network

complexity, our objective is to use the knowledge distil-

lation to take the advantage of the knowledge from the

HR model to enhance the quality of the LR network.

3. Proposed Method

In this section, we introduce the proposed action

recognition method for extreme LR videos. We begin

with knowledge distillation, which is employed to invig-

orate the two-stream network by transferring knowledge

from the HR to LR models in Sec. 3.1. Subsequently,

spatio-temporal feature extraction with the two-stream

network is discussed in Sec. 3.2. Finally, a self attention

network, which is designed to learn the temporal depen-

dency across the frames, is described in Sec. 3.3. For

easy reference, the overall procedures of the proposed

method are illustrated in Fig. 1.

3.1. Knowledge Distillation

Training a deep network for extreme LR videos is ar-

duous because even a slight change of view points can

cause an object to be misidentified, leading to unstable

decision boundary [6]. Inspired by the fact that HR mod-

els can be generated using publicly available HR videos,

in contrast to previous methods that resort to data aug-

mentation with various HR transformations to ease the

two-stream network learning, here, we consider a differ-

ent approach to resolve the training issue by transferring

knowledge from the HR into LR network models with

knowledge distillation [30].

Before conducting knowledge distillation, we em-

ploy an SR mechanism as a pre-processing step, which

can enhance the quality of LR images, to bolster the

learning capability of the LR networks. This mechanism

is beneficial to make the network learn more discrim-

inative features extracted from LR videos. In light of

the success of Deep Back-Projection Network (DBPN)

[22], which consists of several downsample and upsam-

ple layers representing the image degradation and key

components of the images, respectively, we upsample

the LR frames to obtain better image representation.

DBPN comprises of three main stages. The first

stage is the initial feature extraction by two convo-

lutional layers. Subsequently, the initial features are

broadcast through a sequence of projection units, which

in turn adjust the LR and targeted SR feature maps.

Lastly, the SR images are reconstructed using the

concatenated features across all upsampling projection

units. Hence, the input LR images, which propagate

through DBPN, can be reconstructed as SR images by

a large scaling factor.

The HR network is regarded as a teacher network

and the softmax value from this network is used as the

ground truth of the LR network. This strategy allows the

use of soft targets instead of hard targets. Class prob-

abilities Y = {y1, · · · , yK} are obtained from logits

X = {x1, · · · , xK} by a softmax function that can be

expressed as [30]

yi =
exi/T

∑

j e
xj/T

, i = 1, · · · ,K, (1)

where T is a temperature variable that controls the soft-

ness of the probabilities over classes. The knowledge is

thus transferred to the LR network regarded as a student

network by training it on a transfer set using a soft tar-

get distribution generated by the teacher network with

a high temperature. The student network is also trained

to generate correct labels by using a weighted average of

two objective functions [30]. The first objective function



Figure 3: Visualization of some images with different resolutions in the HMDB-51 and the IXMAS datasets.

is the cross entropy [31] with the soft targets and a high

temperature while the other one uses the ground truth

labels. For easy reference, this scheme is illustrated in

Fig. 2.

3.2. Spatio-Temporal Feature Extraction

Making inference based on a single LR frame can

lead to inaccurate action recognition caused by distorted

spatial information. In light of this, we consider I3D

[32], which processes a sequence of frames simultane-

ously to generate spatio-temporal features. I3D adopts

inception mechanism and expands 2D filters into their

3D counterparts. Two-stream architecture is considered

in I3D, where stacks of RGB and optical flow images are

utilized as inputs. Here, we train the two-stream I3D us-

ing SR videos with knowledge distillation that leverages

the knowledge from HR videos.

For every video, we partition the total number of

frames, N , into P non-overlapping sequences of Np

consecutive frames. Next, for each sequence, we gen-

erate the spatio-temporal features from the last convo-

lutional layer of I3D that is a tensor with a dimension

of Nt ×W × H × F , where Nt < Np is the temporal

dimension after applying temporal pooling within I3D

layers, F is the dimension of the feature map channel,

and W and H are the width and the height of the fea-

ture map, respectively. Thereafter, we concatenate the

features in the time domain to obtain the final feature

representation for every video, V ∈ Ns ×W ×H × F ,

where Ns = P ×Nt.

