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Abstract

Deep Neural Networks (DNNs) have greatly boosted the

performance on a wide range of computer vision and ma-

chine learning tasks. Despite such achievements, DNN

is hungry for enormous high-quality (HQ) training data,

which are expensive and time-consuming to collect. To

tackle this challenge, domain adaptation (DA) could help

learning a model by leveraging the knowledge of low-

quality (LQ) data (i.e., source domain), while generaliz-

ing well on label-scarce HQ data (i.e., target domain).

However, existing methods have two problems. First, they

mainly focus on the high-level feature alignment while

neglecting low-level mismatch. Second, there exists a

class-conditional distribution shift even features being well

aligned. To solve these problems, we propose a novel Gen-

eratively Inferential Co-Training (GICT) framework for Un-

supervised Domain Adaptation (UDA). GICT is based on

cross-domain feature generation and a specifically designed

co-training strategy. Feature generation adapts the repre-

sentation at low level by translating images across domains.

Co-training is employed to bridge conditional distribution

shift by assigning high-confident pseudo labels on target

domain inferred from two distinct classifiers. Extensive ex-

periments on multiple tasks including image classification

and semantic segmentation demonstrate the effectiveness of

GICT approach1 .

1. Introduction

In recent years, enormous amounts of images and videos

generated online require the help of intelligent methods to

analyze their content for downstream exploitation. The ad-

vent of Deep Neural Network (DNN) has shown its great

capacity in representation learning for vision understanding

such as image classification, object detection and seman-

tic segmentation [34, 12, 6, 28]. In spite of its impressive

success, DNN requires a large amount of high-quality (HQ)

1Code is available on: https://github.com/ChinTsan01/
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Figure 1. Comparison between CyCADA [13] and ours. CyCADA

can mistakenly change the content of source image, i.e., 9 → 7,

through generation. Our approach has applied generated features

relying on a cycleGAN [47] which draws distant features closer to

make them easier for alignment.

training data which is expensive and time-consuming to col-

lect (e.g., each Cityscapes [6] image takes about 90 minutes

to annotate on average).

To this end, Domain adaptation (DA) is emerged to

solve this problem by adapting the model trained on label-

abundant low-quality (LQ) data (i.e., source domain) to

label-scarce HQ data (i.e., target domain). For instance,

synthetic-based DA approaches [6, 13] are attractive which

builds a model utilizing the knowledge of noisy and low-

resolution synthetic data and generalizes well on the HQ

real-scene datasets. However, a model trained on one do-

main usually performs poorly on other domains since the

difference of their characteristics. Even the slight distur-

bance of training data can severely degenerate its perfor-

mance [39]. Moreover, the Unsupervised Domain Adaption

(UDA) referred as no labels accessible in target domain is

the most challenging scenario and has attracted wide atten-

tion recently due to its great potential.

The major goal of UDA is to utilize unlabeled sam-

ples from the target domain to achieve DA. UDA meth-

ods can be summarized in two categories: 1) instance re-

weighting by estimating the ratio of cross-domain distribu-



tions [14, 13] and 2) feature alignment [9, 14, 39, 5]. Com-

pared to instance re-weighting methods, feature alignment

approaches have demonstrated their superiority, especially

incorporated with DNN models. Most of feature alignment

methods apply a DNN to map raw images into a semantic

feature space and mix cross-domain features by minimiz-

ing their distance. Currently, generate adversarial networks

(GANs) [11] based UDA approach, such as ADDA [39],

are employed to align the distributions of two domains re-

lying on a domain classifier (discriminator) and a generator

which designs to fool the discriminator. The domain align-

ment is completed when the discriminator cannot differen-

tiate source and target features.

However, there are two problems in existing UDA

methods. Firstly, most methods focus on high-level fea-

ture adaptation while neglecting low-level feature struc-

ture/information which are crucial for differentiating certain

trivial patterns. CyCADA [13] applies a cycleGAN [47] to

transform a source image into the “target style” one to re-

weight input instance. However, as shown in Figure 1, the

image content can be mistakenly revised or blurred to de-

generate performance of UDA model. Secondly, it is hard

to precisely match class-wise conditional distribution with-

out the access to target domain labels.

In this paper, we proposed a novel Generatively Infer-

ential Co-Training (GICT) framework for UDA. To align

low-level features, we design the model which extracts the

cross-domain features instead of images which are more ro-

bust to noise and low resolution. The generated features act

as the supplement of raw images which effectively separate

the content-irrelevant information (e.g., resolution, defor-

mation, and revision) to effectively bridge the two domains.

To correctly draw ambiguous features away from decision

boundary, we specifically designed a co-training strategy. It

infers highly confident pseudo labels of target domain sam-

ples by breaking the closeness of the source set. Instead of

inferring pseudo labels from single view, we design a two-

classifier strategy to enforce their discrepancy on target do-

main for inferring highly confident pseudo labels from two

distinct views. Furthermore, simply average the prediction

results from the two classifiers ignores the difference infor-

mation. Thus, we proposed an label graph network to fur-

ther explore the prediction accuracy between two classifiers

and across each pair of labels. Moreover, a channel atten-

tion layer [46] followed by the concatenation layer is further

adapt to align high-level real and generated image features.

In summary, the contributions of our framework are below:

• We proposed a feature translation framework which in-

corporates “source content” and “target style” as the

supplement of raw data for low-level domain adaption.

