Online Multi-task Clustering for Human Motion Segmentation

Gan Sun1,2,3, Yang Cong1,2,*, Lichen Wang4, Zhengming Ding5, Yun Fu4
1State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, 110016, China. †
2Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, China. 3University of Chinese Academy of Sciences, Beijing, 100049, China. 4Northeastern University, USA. 5Indiana UniversityPurdue University Indianapolis, USA.
\{sungan1412, congyang81, wanglichenxj\}@gmail.com zd2@iu.edu yunfu@ece.neu.edu

Abstract

Human motion segmentation in time space becomes attractive recently due to its wide range of potential applications on action recognition, event detection, and scene understanding tasks. However, most existing state-of-the-arts address this problem upon an offline and single-agent scenario, while there are a lot of urgent requirements to segment videos captured from multiple agents for real-time application (e.g., surveillance system). In this paper, we propose an Online Multi-task Clustering (OMTC) model for an online and multi-agent segmentation scenario, where each agent corresponds to one task. Specifically, a linear autoencoder framework is designed to project motion sequences into a common motion-aware space across multiple collaborating tasks, while the decoder obtains motion-aware representation of each task via a temporal preserved regularizer. To tackle distribution shifts problem between each pair of tasks, the task-specific projections are further proposed to align representation across the motion segmentation tasks. By this way, significant motion knowledge can be shared among multiple tasks, and the temporal data structures are also well preserved. For the model optimization, an efficient and effective online optimization mechanism is derived to solve the large-scale formulation in real-time applications. Experiment results on Keck, MAD and our collected human motion datasets demonstrates the robustness, high-accuracy and efficiency of our OMTC model.

1. Introduction

One of the major challenges for video analysis/understanding \cite{37, 15, 44, 29, 39, 34} is to localize and classify human motion among long, untrimmed videos, e.g., in security surveillance and health-care. In order to cluster a long sequential human motion into several short and non-overlapping fragments, many methods have been introduced to address this temporal data clustering problem, e.g., motion-based \cite{38}, temporal proximity based \cite{13, 7} and representation based \cite{12, 21, 17, 32, 33} methods. However, existing motion segmentation works are performed upon one agent. That means these methods segment each video individually, which cannot benefit from diverse and enriched knowledge from a network of multiple agents for the motion segmentation tasks. In this paper, our work investigates how to apply online knowledge transfer learning into multi-agent human motion segmentation task.

For the transfer learning framework, most recent works...
[23, 8, 31, 19, 4] have witnessed superior performance via learning several effective domain-invariant features from two different domains (if each agent is treated as a domain), or improving the clustering performance by transferring knowledge among the related tasks [40, 26, 42] (if each agent is treated as a task). However, the adoptions of most recently-proposed transfer learning models are not suitable in the human motion segmentation task. Furthermore, there exist two challenges in this online multi-agent motion segmentation problem: 1) Segmentation Space Consistency: for transfer motion segmentation problem, different agents could involve different actions, e.g., full-body motion such as Running as well as upper-body motion such as Basketball Dribble. 2) Distribution Disparity: the distribution disparity among two different agents exists due to dynamic backgrounds, photometric variations, etc, which can further lead to the distribution shift problem. To this end, multi-agent motion segmentation is dramatically different when comparing with single-agent offline scenario.

To address above challenges, as shown in Figure 1, we propose an Online Multi-task Clustering (OMTC) model by incorporating linear autoencoder paradigm with general cross-task framework. Taking the encoder-decoder paradigm, an encoder is setup to consecutively project different tasks into a common motion-aware space with temporal regularizer, which can link all the learned motion segmentation tasks in different agents. Meanwhile, the decoder exerts an additional temporal constraint to reconstruct the original data, which ensure the motion-aware space is directly derived from all the agents. For the cross-task framework, we mitigate the distribution divergences between different agents by jointly learning task-specific projection for each agent, which can maintain the manifold structure of different agents. For model optimization, we derive a general online learning formulation for handling large-scale data, and further encode the optimization problem via an alternatingly direction strategy. After constructing an affinity graph using the encoding and decoding matrices, multiple segments of each agent can be grouped via spectral clustering. Finally, we evaluate our OMTC model on Keck, MAD and our collected datasets, and the experiment results demonstrate the effectiveness of our model when comparing with the state-of-the-art single and multi-task clustering models.