3.3. Spatial-Temporal Multi-Head Self-
Attention Network

Self-attention mechanisms have been shown to be

effective for learning long-term temporal dependency

in various natural language processing tasks, see, e.g.,

[9, 33, 34]. In contrast to RNN, each temporal position

Table 1: Parameter settings for training I3D and the con-

volutional self-attention networks.

I3D with

Knowledge Distillation

Spatial-Temporal

Self-Attentions

Pre-trained model Kinetics+ImageNet [32] -

T 5 -

Optimizer Adam Adam

Learning rate 0.0001 0.0002

Activation Function ReLU ReLU

Epoch 20 100

Table 2: Performance comparison of the proposed

method with various mechanisms.

Two-stream
Super

Resolution

Knowledge

Distilation

Spatial-Temporal

Self-Attention

Accuracy

HMDB-51 IXMAS

� - - - 52.61 93.89

� � - - 53.92 94.44

� - � - 54.26 94.87

� - - � 54.31 94.44

� - � � 56.12 95.12

� � � - 56.67 95.56

� � � � 57.84 97.22

within self-attention can attend other distant positions

directly so that it is easier to learn long-term tempo-

ral dependency. However, there are only limited stud-

ies on the benefits of self-attention in video understand-

ing, where the spatio-temporal features are considered.

Moreover, since the spatial information degrades in ex-

treme LR, the capability to learn long-term temporal de-

pendency is reduced as well. To account of this, a new

spatial-temporal multi-head self-attention network is ad-

dressed to encapsulate long-term temporal dependency

in the spatio-temporal features.

Our spatio-temporal multi-head self-attention, as il-

lustrated in Fig. 1, is based on multi-head self-attention

[9], where several self-attention layers are computed si-

multaneously. It is noteworthy that the original multi-

head self-attention only processes a sequence of vectors



and the relationships among the parallel self-attention

heads are not considered. To circumvent these setbacks

in videos, we utilize a 3D convolutional layer [32] to

learn local spatio-temporal dependency. First, we par-

tition the feature representation V and obtain a set of

new feature representation VA = {V1, · · · ,VD} ∈
R

D×Ns×(W×H)×(F/D), where D is the number of par-

allel heads. The new feature representation VA is then

forwarded to the 3D convolutional layer that still pre-

serves the original feature size. Afterward, the dimen-

sion of the feature map of the 3D convolutional layer is

reshaped into D× (Ns ×W ×H)× (F/D) and passed

on to the parallel self-attention layers. The self-attention

function applied to each head is defined as [9]:

S(Vh) =
B1(V

h)B2(V
h)T

√

dim(Vh)
B3(V

h) +B3(V
h),

(2)

where h = 1, · · · , D, and B1, B2, and B3 are linear

projection layers that map every spatio-temporal posi-

tions into the same embedding space. Based on (2),

we can simultaneously model the compatibility of every

pair of spatio-temporal positions. The output of the self-

attention for every parallel head is then concatenated and

reshaped into VB ∈ R
Ns×(W×H×F ). Finally, VB is

passed on to the fully-connected and softmax layers to

obtain the class probability. We use a late fusion strat-

egy [35] to aggregate the features from the two streams.

4. Experimental Results and Discussions

4.1. Low Resolution Datasets

To create LR videos, the original videos in the

HMDB-51 [36] and IXMAS [37] datasets are downsam-

pled into 16 × 12 resolution using the average down-

sampling [4]. The HMDB-51 dataset consists of 6,765

videos and 51 action classes that encompasses several

viewpoints, high inter-class similarity, background clut-

ter, etc. Meanwhile, The IXMAS dataset is comprised

of 1,800 videos and 11 action classes that are incurred

by occlusion, inter-class variation problem, and strong

viewpoint changes. From Fig. 3, we can observe the

differences between HR and LR images, where the lat-

ter are generally more difficult to analyze because of a

significant loss of the visual information.