• We designed a novel co-training strategy to draw the

ambiguous features to their corresponding side by in-

ferring pseudo labels with high confidence relying on

two distinct classifiers and inference procedure.

• A label correlation graph network is further proposed

to explore the label-label relations between the two

classifiers and achieve higher classification accuracy.

2. Related Works

Our proposed approach is mainly related to unsupervised

domain adaptation techniques and co-training mechanism.

2.1. Unsupervised Domain Adaptation (UDA)

Over the past few years, UDA has attracted increas-

ing attention to reduce the annotation cost. The key chal-

lenge of UDA is that the distribution shift exists between

the source domain P (s) and the target domain P (t) where

P (s) �= P (t). It violates the assumption of conventional

machine learning methods that training and test samples

share the same distribution. To mitigate domain shift, many

approaches have been proposed [9, 14, 5, 40, 42, 8] and they

can be summarized into two lines: 1) instance re-weighting

and 2) feature alignment. Instance re-weighting methods

attempt to assign the weights of the training data to adapt

the distribution of the target domain P (t) based on the es-

timated ratio P (s)/P (t) of two-domain distributions [14].

Feature alignment methods address this problem by learn-

ing a mapping function f(·) to map the raw images into a la-

tent feature space where the representations of two domains

can be aligned by minimizing their distance. A typical sub-

space learning approach to this problem is to map both the

source and the target samples into a shared subspace based

on the metric learning [26, 41] and dictionary learning tech-

niques [37].

Inspired by the impressive performance of deep learning

in visual recognition [16, 34, 12], many deep learning-based

domain adaptation methods have been proposed. A natural

idea is to minimize certain kinds of divergence or distance

measured by first-order or second-order statistics between

deep features across domains. Various methods, such as

Maximum Mean Discrepancy (MMD) [22] or Deep Corre-

lation Alignment (CORAL) [35] have been proposed.

Other popular approaches utilize adversarial learning

training to learn domain invariant representations from gen-

erator by fooling a domain classifier (discriminator) with

the help of gradient reverse [9] or GAN [39]) (ADDA)

until the discriminator is unable to distinguish the fea-

tures between two domains. [13] extends ADDA by in-

troducing an cycleGAN-based [47] instance re-weighting

approach. It transforms source images to “target style”,

which effectively transfer low-level visual feature to tar-

get domain. However, since the limitation of decoder, the

generated images suffer content revision, deformation, and

low-resolution. To this end, we proposed to translate in-



Figure 2. Illustration of the proposed framework. It includes three parts: 1) cycleGAN for feature generation; 2) domain alignment and

3) co-training.
⊗

denotes element-wise product. Ec and Dc represent encoder and decoder in cycleGAN respectively. X̂ indicates

reconstructed image of X and its footnote, i.e., st or ts, denotes the direction of transformation.

termediate features to avoid above issues, while low-level

visual knowledge is still preserved.

2.2. Co-training

Co-training is one of the most typical and well known

semi-supervised learning approaches [3]. It trains multiple

classifiers on distinct views, and assigns the pseudo labels

of the unlabeled instances iteratively. The reasonability of

co-training lies in the assumption that the false pseudo la-

bels can be corrected in an iterative way. Therefore, the

main issue of co-training is pseudo labels as well as its con-

fidence evaluation. Many theoretical investigations prove

that the upper bound of co-training methods is largely influ-

enced by the diversity of multiple classifiers [3] for which

we pay a lot of attention.

Co-training has been applied to domain adaptation

tasks [48, 7] as both semi-supervised learning and do-

main adaptation have partially unlabeled data for training.

[48, 44, 43] regards the target labels as hidden variables that

can be learned by adapting an easy-to-hard strategy to select

the “high confident” pseudo labels gradually based on the

softmax scores and the regulation of spatial prior knowl-

edge. However, their evaluation is based on the result of

one classifier (i.e. view) which is subjective. [7] applies

graph models to infer the soft pseudo labels of target do-

main. However, this graph relies on shadow models which

limits its capacity in representation learning [1, 36].

3. Proposed Method

As shown in Figure 2, our model consists of three parts:

1) feature augmentation, 2) domain alignment, and 3) co-

training. In general, generated features serve as the supple-

ments for raw images to bridge two domains at low-level,

and co-training breaks the closeness of source set and en-

courages class-wise alignment. All the experiments in ta-

bles have been repeated 3 times and we report the average

one. We will analyze each component in detail and explain

the training procedure in the following sections.

3.1. Feature Augmentation

To mitigate the low-level domain shift, we introduce the

generated features which mix the “content” of the source

domain and the “style” of the target domain as the sup-

plements for original features drawn from {Xs, Xt}. The

generated features are based on translating images across

domains.

The feature generation procedure involves the mapping

from the source to target GS→T (·), the inverse mapping

GT→S(·), and the discriminators DS(·) and DT (·) for each

domain. The generators GS→T (·) and GS→T (·) attempt

to fool DT (·) and DS(·) respectively, and the DT (·), DS(·)
are employed to classify whether the generated image is real

or not. This is accomplished by achieving the following ob-

jects:

L1
adv(GS→T , DT ) =Ext∼Xt

[logDT (xt)] (1)

+Exs∼Xs
[log 1−GS→T (xs)],

L2
adv(GT→S , DS) =Exs∼Xs

[logDS(xs)] (2)

+Ext∼Xt
[log 1−GT→S(xt)].