The novelty of our proposed model is threefold:

- We develop a novel model called online multi-task clustering model (OMTC) for multi-agent human motion segmentation task. To the best of our knowledge, this is an earlier work to consider the problem of consecutively unsupervised human segmentation task among a network of agents.
- A linear autoencoder is used to derive a motion-aware latent space across multiple agents. Meanwhile, two graph regularizers are used to capture the temporal information of encoder and decoder for better clustering.
- We present an efficient cross-task strategy to mitigate the distribution differences of data among individual agents. An efficient online learning algorithm is also designed to learn the motion-aware latent space and representation codings alternatingly.

2. Related Work

Our work mainly draws from subspace clustering, temporal data clustering and multi-task clustering, so we give a brief review on these three topics.

Subspace Clustering [20, 36, 18] is a classical topic has been introduced to automatically group the data into low-dimensional subspace. For instance, sparse subspace clustering (SSC) [5] adopts the sparse representation of data for clustering; instead of sparse constraint, low-rank representation (LRR) [22] can uncover the underlying data structure and remove the noisy by finding the lowest rank representation; least-square regression (LSR) [24] designs an efficient regression objective with Frobenius norm. Different from the above methods which are based on batch optimization and have to load all the clustering samples into memory during optimization, [6] designs an online algorithm for Robust Principal Component Analysis (RPCA) problem, which is just based on stochastic optimization of the batch RPCA. To online implement LRR, [27] develops a novel online algorithm of LRR, which can reduce the memory cost from $O(n^2)$ to $O(pd)$. However, these methods above can not efficiently tackle the time-series data or multi-agent task well since they ignore the temporal information and cross-task correlation among data.

Temporal Data Clustering methods aim to group/segment a long temporal data (e.g., action video) into several meaningful and non-overlapping parts. To achieve this, [43] adopts a dynamic time alignment kernel to group time-series data, and further use it in human motion segmentation. [9] learns a multi-class SVM to discriminate among temporal clusters, and determines the start and the end of each segment. To incorporate the temporal graph constraint, temporal subspace clustering (TSC) [21] proposes to learn expressive codings for temporal clustering by a dictionary learning method. However, these methods need to collect all the data before the optimization process, and are difficult to obtain an expected result.

Multi-task Clustering appeals a growing interest in artificial intelligence community due to its benefits of simultaneously clustering multiple tasks [28, 2]. Basically, multi-task clustering [40, 26, 42] allows transferring useful knowledge among different clustering tasks to improve the performance. In this paper, our OMTC model mainly adopts multi-task clustering technique to human motion segmentation task (e.g., security surveillance system), where each agent corresponding to one task receives its sequential data
in a batch manner, and collectively improve segmentation performance among a network of multi-agent.

3. The Proposed Model

3.1. Multi-agent Motion Segmentation Problem

Given a network of \(T\) agents with \(T^1, \ldots, T^T\) tasks, where each agent faces an unsupervised consecutive motion segmentation task (we assume that each agent encounters an individual task), and each task has a set of \(n_t\) training data samples \(X^t \in \mathbb{R}^{d \times n_t}\), and its probability distribution \(\mathcal{P}(X^t)\). The intention of multi-agent motion segmentation problem is to uncover shared knowledge among all the segmentation tasks, and give the motion alignment matrix for each segmentation task.

3.2. Preliminaries

Consider the situation that we have human motion data \(\{(X^t)_{i=1}^{n_t}\}_{t=1}^T\) for \(T\) agents, and the target is to improve the performance of motion segmentation via transfer learning. The existing transfer learning methods mostly learn a projection function \(F : X^t \mapsto X^t\) to uncover the common latent features. Basically, the common subspace may not well model the motion interactions across different tasks due to the existence of various structures. To mitigate this issue and inspired by [14], we propose an autoencoder based framework which connects multiple collaborating tasks by studying their common principle motion characteristics.

In the encoding process, the input matrix \(X^t\) for the \(t\)-th task can be decomposed as the product of a code matrix \(D \in \mathbb{R}^{d \times k}\) with a linear encoding matrix \(V^t \in \mathbb{R}^{n_t \times k}\), i.e., \(X^t \sim D(V^t)^\top\), where the code matrix \(D\) containing common principle motion characteristics is shared by multiple tasks, called latent motion-aware space. For the decoding process, the code matrix can be decomposed into the product of the decoding matrix \(U^t\) with the original input matrix \(X^t\), i.e., \(D \sim X^tU^t\) with \(U^t \in \mathbb{R}^{n_t \times k}\). Therefore, the encoder-decoder framework for the \(t\)-th task can be defined by minimizing the following formulation:

\[
\min_{D,U^t,V^t} \|X^t-D(V^t)^\top\|_F^2 + \lambda_1\|D-X^tU^t\|_F^2, \tag{1}
\]

where the first term decomposes the original input matrix \(X^t\) into an encoding matrix \((V^t)^\top\) and a motion-aware matrix \(D\), which ensures the latent representative motions can well capture the original involved motions. The second term customizes the motion-aware matrix \(D\) can be derived from the original input matrix \(X^t\) via a decoding matrix \(U^t\). In the following, we introduce how to link the segment task of specific agent accurately.