4.2. Experimental Setup

The learning process consists of training the two-

stream network using the knowledge distillation and the

self-attention network, which are conducted separately.

For reference, the hyper-parameters used in these two

learning procedures are summarized in Table 1. Follow-

ing [32], we set Np and F as 64 and 1,024, respectively,

and the kernel size of the spatial-temporal multi-head

self-attention as [1, 3, 5] with a stride of 1. As [9], we

use D = 8 and a drop out rate of 0.9. We generate the LR

testing images using the same procedure as [8] and use

the evaluation metrics provided by [36, 37] for HMDB-

51 and IXMAS, respectively.

4.3. Ablation Studies

Impact of SR: First, we inspect the performance im-

provement with the SR mechanism, as shown in Ta-

ble 2, from which we can note that by utilizing the SR

mechanism to augment the training data, the accuracy of

the two-stream network is improved by about 1.3% and

0.5% on HMDB-51 and IXMAS, respectively. This is

because this mechanism can provide richer visual infor-

mation that can facilitate the training on LR videos.

Impact of Knowledge Distillation: Next, we examine

the impact of knowledge distillation on the performance

of the proposed approach. As presented in Table 2, we

can note that the knowledge distillation can enhance the

performance of the two-stream network by about 1.9%

and 0.3% on HMDB-51 and IXMAS. This is because

this scheme can help the network learn more discrimi-

native features by transferring the knowledge from HR

into LR models. We can also observe that the knowl-

edge distillation can further improve the performance of

the SR assisted two-stream network by about 3% and

1% on HMDB-51 and IXMAS, respectively. This is be-

cause the SR mechanism can provide training data with

richer details close to HR models to facilitate knowledge

transfer.

Impact of Spatial-Temporal Multi-Head Self-

Attention: We evaluate the impact of the spatial-

temporal multi-head self-attention network on the

performance of the proposed method, as shown in

Table 2, from which we can see that even without the

knowledge transfer from HR model and the training

data augmentation from SR, the spatio-temporal multi-

head self-attention network can still improve the action

recognition results of the two-stream network by about

1.7% and 0.5% on HMDB-51 and IXMAS, respec-

tively. This performance gain indicates that temporal

dependency information is indeed essential to recognize

actions from LR videos, in which the spatial informa-

tion is extremely impaired. The performance is further

improved by about 1.8% and 0.2% on HMDB-51 and

IXMAS, respectively, when the spatio-temporal multi-

head self-attention is trained with the data generated by

SR. This is because the training data is richer in visual



Figure 4: The accuracy of the proposed method for each action on HMDB-51 and IXMAS.

Figure 5: Some snapshots of the (a) successful and (b) failure cases.

information so the network model can work better on

LR videos. The most significant improvement by the

spatio-temporal multi-head self-attention is achieved by

the integration with all other schemes. This is because

the spatio-temporal multi-head self-attention can learn

the long-term temporal dependency information with

more discriminative features obtained from the student

network.

Based on the above observations, in the following

simulations, the proposed method is equipped with the

SR, knowledge distillation, and spatial-temporal multi-

head self-attention mechanisms.

Assessment of the Proposed Method: We also scruti-

nize the accuracy of the proposed method for each class.

The action recognition accuracy for each action class in

HMDB-51 and IXMAS is depicted in Figs. 4 (a) and 4

(b), respectively. We can notice from Fig. 4 (a) that the

proposed method is able to provide accurate recognition

for periodic actions such as ‘dribble’ and ‘clap’ and non-

periodic actions including ‘shoot ball’ and ‘brush hair.’

Also, our approach performs well on facial actions that

contain small movement, which is difficult to recognize

in many LR videos, such as ‘chew’, ‘kiss’, and ‘eat’.