However, the adversarial training process is unstable and

prone to failure. To this end, we apply a cycle-consistency

loss to enforce the consistency between the input real and

reconstructed images as shown below:

Lcyc(GS→T , GT→S)
= Exs∼Xs

[‖GT→S((GS→T (xs)))− xs‖1]
+ Ext∼Xt

[‖GS→T ((GT→S(xt)))− xt‖1].
(3)

The generator GS→T (·) and GT→S(·) have learned

mappings across different domains. The representations

learned by generators involve mutual characteristics of two

domains. Therefore, we apply them to extract their inside

features h0
s and h0

t for feature augmentation:

h0
s =GS→T (xs|Θ

l
S→T ), (4)

h0
t =GT→S(xt|Θ

l
T→S), (5)

where Θl denotes the parameters before the l-th layer of the

generative network.



3.2. Domain Alignment

Suppose we have the access to a labeled source image xs

and its corresponding label ys, drawn from the set of source

images {Xs, Ys}. We also have the unlabeled target im-

age xt drawn from target image set Xt. The goal of UDA

is to build a model that generalizes well on target domain

by transferring the knowledge from source domain. Such

two domains belong to different marginal distributions, i.e.,

P (Xs) �= P (Xt), as well as distinct conditional distribu-

tions, i.e., P (ys|Xs) �= P (yt|Xt). Then, the models trained

only by using source samples perform poorly on target do-

main.

Inspired by MDA [32], our proposed method aligns the

distributions of two domains with two feature generator net-

works G1(·), G2(·) and two classifier networks F1(·) and

F2(·). The generator G1(·) is utilized to extract the fea-

ture h1
i ∈ R

d of the i-th input image xi from the input set

{Xs, Xt} as:

h1
i = G1

(

xi|Θ
1
g

)

, (6)

where G1(·) is the generative function, parameterized by

Θ1
g .

The features {h0
s,h

0
t} obtained in Eqs. (4) and (5)

are fed into the second generative network G2(·) for do-

main alignment and concatenated with the features h1 ob-

tained in Eq. (6). The concatenated features are denoted

as ht =

[

G2(h
0
t )

h1
t

]

and hs =

[

G2(h
0
s)

h1
s

]

. Since features

hs,ht ∈ R
H×W×C come from different domains, it is nec-

essary to weight the importance of each for the selection

of useful ones. The attention mechanism can help to ex-

plore the channel-wise dependence among the features of

two domains for concatenating them smoothly in the fea-

ture space. Therefore, we apply a channel-wise attention

[46] to accomplish this object:

zc =
1

H ×W
·

H
∑

i

W
∑

j

hc(i, j), (7)

ĥc =ϕ(WUδ(WDzc)) · hc, (8)

where hc ∈ R
H×W is the slice of concatenated feature

h at the c-th channel, and H and W represent the height

and width of h respectively. ϕ(·) and δ(·) denote the sig-

moid gating and ReLU function respectively. WD is the

weight set of a convolutional layer, which acts as channel-

downscaling with reduction ratio r. After being activated

by ReLU, the low-dimension signal is then increased to ĥc

with ratio r by a channel-upscaling layer, whose weight set

is WU where WU

⋃

WD = W .

The two classifiers F1(·) and F2(·) take the features ĥi ∈
{Ĥs, Ĥt} from generators G1(·) and G2(·) as inputs and

classify them into K classes:

p1(yi|xi) = F1

(

ĥi|Θ
1
f

)

, (9)

Figure 3. The illustration of channel-wise attention (CA).
⊗

de-

notes element-wise product. H × W × C represent the size of

feature h with height H , width W and C channels.

p2(yi|xi) = F2

(

ĥi|Θ
2
f

)

, (10)

where p1(yi|xi) and p2(yi|xi) denote the K-dimensional

probabilistic softmax results of F1(·) and F2(·) for input x.

Θ1
f and Θ2

f are parameters of F1(·) and F2(·) respectively.

To train the model, the total loss consists of two parts:

task loss and discrepancy loss. Similar as most UDA meth-

ods, the object of task loss is to minimize the empirical risk

on source domain {Xs, Ys}, which is formulated as follows:

Lcls(Xs, Ys) =− E(xs,ys)∼(Xs,Ys) (11)

K
∑

k=1

1[k=ys]log(p((y = ys)|G(xs|Θg))),

where xs,i ∈ Xs, ys ∈ {1, ...,K} and K indicates total

quantity of classes. The discrepancy loss is calculated as the

l1 distance between the softmax scores of two classifiers on

target domain Xt:

Ldis(Xt) = Ext∼Xt
[|p1(y|xt)− p2(y|xt)|]. (12)

The details of training procedure is described in Section 3.4.

3.3. Co-training

Although MDA has aligned the features of two domains

into a common space, the ambiguous features near the de-

cision boundary can be classified into the wrong side due

to the poor initialization of generator and bias on source

domain. In order to break the closeness amo ng source la-

bels and correct the wrongly classified target samples, we

propose a co-training mechanism to infer highly confident

pseudo labels to further fine-tune the networks. The key is-

sue of co-training lies in the build of multiple and diversified

classifiers to investigate target samples from distinct views.