3.3. Online Multi-task Clustering (OMTC)

In addition to the principle motion characteristics among all the tasks, another challenge we concern about is that motion data in two tasks have different domains, e.g., two tasks \(X^t\) and \(X^j\) have two different distributions with \(X^t \in \mathbb{R}^{d \times n_t}\), \(X^j \in \mathbb{R}^{d \times n_j}\). Take action segmentation task in surveillance system as an example, we have a series of action shots captured from two different scenes. Directly transferring the segmentation knowledge from one task to another one, the segmentation performance will be unsatisfied. Thus, it will be desirable that two projections can bring the data from two domains to a common low-dimensional space, and not lose too much information available in the original task. To facilitate this, we consider adding a task-specific projection to each task, and use the defined motion-aware matrix \(D\) as a bridge. Thus, we can reformulate our objective function as the following formulation:

\[
\min_{D,(P^t)_{t=1}^T} \sum_{t=1}^T \|P^tX^t-D(V^t)^\top\|_F^2 + \lambda_1\|P^tP^t\top-D-X^tU^t\|_F^2, \tag{2}
\]

\[
\text{s.t., } P^tX^tH^t(X^t)^\top(P^t)^\top = I, \quad \forall t = 1, \ldots, T,
\]

where \(P^t \in \mathbb{R}^{d \times p_t}\) is the projection matrix corresponding to the \(t\)-th task. The constraint \(P^tX^tH^t(X^t)^\top(P^t)^\top = I\) can preserve the data variance after adaptation, where \(H^t = I - \frac{1}{n_t}1_1\top\), and \(1_1\top\) is all-one matrix. Thus, the distribution shift between different tasks could be well addressed via the bridge \(D \in \mathbb{R}^{d \times k}\), and the discriminative knowledge across different tasks could be reused to facilitate the segmentation performance.

Temporal Laplacian Regularizer: Due to the fact that human motion data is a sequence of time-series data, it also needs to introduce a temporal constraint function to incorporate the temporal information in time series \(X^t\). Different from the previous method [21] which just imposes temporal regularizer on the encoder matrix \(V^t\), in this paper, we capture the sequential relationships among \(X^t\) on both encoding and decoding matrices, i.e.,

\[
f(V^t) = \frac{1}{2} \sum_{i=1}^{n_t} \sum_{j=1}^{n_t} w_{ij} \|u^t_i - u^t_j\|_2^2 = \text{tr}((V^t)^\top L^1V^t),
\]

\[
f(U^t) = \frac{1}{2} \sum_{i=1}^{n_t} \sum_{j=1}^{n_t} w_{ij} \|u^t_i - u^t_j\|_2^2 = \text{tr}((U^t)^\top L^2U^t),
\]

where \(L^1\) which is a temporal Laplacian matrix is defined as that in [21]. Thus, the target of multi-agent segmentation task can be reformulated as the following formulation:

\[
\min_{D,(P^t)_{t=1}^T} \sum_{t=1}^T \|P^tX^t-D(V^t)^\top\|_F^2 + \lambda_1\|P^tP^t\top-D-X^tU^t\|_F^2
\]

\[
+ \lambda_2 \left(\text{tr}((U^t)^\top L^2U^t) + \text{tr}((V^t)^\top L^1V^t)\right),
\]

\[
\text{s.t., } P^tX^tH^t(X^t)^\top(P^t)^\top = I, \quad \forall t = 1, \ldots, T, \tag{4}
\]
where $\lambda_1 > 0$ and $\lambda_2 > 0$ are trade-off parameters to balance different constraint terms. Notice that with these temporal constraints, frame x_i^t and its sequential neighbors \{$x_{i-s/2}^t, \ldots, x_{i+s/2}^t$\} are encouraged to hold the similar codes in encoder matrix $\{v_{i-s/2}^t, \ldots, v_{i+s/2}^t\}$ and decoder matrix $\{u_{i-s/2}^t, \ldots, u_{i+s/2}^t\}$.