However, the actions such as ‘throw’, ‘sword’, ‘swing

baseball’ can not be precisely recognized, as these ac-

tions have similar sub-action movements that resemble

other classes, e.g. ‘sword’ and ‘fencing’. Meanwhile,

as shown in Fig. 4 (b), the proposed method is doing



Table 3: Comparison of the action recognition accuracy

on the low resolution HMDB-51 and IXMAS datasets.

Methods Modalities
Accuracy

HMDB-51 IXMAS

pLRN+Tennet [1] RGB 21.7 -

ISR [6] RGB 28.68 -

Dai et al. [12] RGB - 80

Semi-Coupled [7] RGB and Optical Flow 29.2 93.7

Rahman et al. [5] RGB and Texture 34.57 -

Multi-Siamese [4] RGB and Optical Flow 37.7 -

Fully-Coupled [8] RGB and Optical Flow 44.96 -

I3D [31] RGB and Optical Flow 52.61 93.89

Ours RGB and Optical Flow 57.84 97.22

well on most of the action classes in IXMAS, except

for ‘point’ and ‘cross arm,’ which have hand movement

similar to other classes. As an illustration, we also pro-

vide snapshots of some successful and failure recogni-

tion results, as shown in Fig. 5 (a), from which we can

see that ‘pull up’ and ‘ride bike’ can be well recognized

because these type of videos still provide decent spatial

information. On the other hand, failure cases happen

when the videos contain group actions as in ‘sword’ and

the images are severely distorted as in ‘throw,’ as de-

picted in Fig. 5 (b).

4.4. Comparison with the State-of-the-Art
Works

In this subsection, we compare the proposed

method with some state-of-the-art works, including

pLRN+Tennet [1], ISR [6], Dai et al. [12] Semi-Coupled

[7], Rahmat et al. [5], Multi-Siamese [4], Fully-Coupled

[8], and I3D [32] on the LR HMDB-51 dataset, where

[32] is trained on the LR dataset. From Table 3 we can

see that pLRN+Tennet [1] exhibits inferior performance,

as this approach trades speed for accuracy. ISR [6] at-

tains better accuracy by using different types of sub-

pixel transformations from HR frames. By implement-

ing joint training with the same filters for both of the HR

and LR networks, Semi-Coupled [7] yields slightly bet-

ter performance than ISR. We can also find that [5] is

superior to the previous methods by combining the tex-

tural information with the shape-motion features. Multi-

Siamese [4] provides even higher accuracy by integrat-

ing the two-stream Siamese network with the pyramid

pooling. As Fully-Coupled [8] is focused on modelling

temporal dependency information by applying GRU di-

rectly on C3D, it further improves the action recognition

accuracy. I3D [32], which adopts the inception mech-

anism and a longer sequence of frames than C3D, sub-

stantially outperforms the aforementioned methods. Our

proposed method surpasses the state-of-the-art works by

employing the potent I3D features along with effica-

cious knowledge transfer by knowledge distillation and

the long-term temporal dependency acquired by spatial-

temporal multi-head self-attention.

Next, we make a comparison on the LR IXMAS

dataset, as shown in Table 3, from which we can find

that [12] yields the worst action recognition accuracy

because it only utilizes a pixel-wise time-series algo-

rithm on gray-scale video sequences. Also, the perfor-

mance of [7] exceeds that of [12] by using semi-coupled

networks that jointly optimize both of the HR and LR

networks. Again, our approach that benefits from the

knowledge transfer from HR and learns long-term de-

pendency information provides the best performance.

5. Conclusions

This paper has developed an effective framework

for action recognition in extreme LR videos, which

integrates a two-stream network with a new spatial-

temporal multi-head self-attention mechanism. Also, an

SR mechanism is considered to enhance the degenerated

visual information in LR videos. Additionally, the two-

stream network is trained by taking advantage of the HR

model with a knowledge distillation scheme. With such

a combination, the new two-stream network can effec-

tively learn long-term temporal dependency to achieve

better recognition accuracy. Simulation shows that the

proposed approach excels the state-of-the-art methods

on the common HMDB-51 and IXMAS datasets.
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