As two classifiers are provided in Section 3.2, it is natural

to infer pseudo labels of target samples based on these two

classifiers.

The co-training procedure consists of two parts: 1) label-

level correlation fine tuning and 2) pseudo label inference.

The prediction results from either classifier F1(·) or F2(·)
could be considered as the final classification results. Aver-

aging the predictions is also an effective and efficient strat-

egy. However, the trivial prediction differences between

F1(·) and F2(·) could still existing critical information of

the classification boundaries. To this end, we expect to fully



Algorithm 1 Intermediate Feature Generation

Input: Source image set Xs, target image set Xt. The

number of training epochs T . The randomly initialized

generators (G0
T→S , G0

S→T ) and discriminators (D0
T , D0

S).

1: t ← 0
2: while t < T do

3: t ← t+ 1.

4: update Dt−1
T to Dt

T by Eq. (1).

5: update Dt−1
S to Dt

S by Eq. (2).

6: update (Gt−1
T→S , Gt−1

S→T ) to (Gt
T→S , Gt

S→T ) by

Eqs. (1), (2), (3).

7: end while

8: Extract features h0
s by Eq. (4) and h0

t by Eq. (5).

9: return Feature set {h0
s, h

0
t}.

utilize the classification results across the two classifiers to

further boost the learning performance.

We first multiply the output vectors p1(yi|xi) and

p2(yi|xi) of classifiers F1(·) and F2(·) to achieve the ma-

trix P ∈ R
K×K containing the joint classification knowl-

edge of two classifiers.

Pi = p1(yi|xi) · p2(yi|xi)
⊤
, (13)

where Pi can be considered as the dot-similarity of each

pair of labels across the two classifiers. After that, the

largest element v on the trace of Pi is selected as the pre-

diction:

v̂i, ŷi = argmax
vi,yi

Tr(Pi), (14)

where v̂i ∈ V̂ , and ŷi ∈ Ŷ indicate its index in the trace

as well as the final inference result. By this way, the model

further considers the prediction scores between F1(·) and

F2(·) in label-label which further explores information re-

siding inside the trivial classification differences.

All the test samples are processed in this way to achieve

the final output results and we select the R ratio of samples

in Ŷt ⊂ Ŷ on training set as pseudo labels ŷ∗t ∈ Ŷ ∗
t . The

ratio R, starting from 0, keeps increasing linearly through

the optimization of the model. All the pseudo labels are

applied to fine-tune the model as follows:

Lco(Xt, Ŷ
∗

t ) =− E(xt,ŷ
∗

t
)∼(Xt,Ŷ

∗

t
) (15)

K
∑

k=1

1[k=yt]log(p((y = ŷ∗t )|G(xt|Θg))).

3.4. Training Procedure

Let’s sum up the discussions in previous sections into the

whole optimization process, which consists of initialization

and 3 steps in total:

Initialization. Firstly, given the images of two do-

mains {Xs, Xt}, we initialize the intermediate features

Algorithm 2 The proposed domain alignment algorithm

Input: Labeled source set {Xs, Ys}, target image set Xt.

The number of training epochs T . The randomly initialized

generators (G0
1, G0

2), classifiers (F 0
1 , F 0

2 ) and weight

matrix W0.

1: t ← 0
2: while t < T do

3: t ← t+ 2.

4: update (F t−2
1 , F t−2

2 ) to (F t−1
1 , F t−1

2 ) by Step1.

5: update (Gt−2
1 , Gt−2

2 ,Wt−2) to (Gt−1
1 , Gt−1

2 , Wt−1)

by Step1

6: update (F t−1
1 , F t−1

2 ) to (F t
1 , F t

2) by Step2.

7: update (Gt−1
1 , Gt−1

2 ,Wt−1) to (Gt
1, Gt

2),W
t) by

Step3.

8: end while

9: Infer target set labels Ŷt by Eqs. (13) and (14).

10: return Inference results Ŷt.

{h∗
s, h

∗
t } by optimizing the sum of losses obtained in

Eq. (6), Eq. (7), and Eq. (8):

{h∗

s,h
∗

t } = argmin
GTS ,GST ,DS ,DT

L1
adv + L2

adv + βLcyc, (16)

where β is the loss weight and assigned as 0.1 in the model.

Step1. In this step, we introduce image-label pairs

{Xs, Ys} on the source domain to train both two classifiers

and two generators, which makes them learn discriminative

features and clear decision boundaries on source domain.

The objects are accomplished by minimizing the function:

min
G1,G2,W,F1,F2

Lcls(Xs, Ys), (17)

and we apply the model trained on source domain to infer

the highly confident pseudo labels on target set for later co-

training according to Eq. (13) and Eq. (14):

v̂, ŷt = argmax
v,y

Tr(P), (18)

and select the R·‖Ŷt‖ number of inferred labels as the high-

confident pseudo labels Ŷ ∗
t for further fine-tuning.

Step2. It is required to train two classifiers F1(·) and

F2(·) with the discrepancy loss Ldis in Eq. (12), co-training

loss Lco in (15), and source loss Lcls with the fix genera-

tors. The discrepancy loss, which requires to be maximized,

helps classifiers detect target samples beyond the support of

the source and co-training loss. It further accelerates this

process by adjusting its decision boundary towards highly

confident target samples. The source loss is applied to avoid

the departure of decision boundary on the source through its

adjustment. The objective function is follows:

min
F1,F2

Lcls(Xs, Ys) + Lco(Xt, Ŷ
∗

t )− αLdis(Xt), (19)



where α is the loss weight and assigned as 0.1 in the model.