With the obtained matrices V^t and U^t for the t-th task, a graph matrix G^t is then generated for the sequential clustering procedure. Note that U^t and V^t are symmetric and can be expressed by the same parameters, i.e., $U^t = V^t$. Such a design can ensure $G^t(i, j) = u_i^t(v_j^t)^T / \|u_i^t\|_2 \|v_j^t\|_2$ or $G^t(i, j) = v_i^t(v_j^t)^T / \|v_i^t\|_2 \|v_j^t\|_2$, where u_i^t and v_j^t are the corresponding coding of x_i^t and x_j^t, respectively. However, this strategy can ignore the differences between the representability of the encoder V^t for original space X^t and the selectability of decoder U^t from X^t, respectively. So we define the graph G^t as $u_i^t(v_j^t)^T / \|u_i^t\|_2 \|v_j^t\|_2$, in this paper. With the generated G, an effective clustering algorithm (i.e., Normalized Cuts/Spectral Clustering [28]) is then used to generate the final clustering results.

4. Model Optimization

In general, most motion segmentation models focus on the offline setting, and need to access every frame in each iteration of the optimization. However, for many important applications (e.g., health-care and surveillance system), this optimization process is quite inefficient. Moreover, it has to be re-performed on all collected samples when a new sample/action is added, which is not practical in these applications. To this end, we present an online optimization algorithm for the objective function in Eq. (4), which will have lower computational cost in terms of memory space and CPU time than offline algorithm. The basic ideas are:

- The motion data for each task are given in minibatches. Formally, we use $m \in \{1, 2, \ldots\}$ to index each time stamp when a batch of new motion data arrives, and the data in each batch is from the same task.
- We introduce several statistical records to store the previous knowledge, so that batches of coming motion data can be used iteratively to update variable P^t‘s, and further refine the motion-aware space D.

Based on the basic ideas, we have the following objective function at each time stamp m:

$$
\min_{D^t, \{P^t\}^T_{t=1}, \{U^t_{(1:m)}\}^T_{t=1}, \{V^t_{(1:m)}\}^T_{t=1}} \sum_{t=1}^{T} \left(\|P^t X_{(1:m)}^t - D(V_{(1:m)}^t)^T \|_F^2 \\
+ \lambda_1 \left\| (P^t)^T D - X_{(1:m)}^t U_{(1:m)}^t \right\|_F^2 \\
+ \lambda_2 \left(\text{tr}((U_{(1:m)}^t)^T L_{(1:m)}^t U_{(1:m)}^t) + \text{tr}((V_{(1:m)}^t)^T L_{(1:m)}^t V_{(1:m)}^t) \right) \right) \\
t.s.t., P^t X_{(1:m)}^t H^t(X_{(1:m)}^t)^T (P^t)^T = I, \forall t = 1, \ldots, T,
$$

where the subscript m denotes the value of a variable in the time stamp m, and the subscript $(1 : m)$ denotes the cumulative values of a variable from time stamp 1 to m. For instance, $X_{(1:m)}^t$ denotes the motion data arriving at time stamp m for the t-th task, and $X_{(1:m)}^t$ denotes all the motion data has been received for the t-th task until m. Basically, if we directly adopt an offline alternating method to this objective function, the computational complexity will dramatically increase as more data come. To reduce the computational complexity, in the next section, we introduce how to efficiently solve our proposed model when we receive a batch of data $X_{(1:m)}^t$ at time stamp m.

4.1. Solving for $\{U^t_{(1:m)}, V^t_{(1:m)}\}^T_{t=1}$

With the fixed projection P^t and matrix D, $U^t_{(1:m)}$ and $V^t_{(1:m)}$ for each task are the variables in this subproblem, and the model in Eq. (5) can be expressed as:

$$
\min_{U^t_{(1:m)}, V^t_{(1:m)}} \sum_{t=1}^{T} \left(\|P^t X_{(1:m)}^t - D(V_{(1:m)}^t)^T \|_F^2 \\
+ \lambda_1 \left\| (P^t)^T D - X_{(1:m)}^t U_{(1:m)}^t \right\|_F^2 \\
+ \lambda_2 \left(\text{tr}((U_{(1:m)}^t)^T L_{(1:m)}^t U_{(1:m)}^t) + \text{tr}((V_{(1:m)}^t)^T L_{(1:m)}^t V_{(1:m)}^t) \right) \right)
$$

After setting the derivative of Eq. (6) with respect to $V_{(1:m)}^t$ and $U_{(1:m)}^t$ to zero, we can have the following equations:

$$
\lambda_2 L_{(1:m)}^t V_{(1:m)}^t &= X_{(1:m)}^t (P^t)^T D, \\
\lambda_2 L_{(1:m)}^t U_{(1:m)}^t &= \lambda_1 (X_{(1:m)}^t)^T X_{(1:m)}^t U_{(1:m)}^t = \lambda_1 (X_{(1:m)}^t)^T (P^t)^T D.
$$

From the equation above, we can notice that the optimization equation of $V_{(1:m)}^t$ is a standard Sylvester equation, which could be effectively optimized by adopting existing tools, e.g., Bartels-Stewart algorithm [1]. The solution of $U_{(1:m)}^t$ can be given as follows:

$$
U_{(1:m)}^t = (X_{(1:m)}^t) \wedge X_{(1:m)}^t + \lambda_2/(\lambda_1) \wedge (X_{(1:m)}^t) (P^t)^T D.
$$

4.2. Solving for $\{P^t\}_{t=1}^T$

With the obtained encoding $V_{(1:m)}^t$, $U_{(1:m)}^t$’s and motion-aware matrix D, the optimization problem of variable P^t for the t-th task can be denoted as:

$$
P^t = \arg \min_{P^t} \left(\|P^t X_{(1:m)}^t - D(V_{(1:m)}^t)^T \|_F^2 \\
+ \lambda_1 \left\| (P^t)^T D - X_{(1:m)}^t U_{(1:m)}^t \right\|_F^2 \\
= \arg \min_{P^t} \text{tr}(P^t X_{(1:m)}^t (X_{(1:m)}^t)^T) + \lambda_1 (P^t)^T D (P^t)^T \\
- 2D(V_{(1:m)}^t + \lambda_1 U_{(1:m)}^t) (X_{(1:m)}^t) (P^t)^T), \\
s.t., P^t X_{(1:m)}^t H^t(X_{(1:m)}^t)^T (P^t)^T = I.
$$

(9)
Eq. (9) can then be solved by using generalized Eigen-decomposition as follows:

\[(C_m^t + \lambda_1 (P^t)^\top D D^\top P^t) \rho = \gamma X_{1:m}^t H^t (X_{1:m}^t)^\top \rho, \]

(10)

where \(\gamma \) denotes the eigenvalue of the corresponding eigenvector \(\rho \) for the generalized Eigen-decomposition formulation. \(C_m^t \) is a statistical record to store the previous knowledge and denoted as the following formulation:

\[C_m^t = \sum_{i=1}^{m} X_i^t (X_i^t)^\top - 2D(V_i^t + \lambda_1 U_i^t)^\top (X_i^t)^\top. \]

(11)

Each \(P^t \) can then be defined as \([\rho_0, \ldots, \rho_{p-1}] \), where the vectors \(\rho_i \) (\(i = 0, 1, \ldots, p-1 \)) are provided by the minimum eigenvalue solutions of Eq. (10), which can minimize the objective function in Eq. (10).

4.3. Solving for \(D \):

After ignoring other variables, \(D \) is the single variable in this subproblem, and the formulation can be expressed as:

\[
\min_{D} \sum_{t=1}^{T} \left\| P^t X_{1:m}^t - D(V_{1:m}^t)^\top \right\|_F^2 \\
+ \lambda_1 \left\| (P^t)^\top D - X_{1:m}^t U_{1:m}^t \right\|_F^2.
\]

(12)

Thus, the solution of \(D \) can be given as:

\[D = \arg \min_{D} \text{tr}(D^\top D (A_m + \lambda_1 I) - 2\text{tr}(D^\top B_m)). \]

(13)

where \(A_m \in \mathbb{R}^{k \times k} \) and \(B_m \in \mathbb{R}^{d \times k} \) are statistical record-

4.4. Computational Complexity

For the computational complexity of our model, the main cost of learning new batch samples in Algorithm 1 involves several subproblems, and begins by Eq. (7). The computational complexity for Eq. (7) is \(O(T(n_m^2(k + n_m^2))) + \sum_{i=1}^{T} d_i n_i^2 \), where \(n_i \) is the sample number. Next, updating \(P^t \) in Eq. (10) contains Eigen-decomposition, which costs \(O(\sum_{i=1}^{T} d_i d^2) \). The computational complexity of solving \(D \) begins by computing \(A_m \) and \(B_m \), which takes \(O(T(n_m^2 k) + \sum_{i=1}^{T} d_i n_i (p + k)) \). Then computational complexity of solving \(D \) is \(O(T(n_m^2 k) + \sum_{i=1}^{T} d_i n_i (p + k) + dk^2) \). Finally, the time complexity of each iteration part is \(O(T(n_m^2 k + n_m^2) + \sum_{i=1}^{T} d_i n_i (p + k + n_m) + dk^2) \). Since \(k \) is usually small when comparing with the dimension of feature and number of sample, our proposed OMTC model is thus computationally efficient.