Step3. In this step, we train the generators G1(·) and

G2(·) to minimize the discrepancy and co-training losses.

It is crucial for aligning domains, as the two losses help to

draw the features ĥ∗
t on target domain towards the neigh-

bouring source ones given the support of source learned in

Step3. The objective function is formulated as:

min
G1,G2,W

Lco(Xt, Ŷ
∗

t ) + αLdis(Xt). (20)

The optimization process of the whole framework begins

with the Initialization to generate features as the inputs

for generator G2(·). The loop between Step1, Step2, and

Step3 starts after that and stops when reaching a certain

quantity of steps assigned manually.

4. Experiments

In this section, we provide comprehensive evaluations of

the proposed method on the tasks of digits recognition, im-

age classification and semantic segmentation and compare

with the state-of-the-art approaches on these tasks. Details

of experiments are described in following sections.

4.1. Digits Recognition

In the first experiment, we evaluate the proposed method

on several popular digit datasets with different characteris-

tics. Following [32], we apply the same architecture of gen-

erator G1(·), and two classifiers F1(·) and F2(·). The ar-

chitecture of G2(·) is based on the revision of VGG-16. We

apply momentum Stochastic Gradient Descent (SGD) as the

optimizer implemented on the platform of PyTorch 2. The

learning rate is 0.0002 and momentum is 0.9 with weight

decay 0.0005. All models have been trained for 100 epochs

in the batch size 128. The training procedure of Cycle-

GAN follows the protocol of CyCADA [13] with the batch

size 100, epoch 100, learning rate 0.001, and optimization

method Adam. The architecture is based on LeNet and there

are six residual layers between the encoder and the decoder.

We extract features for augmentation from the first fully

connection layer. The influence of feature extraction layer

will be analyzed in Section 4.4.

We organize four types of adaptation scenarios given

the access to four digits datasets including MNIST [17],

USPS [31], Street View House Numbers (SVHN) [25], and

Synthetic Number (SynNUM) [9]. Here are the details of

each adaptation scenario:

MNIST ↔ USPS. In this scenario, both MNIST and

USPS consist of white digits ranging from 0 to 10 on the

solid black background. In general, this is regarded as one

of the easiest adaptation scenario since many similarities ex-

ist between two datasets. We evaluate the proposed method

2https://pytorch.org/

Table 1. Quantitative results (%) on Digits Datasets.

SVHN USPS MNIST SynNum

Method ↓ ↓ ↓ ↓
MNIST MNIST USPS SVHN

MMD [21] 64.8 73.5 88.5 -

DANN [10] 71.1 73.0 77.1 91.1

DSN [4] 82.7 - 91.3 -

ADDA [39] 76.0 90.1 89.4 -

CoGAN [20] - 89.1 91.2 -

UNIT [19] 90.5 93.5 95.9 -

CyCADA [13] 90.4 96.5 95.6 -

MDA [32] 96.2 94.1 94.2 89.9

DeepJDOT [2] 96.7 96.4 95.7

DIRT-T [33] 96.7 99.4 95.7

Ours (Feat) 96.7 94.8 94.7 91.9

Ours (Co) 97.1 95.2 94.9 92.3

Ours (Feat+Co) 98.7 96.6 96.2 93.2

following the first protocol (P1) on [32], where the MNIST

test set is composed of 2,000 images and USPS test set con-

tains 1,800 images. All images of USPS have been re-sized

into 28× 28 pixels to fit the size of images in MNIST.

SVHN → MNIST. The Street View House Numbers

(SVHN) dataset contains digits images, which are captured

on real scenes and cropped into the size of 32 × 32. These

two datasets belong to two distinct distributions, because

SVHN images are more diverse with colorful and clustered

background while MNIST images are simply black and

white. It is expected that DNN is able to learn rich knowl-

edge in SVHN, which can cover the domain of MNIST.

SynNum → SVHN. The Synthetic Number (SynNum)

dataset, which consists of about 500,000 images, is col-

lected from WindowsTM fonts by varying the text, position-

ing, orientation, background, stroke colors, and the amount

of blur. The variations were chosen manually to simulate

those of SVHN while they still share distinctions. The

biggest difference is the structured clutter in the background

of SVHN images.

Result Analyses. The quantitative results and compari-

son on digits datasets are summarized in Table 1. The pro-

posed methods outperform the directly comparable methods

CyCADA [13] and MDA [32] on all adaptation scenarios

and other state-of-the-art ones. Although one of the largest

domain gaps appears on SVHN-to-MNIST, ours exhibit the

largest superiority. However, on the domain pair USPS-

MNIST with the least domain gap, our method slightly out-

perform previous methods, which indicates that our pro-

posed methods are better at dealing with the scenarios with

larger domain shift. This phenomenon can be explained by

the facts that the features between significantly different do-

main pairs distribute more randomly than the slightly dif-

ferent ones. Our proposed method leaves more potential to

correct the mistakenly classified target samples given better

support of the source samples and highly confident pseudo
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Figure 4. Example semantic segmentation results in the GTA5-to-

Cityscapes adaptation scenario.

labels in the target set.

The last three rows of Table 1 investigate the ablation

studies between feature augmentation, co-training, and the

full version of proposed method (i.e., feature augmenta-

tion + co-training). The superiority of our full version

method over single version methods (i.e., “Feat” and “Co”)

proves that the combination of feature augmentation and co-

training can improve the performance mutually. In com-

parison of co-training and feature augmentation, the former

sightly outperforms feature augmentation on all adaptation

scenarios, which means that breaking the closeness of the

source set is crucial for aligning the cross-domain features.

In order to better understand the distribution of features,

we employ the visualization technique to analyze genera-

tor features using t-sne algorithm [23] which are shown in

Figure 5. In comparison of (b) and (c), even though some

target features not tightly mixed with source features, our

features are more clustered which indicates that pseudo la-

bels are helpful in drawing ambiguous features towards the

corresponding side. The other advantage comes from the

enlarged gap which makes the features more separable and

decision boundary more robust.

4.2. Image Classification on VisDA-2017 Dataset

To further evaluate our proposed method, we conduct ex-

periments on image classification tasks and compare it with

the state-of-the-art methods. VisDA-2017 Dataset [27] is

applied to evaluate the synthetic-to-reality adaptation sce-

nario which is composed of the synthetic-object images

generated by 3-D CAD models for training and objects

collected from MS-COCO [18] for validation as well as

those from YouTube BoundingBoxes [29] for testing. The

VisDA-2017 dataset consists of 280,000 images in total

covering 12 classes.

Implementation Details. The architecture of our gener-

ator network and classifiers networks follows those of [32]

with ResNet-101 [12] as the backbone for fair comparison.

We apply Adam [15] as the optimizer with learning rate

(a) (b) (c)
Figure 5. The t-sne [23] visualization results of features on

MNIST-to-USPS obtained by (a) Source Only, (b) MDA [32] and

(c) Ours. The feature points of source and target domains are indi-

cated by red and green spots respectively.

0.001. Batch size is set to be 32 and we report the results

achieved on validation set after 20 epochs. As for feature

generation, we apply the VGG-16 [34] except fully con-

nected layers for encoder and de-conv network [24] as the

decoder with 9 residual blocks [12] between the encoder

and decoder. The features applied for augmentation are ex-

tracted from the last residual layer which incorporates the

mutual information across two domains.

Results Analyses. The quantitative results on VisDA-

2017 dataset are summarized in Table 2 where our method

on average outperforms the baseline methods (MDA,

DANN and DeepJDOT) by a large margin. Although not

achieving the best results on some of objects, ours is very

close to the state-of-the-art methods and has achieved much

improvement on the “skateboard” object which is challeng-

ing for recognizing. In addition, our proposed method out-

performs the “Source Only” method on all categories which

demonstrates the superiority of our adaptation in overcom-

ing the negative transfer problem.

4.3. Semantic Segmentation

As it is the heavy work to manually label each pixel of

whole image, it is necessary and urgent to propose anno-

tation efficient methods on the semantic segmentation of

which UDA is a promising solution. In this section, we fur-

ther conduct experiments on domain adaptation of semantic

segmentation task which involves a pixel-wise adaptation

scenario required to bridge the domain shift on every pixel.

Datasets. To evaluate our proposed method, we applied

two benchmarks including synthetic GTA5 [30] dataset

and real-scene Cityscapes [6] dataset of which both focus

on street scenes segmentation. GTA5 dataset consists of

24,966 images collected from the game world of Grand

Theft Auto V. Although GTA5 images simulates well in il-

lumination, texture and colors, there still exists a great do-

main shift caused by noise, deformed objects and differ-

ent resolution from the real street scenes. The real world

Cityscapes dataset is composed of 2975 urban street images

for training, 500 images for validation as well as 1525 test-

ing images. Both GTA5 and Cityscapes dataset share the

same set of 19 categories which is straightforward for eval-

uation. As most of semantic segmentation methods, we use



Table 2. Quantitative image classification results (%) on VisDA-2017 Dataset.

plane bcycl bus car horse knife mcycl person plant sktbd train truck MEAN

Source Only 55.1 53.3 61.9 59.1 80.6 17.9 79.7 31.2 81.0 26.5 73.5 8.5 52.4

MMD [21] 87.1 63.0 76.5 42.0 90.3 42.9 85.9 53.1 49.7 36.3 85.8 20.7 61.1

DANN [10] 81.9 77.7 82.8 44.3 81.2 29.5 65.1 28.6 51.9 54.6 82.8 7.8 57.4

MDA [32] 87.0 60.9 83.7 64.0 88.9 79.6 84.7 76.9 88.6 40.3 83.0 25.8 71.9

DeepJDOT [2] 85.4 50.4 77.3 87.3 69.1 14.1 91.5 53.3 91.9 31.2 88.5 61.8 66.9

Ours 87.6 60.6 81.6 72.1 87.8 62.9 89.7 68.5 88.8 76.1 83.2 20.0 73.1

Table 3. Quantitative semantic segmentation results (%) on GTA5 to Cityscapes Dataset.

road sdwk bldng wall fence pole light sign vgttn trrn sky person rider car truck bus train mcycl bcycl mIOU