Algorithm 1 Online Multi-task Clustering (OMTC)

Input: Observed samples \(\{X_i^T\}_{i=1}^T \), parameters \(d \leq d_i \), \(\lambda_1 > 0, \lambda_2 > 0 \), zero matrix \(\{C_i^T\}_{i=1}^T, A_0 \) and \(B_0 \).

Output: \(D, \{U_i^T, V_i^T\}_{i=1}^T \)

1: for \(i = 1, \ldots, m \) do
2: for \(t = 1, \ldots, T \) do
3: if isFirstAccess the sample \(X_i^t \) then
4: Initialize \(P^t \) via PCA;
5: else
6: Compute \(V_i^t \) via Eq. (7);
7: Compute \(U_i^t \) via Eq. (8);
8: Compute \(C_i^t \) via Eq. (11);
9: Compute \(P^t \) via Eq. (10);
10: end if
11: Compute \(A_i \) via \(\sum_{j=1}^{i} \sum_{t=1}^{T} (V_j^t)^\top V_i^t \);
12: Compute \(B_i \) via \(\sum_{j=1}^{i} \sum_{t=1}^{T} P^t X_j^t (U_j^t + V_j^t) \);
13: Compute \(D \) via Eq. (12);
14: end for
15: end for

5. Experiment

This section evaluates the performance of our proposed model via comparing with several state-of-the-art clustering models on three human motion datasets. We firstly introduce the used competing models. Then several adopted datasets and experiment results are provided. Finally, some analyses about our model are reported.

5.1. Comparison Models and Evaluation

In our experiment, we evaluate our proposed model with eight representative offline clustering (single and multi-task) models and two online clustering methods. The brief introductions are below:

Offline single-task clustering models:

- Spectral Clustering (SPE) [25], single task clustering, which is a baseline clustering model.
- Low-Rank Representation (LRR) [22], which seeks the best representation using a low-rank constraint.
- Ordered Subspace Clustering (OSC) [30], which can achieve better performance for clustering sequential data by enforcing the consecutive columns of coding matrix to be similar.
- Structured Sparse Subspace Clustering (S3C) [16], which combines the sparse representation and spectral clustering. We adopt its SoftS3C version, since this model yields slightly better results on the motion segmentation task [17].
- Temporal Subspace Clustering (TSC) [21], which considers the sequential information in time-series data by constraint of a temporal Laplacian regularization term.
- Transfer Subspace Segmentation (TSS) [32], which incorporates useful information from source data to en-
hance clustering performance in the target sequential data, and can achieve the state-of-the-art results.

- Exemplar-based Subspace Clustering (ESC) [41], which is exemplar-based subspace clustering method to tackle the problem of large-scale and imbalanced datasets. We use its ESC-FFS version in this paper.

Offline multi-task clustering model:
- Multi-Task Clustering with Model Relation Learning (MTCMRL) [42], which is a multi-task clustering method via automatically learning the model parameters relatedness between each pair of tasks.

Online subspace clustering models:
- Online Robust PCA (ORPCA) [6], which is based on stochastic optimization of batch PCA. We use $R_0R_0^T$ (R_0 is the row space of $Z_0 = L_0\Sigma_0R_0^T$, and Z_0 is the clean matrix recovered by ORPCA) as the similarity matrix to perform clustering.
- Online Low-Rank Subspace Clustering (OLRSC) [27], which is a novel online implementation of LRR [22], and aims to reduce the memory cost.

For those competing methods above, we compare with them utilizing the source codes given by the authors. For the evaluation, we adopt two performance measures: accuracy (ACC) and normalized mutual information (NMI). The bigger the value of ACC and NMI is, the better the accuracy (ACC) and normalized mutual information (NMI).

We use its ESC-FFS version in this paper.

Table 1. Segmentation comparisons between our model and state-of-the-arts in terms of ACC and NMI on Keck dataset: mean and standard errors over ten random runs. Models with the best performance are bolded, and the runner-up are underlined. M denotes MAD dataset. **Keck**