Source Only 36.4 14.2 67.4 16.4 12.0 20.1 8.7 0.7 69.8 13.3 56.9 37.0 0.4 53.6 10.6 3.2 0.2 0.9 0.0 22.2

DANN [10] 64.3 23.2 73.4 11.3 18.6 29.0 31.8 14.9 82.0 16.8 73.2 53.9 12.4 53.3 20.4 11.0 5.0 18.7 9.8 32.8

CyCADA [13] 79.1 33.1 77.9 23.4 17.3 32.1 33.3 31.8 81.5 26.7 69.0 62.8 14.7 74.5 20.9 25.6 6.9 18.8 20.4 39.5

MDA [32] 90.3 31.0 78.5 19.7 17.3 28.6 30.9 16.1 83.7 30.0 69.1 58.5 19.6 81.5 23.8 30.0 5.7 25.7 14.3 39.7

AdaSegNet [38] 86.5 36.0 79.9 23.4 23.3 23.9 35.2 14.8 83.4 33.3 75.6 58.5 27.6 73.7 32.5 35.4 3.9 30.1 28.1 42.4

Ours 88.6 41.3 76.4 23.3 26.1 24.3 32.8 23.1 82.3 37.4 73.3 62.2 24.8 73.3 29.6 33.9 4.6 33.4 24.3 42.8

mIOU as the evaluation metric [13].

Implementation Details. In this part, we apply DRN-

D-105 [45] as the backbone for the generator G1, and G2 is

based on the revision of VGG-16. Following [32], We apply

Momentum SGD as the optimization method with learning

rate 0.001 and momentum rate 0.9. Due to the limitation

of GPU memory, the batch size is set to be 1 and we report

the results after 50,000 iterations. We employ the same ar-

chitecture of cycleGAN as Section 4.2 and the augmented

features are extracted from the last residual layer.

Results Analyses. The results of the evaluations are

shown in Table 3. Compared with the baseline methods,

i.e. MDA and CyCADA, our proposed method boost the re-

sult of mIOU to 3 percent approximately which is a signif-

icant improvement. The superiority of ours lies in the tiny

objects including fence, motorcycle with sharp edges but

complicated texture. Example segmentation results are pre-

sented in Figure 4. Compared with the model trained only

with GTA5 images which is likely to mis-classify road, our

segmentation results are more consistent and smooth.

4.4. Analyses

To further evaluate the performance of our proposed

method on different conditions, we conduct experiments

of sensitive analyses under different feature extraction lay-

ers in Figure 6 (a) and convergence analysis of different

pseudo-label-selection strategies in Figure 6 (b) on the do-

main pair of MNIST-to-USPS.

As shown in Figure 6 (a), through the move of fea-

ture extraction layers towards the decoder (Layer 1→Layer

6→Decoder) in cycleGAN, the classification accuracy

keeps increasing. It can be explained by the facts that the

features neighbouring to decoder contain more mutual in-

formation of two domains and are more useful for augment-

ing the original image features.

In Figure 6 (b) “Quadratic” and “Linear” refer to

quadratic and linearly increasing R for the selection of

pseudo labels. “Step” refers to a step function where R rises

L 1 L 2 L 3 L 4 L 5 L 6

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1
S-M U-M M-U

20 40 60 80 Epoch

0.7

0.75

0.8

0.85

0.9

0.95

A
c
c
u

ra
c
y

MDA

Linear

Quadric

Step

0

Figure 6. (a) Performance of three adaptation scenario (i.e.,

SVHN-to-MNIST, USPS-to-MNIST and MNIST-to-USPS) under

different augmented feature extraction layer ranging from Layer-1

(L1) to Layer-6 (L6) in 6 residual blocks. (b) Convergence analy-

sis of proposed method on adaptation scenario MNIST-to-USPS.

from 0 to 0.5 at the 20-th epoch. To continuous increase R
is helpful for the selection of highly confident pseudo labels

as the representation learned by generators become better

through the optimization.

5. Conclusion

In this paper, we propose a novel Generatively Inferen-

tial Co-Training (GICT) framework for Unsupervised Do-

main Adaptation (UDA). A cross-domain feature genera-

tion framework and a co-training strategy are deployed to

achieve UDA. The feature generation model aligns the dis-

tributions at low level by translating and generating images

across the source and target domains. The co-training strat-

egy is further proposed to bridge the class-wise conditional

distribution shift by assigning high-confident pseudo labels

on target domain samples inferred from a two-classifiers

(i.e., views) network structure. Extensive experiments

demonstrate the superiority of GICT approach on bench-

marks including digits recognition, image classification and

semantic segmentation.
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[17] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick

Haffner. Gradient-based learning applied to document recog-

nition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[18] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,

Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence

Zitnick. Microsoft coco: Common objects in context. In

ECCV, pages 740–755. Springer, 2014.

[19] Ming-Yu Liu, Thomas Breuel, and Jan Kautz. Unsupervised

image-to-image translation networks. In NIPS, pages 700–

708, 2017.

[20] Ming-Yu Liu and Oncel Tuzel. Coupled generative adversar-

ial networks. In NIPS, pages 469–477, 2016.

[21] Mingsheng Long, Yue Cao, Jianmin Wang, and Michael I

Jordan. Learning transferable features with deep adaptation

networks. arXiv preprint arXiv:1502.02791, 2015.