<table>
<thead>
<tr>
<th>Criteria</th>
<th>SPE [%]</th>
<th>LRR [%]</th>
<th>OSC [%]</th>
<th>OLS [%]</th>
<th>TSS (M) [%]</th>
<th>ESC-FFS [%]</th>
<th>TSS (M) [%]</th>
<th>ACC [%]</th>
<th>NMI [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Task 1</td>
<td>40.46±1.6</td>
<td>46.12±0.9</td>
<td>43.03±2.4</td>
<td>47.93±2.6</td>
<td>51.45±1.1</td>
<td>52.54±2.4</td>
<td>47.00±3.8</td>
<td>47.81±1.6</td>
<td>52.61±0.2</td>
</tr>
<tr>
<td>Task 2</td>
<td>41.93±3.3</td>
<td>40.28±2.2</td>
<td>42.57±2.1</td>
<td>48.69±1.6</td>
<td>44.06±1.9</td>
<td>47.74±2.4</td>
<td>45.79±1.7</td>
<td>48.09±1.7</td>
<td>53.04±0.5</td>
</tr>
<tr>
<td>Task 3</td>
<td>53.08±2.4</td>
<td>48.13±2.1</td>
<td>50.97±0.1</td>
<td>66.91±2.3</td>
<td>71.03±2.4</td>
<td>74.68±2.9</td>
<td>53.39±2.3</td>
<td>45.87±3.1</td>
<td>48.35±0.2</td>
</tr>
<tr>
<td>Task 4</td>
<td>40.97±2.2</td>
<td>49.90±2.5</td>
<td>43.70±1.9</td>
<td>45.73±2.5</td>
<td>49.18±1.9</td>
<td>51.91±2.4</td>
<td>53.63±2.4</td>
<td>52.44±0.3</td>
<td>45.01±1.4</td>
</tr>
<tr>
<td>Average</td>
<td>39.32±1.6</td>
<td>47.41±2.8</td>
<td>43.32±1.7</td>
<td>46.99±1.0</td>
<td>49.57±1.6</td>
<td>51.39±1.0</td>
<td>48.87±0.7</td>
<td>54.78±1.6</td>
<td>37.48±0.5</td>
</tr>
</tbody>
</table>

Keck Gesture dataset (Keck) [11] consists of 14 different actions from military signals, where each gesture can be performed by four subjects, and the same gesture is repeated three times by each person. Therefore, the total number of video sequences is $4 \times 3 \times 14 = 168$. The frame samples are shown in Figure 2 (Left). To this end, we have 4 tasks in total by treating each person as a motion segmentation task.

Multi-model Action Detection dataset (MAD) [10] is composed of 40 sequences captured from 20 subjects (i.e., 2 sequences per subject). Each subject performs 35 activities (e.g., Jumping, Throw, Dribble, and kicking) continuously. In this experiment, we randomly select 5 subjects, and treat each subject as one task. Frame samples of this dataset are shown in Figure 2 (Middle).

Electromyography-Vision dataset (EV-Action) dataset [35] is a novel multi-modality action dataset collected by ourselves. It contains 20 actions preformed by 50 subjects with 4 different modalities (e.g., RGB, EMG, Depth, Skeleton) simultaneously which could provide comprehensive information for human motion related research. The RGB and depth data have the resolution of 1080×1920 and 424×512 respectively. In this paper, we also randomly select 5 subjects, and treat each subject as one task. Frame samples are illustrated in Figure 2 (Right).

For each used dataset, we extract low-level HoG features [3] and obtain a 324-dimension feature vector from each frame. Due to the fact that different datasets contain different number of motions/actions, we randomly choose 10 motions performed by the same task from each dataset. The parameters λ_1 and λ_2 are empirically set to 0.1, 1000, while the input batch size for our Algorithm 1 is 80 in this paper.

The experimental results averaged over ten random repetitions are provided in Table 1, 2, 3 and Figure 3. From the obtained results, we can notice that: 1) From Table 1 and Table 3, we can find that our model achieves the best performance among these competing models on the Keck and
Segmentation comparisons between our model and state-of-the-arts in terms of ACC and NMI on MAD dataset: mean and standard errors over ten random runs. Models with the best performance are bolded, and the runner-up are underlined. M denotes MAD dataset.

<table>
<thead>
<tr>
<th>Task</th>
<th>ACC (%)</th>
<th>NMI (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>35.18 ± 0.3</td>
<td>48.19 ± 0.6</td>
</tr>
<tr>
<td>2</td>
<td>34.60 ± 0.5</td>
<td>47.31 ± 0.9</td>
</tr>
<tr>
<td>3</td>
<td>31.35 ± 0.4</td>
<td>45.97 ± 2.5</td>
</tr>
<tr>
<td>4</td>
<td>30.96 ± 1.4</td>
<td>38.66 ± 1.6</td>
</tr>
<tr>
<td>5</td>
<td>46.96 ± 2.8</td>
<td>42.36 ± 4.2</td>
</tr>
<tr>
<td>Average</td>
<td>35.81 ± 1.3</td>
<td>41.76 ± 1.7</td>
</tr>
</tbody>
</table>

For the ACC on the MAD dataset, the size of mean ± standard deviation of each task.

Table 3. Segmentation comparisons between our model and state-of-the-arts in terms of ACC and NMI on our dataset: mean and standard errors over ten random runs. Models with the best performance are bolded, and the runner-up are underlined. M denotes MAD dataset.

<table>
<thead>
<tr>
<th>Task</th>
<th>ACC (%)</th>
<th>NMI (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>42.54 ± 2.0</td>
<td>49.14 ± 3.2</td>
</tr>
<tr>
<td>2</td>
<td>49.81 ± 5.2</td>
<td>59.78 ± 2.5</td>
</tr>
<tr>
<td>3</td>
<td>48.11 ± 2.5</td>
<td>45.27 ± 1.1</td>
</tr>
<tr>
<td>4</td>
<td>39.22 ± 3.5</td>
<td>38.57 ± 1.9</td>
</tr>
<tr>
<td>5</td>
<td>43.35 ± 3.4</td>
<td>45.34 ± 2.2</td>
</tr>
<tr>
<td>Average</td>
<td>44.45 ± 3.7</td>
<td>47.76 ± 2.4</td>
</tr>
</tbody>
</table>

EV-Action datasets. Specifically, our model has 8.24% and 0.35% improvement in terms of ACC and NMI for Keck dataset, and 12.01% and 1.21% improvement in terms of ACC and NMI for EV-Action dataset, respectively. From Table 2, notice that our model can obtain 0.77% in ACC on the MAD datasets, respectively. It is because that (1) we adopt the autoencoder structure in the subspace clustering, which not only contains the motion-aware latent space, but also adopts encoder and decoder to link the motion-aware latent space with original data; (2) the useful information among different tasks can be fully used to segment these motions/actions. 2) For the NMI on the MAD dataset, our model can just achieve the runner-up performance when comparing with TSS [32] model. The main reason for this observation is that our model is based on the online learning algorithm, i.e., we can just achieve a batch of motions in each time stamp and notice some local temporal information on the coming actions. 3) The reason why our model outperforms the multi-task clustering model MTCMRL is that even though MTCMRL incorporates the within-task clustering and cross-task relatedness learning, it do not consider the temporal information. 4) From the presented results in Figure 3 (different motions are marked as different colors), we can notice that the competing methods cannot achieve useful segment performance when they do not consider the temporal information, e.g., SPE, LRR, MTCMRL and ORLSC. Moreover, even though our model just adopts the local temporal graph information, our model can also achieve clearer segmentation structure. It is because that we

Figure 3. Visualization demonstration of clustering result on MAD (Subject 2) data. Ten motions are denoted by ten different colors. use the motion-aware space with multiple tasks.

5.3. Discussions

Time Consumption Generally, one of the major advantages of our model is the time consumption when comparing with offline subspace clustering methods. In order to investigate the runtime of our model, we utilize the Keck dataset by selecting the action dataset of the first task. The runtimes are presented in Figure 4, where we also include the time cost of spectral clustering or k-means. The size of each input batch for our model is 80. Notice that our model significantly outperforms most offline single-task cluster-
Parameter Investigation In order to study how the parameters λ_1 and λ_2 affect the clustering performance of our model, we use Keck dataset in this subsec-

![Figure 4](image)

Figure 4. The demonstration of computational time (seconds) among the ten competing clustering models, where each bar denotes different competing models.

![Figure 5](image)

Figure 5. Clustering results: ACC (Left) and NMI (Right) on MAD dataset with different number of motion.

![Figure 6](image)

Figure 6. The effect of parameters λ_1 and λ_2 on Keck dataset in terms of ACC (left) and NMI (right), respectively.

![Figure 7](image)

Figure 7. The effect of projection size k and p of D and P^t in terms of ACC and NMI, respectively, where different lines denote the clustering results on different datasets.

Effect of Motion Number By removing some motions and set the motion number of MAD video from 2 to 10, we justify the effect of motion number on all competing models. As depicted in Figure 5, we can observe that our model can consistently achieve much better results than other models. In addition, the performance of our model is more stably when the number of motions is changing. This observation also demonstrates the effectiveness of our model.

Parameter Investigation In order to study how the parameters λ_1 and λ_2 affect the clustering performance of our model, we use Keck dataset in this subsec-

6. Conclusion

In this paper, we propose an online multi-task clustering model for multi-agent human motion segmentation task by integrating a linear encoder-decoder framework. The encoder-decoder paradigm can learn a latent motion-aware space via maximizing both the reconfigurability of the original motion data from the motion-aware space and the predictability of the motion-aware space from the original motion data. To address cross-task problem, projection for each task is jointly learned to mitigate the distribution divergences. We also derive a general online learning algorithm for dynamic environments. Experiment results show the effectiveness and efficiency of our model.
References