[22] Mingsheng Long, Jianmin Wang, Guiguang Ding, Jiaguang

Sun, and Philip S Yu. Transfer feature learning with joint

distribution adaptation. In ICCV, 2013.

[23] Laurens van der Maaten and Geoffrey Hinton. Visualizing

data using t-sne. Journal of Machine Learning Research,

9:2579–2605, 2008.

[24] Rahul Mohan. Deep deconvolutional networks for scene

parsing. arXiv preprint arXiv:1411.4101, 2014.

[25] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bis-

sacco, Bo Wu, and Andrew Y Ng. Reading digits in natural

images with unsupervised feature learning. In NIPS Work-

shop on Deep Learning and Unsupervised Feature Learning,

2011.

[26] Sinno Jialin Pan, Ivor W Tsang, James T Kwok, and Qiang

Yang. Domain adaptation via transfer component analy-

sis. IEEE Transactions on Neural Networks, 22(2):199–210,

2011.

[27] Xingchao Peng, Ben Usman, Neela Kaushik, Judy Hoffman,

Dequan Wang, and Kate Saenko. Visda: The visual domain

adaptation challenge. arXiv preprint arXiv:1710.06924,

2017.

[28] Can Qin, Maoguo Gong, Yue Wu, Dayong Tian, and Puzhao

Zhang. Efficient scene labeling via sparse annotations. In

Workshops at the AAAI, 2018.

[29] Esteban Real, Jonathon Shlens, Stefano Mazzocchi, Xin Pan,

and Vincent Vanhoucke. Youtube-boundingboxes: A large

high-precision human-annotated data set for object detection

in video. In CVPR, pages 5296–5305, 2017.

[30] Stephan R Richter, Vibhav Vineet, Stefan Roth, and Vladlen

Koltun. Playing for data: Ground truth from computer

games. In ECCV, pages 102–118. Springer, 2016.

[31] David E Rumelhart, Geoffrey E Hinton, and Ronald J

Williams. Learning representations by back-propagating er-

rors. Nature, 323(6088):533, 1986.

[32] Kuniaki Saito, Kohei Watanabe, Yoshitaka Ushiku, and Tat-

suya Harada. Maximum classifier discrepancy for unsuper-

vised domain adaptation. In CVPR, pages 3723–3732, 2018.

[33] Rui Shu, Hung H Bui, Hirokazu Narui, and Stefano Ermon.

A dirt-t approach to unsupervised domain adaptation. arXiv

preprint arXiv:1802.08735, 2018.

[34] Karen Simonyan and Andrew Zisserman. Very deep convo-

lutional networks for large-scale image recognition. arXiv

preprint arXiv:1409.1556, 2014.



[35] Baochen Sun and Kate Saenko. Deep coral: Correlation

alignment for deep domain adaptation. In ECCV. Springer,

2016.

[36] Gan Sun, Yang Cong, Qianqian Wang, Bineng Zhong, and

Yun Fu. Representative task self-selection for flexible clus-

tered lifelong learning. arXiv preprint arXiv:1903.02173,

2019.

[37] Gan Sun, Yang Cong, and Xiaowei Xu. Active lifelong learn-

ing with” watchdog”. In AAAI, 2018.

[38] Yi-Hsuan Tsai, Wei-Chih Hung, Samuel Schulter, Ki-

hyuk Sohn, Ming-Hsuan Yang, and Manmohan Chandraker.

Learning to adapt structured output space for semantic seg-

mentation. In CVPR, pages 7472–7481, 2018.

[39] Eric Tzeng, Judy Hoffman, Kate Saenko, and Trevor Darrell.

Adversarial discriminative domain adaptation. In CVPR,

2017.

[40] Jindong Wang, Wenjie Feng, Yiqiang Chen, Han Yu, Meiyu

Huang, and Philip S Yu. Visual domain adaptation with man-

ifold embedded distribution alignment. In ACM MM, pages

402–410. ACM, 2018.

[41] Lichen Wang, Zhengming Ding, and Yun Fu. Learning trans-

ferable subspace for human motion segmentation. In AAAI,

2018.

[42] Lichen Wang, Zhengming Ding, and Yun Fu. Low-rank

transfer human motion segmentation. IEEE Transactions on

Image Processing, 28(2):1023–1034, 2019.

[43] Lichen Wang, Zhengming Ding, Seungju Han, Jae-Joon

Han, Changkyu Choi, and Yun Fu. Generative correlation

discovery network for multi-label learning. In ICDM, 2019.

[44] Lichen Wang, Zhengming Ding, Zhiqiang Tao, Yunyu Liu,

and Yun Fu. Generative multi-view human action recogni-

tion. In ICCV, 2019.

[45] Fisher Yu, Vladlen Koltun, and Thomas Funkhouser. Dilated

residual networks. In CVPR, pages 472–480, 2017.

[46] Yulun Zhang, Kunpeng Li, Kai Li, Lichen Wang, Bineng

Zhong, and Yun Fu. Image super-resolution using very deep

residual channel attention networks. In ECCV, 2018.

[47] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A

Efros. Unpaired image-to-image translation using cycle-

consistent adversarial networks. In ICCV, 2017.

[48] Yang Zou, Zhiding Yu, BVK Vijaya Kumar, and Jinsong

Wang. Unsupervised domain adaptation for semantic seg-

mentation via class-balanced self-training. In ECCV, pages

289–305, 2018.


