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Abstract

We propose a general, prior-free approach for the uncal-

ibrated non-rigid structure-from-motion problem for mod-

elling and analysis of non-rigid objects such as human

faces. We recover the non-rigid affine structure and mo-

tion from 2D point correspondences by assuming that (1)

the non-rigid shapes are generated by a linear combina-

tion of rigid 3D basis shapes, (2) that the non-rigid shapes

are affine in nature, i.e., they can be modelled as deviations

from the mean, rigid shape, (3) and that the basis shapes are

statistically independent. In contrast to the majority of ex-

isting works, no statistical prior is assumed for the structure

and motion apart from the assumption that underlying basis

shapes are statistically independent. The independent 3D

shape bases are recovered by independent subspace anal-

ysis (ISA). Likewise, in contrast to the most previous ap-

proaches, no calibration information is assumed for affine

cameras; the reconstruction is solved up to a global affine

ambiguity that makes our approach simple and efficient. In

the experiments, we evaluated the method with several stan-

dard data sets including a real face expression data set of

7200 faces with 2D point correspondences and unknown 3D

structure and motion for which we obtained promising re-

sults.

1. INTRODUCTION

The estimation of structure and motion from image

streams is a fundamental problem in computer vision. As an

extension to the regular structure-from-motion (SFM) prob-

lem, the non-rigid structure-from-motion (NRSFM) prob-

lem takes the non-rigidity of the object in consideration in

the recovery of structure and motion. The NRSFM prob-

lem has received considerable attention during the last two

decades and encouraging results have been obtained.

The approaches for NRSFM can be categorised in sev-

eral ways. From the algorithmic point of view, there are

direct and iterative methods. Starting from the direct meth-

ods, the work of Bregler et al. [8] can be seen as the start-

ing point for NRSFM research. They proposed an approach

where the shape deformations are modelled as a linear com-

Figure 1. We propose a method that infers the 3D reconstruction,

basis shapes, and the underlying affine camera geometry from the

2D projections of a non-rigid object by only assuming an uncali-

brated affine camera and statistically independent basis shapes.

bination of rigid shape basis that leads to a low-rank model;

a heuristic 1D factorisation together with orthogonal con-

straints were used to recover the camera matrices. This

pioneering work was thereafter succeeded by the work of

Brand et al. [6], who used the heuristic of minimising de-

formations. Del Bue and Agapito applied additional con-

straints arising from a stereo rig [11]. Xiao et al. con-

strained the shape basis by assuming that each basis shape

is visible unmixed in some frames [26]. Hartley and Vidal

proposed a solution for perspective non-rigid structure from

motion problem by factoring a multifocal tensor [16].

Regarding the iterative methods, one category is

alternation-based methods, such as the trilinear method by

Torresani et al. [25], the bilinear methods by Paladini et

al. [22] and Del Bue et al. [13] which include projections

onto the metric manifold, and the method by Torresani et

al. [24] which is based on Probabilistic PCA and Expec-

tation Maximisation. Bundle adjustment has been applied,

for instance, in [1, 12, 5]. Moreover, Bartoli et al. [5] used

a coarse-to-fine problem formulation to obtain a robust re-

sult. Various works have applied either statistical or phys-

ical priors to regularise the non-rigid structure from mo-

tion problem. These include priors such as rigidity [12, 5],



smoothness of camera trajectories [15], temporal smooth-

ness [24, 3], deformation locality [6] and type [13].

When analysing, for instance, a set of face images with-

out temporal order, temporal priors cannot be applied. An

early prior-free1 approach for uncalibrated non-rigid struc-

ture from motion was proposed by Brandt et al. [7] where

the shape basis ambiguity was approached by assuming

statistical independence between the basis shapes that led

to independent subspace analysis (ISA). Dai et al.’s solu-

tion [10] for prior-free non-rigid structure-from-motion was

built upon the observation by Akhter et al. [2], namely that

even though there is an unresolved ambiguity for shape ba-

sis with the standard orthogonality constraints, the 3D shape

can be recovered without an ambiguity. Kong and Lucey

[21] proposed a prior-free approach where the non-rigid

shape is modelled as a compressible basis instead of a low-

rank basis. In applications like facial expression analysis,

it is also valuable to reconstruct the underlying shape basis

and decompose the expressions onto it. This is a drawback

for the approach [10] where the shape basis is only implicit

and ambiguous. Likewise, Kong and Lucey [21] did not

estimate a shape basis but a compressible feature basis.

We propose another prior-free, non-rigid structure-from-

motion algorithm based on independent subspace analysis.

The assumption hence is that the underlying shape bases

live in statistically independent2 subspaces (see also [4]).

Statistical independence should not be confused with lin-

ear independence used, for instance, by Xiao et al. [26]

for selecting the shape basis. Remarkably, the statistically

independent subspaces, and hence the basis shapes, can be

recovered in an uncalibrated, affine setting, thus no calibra-

tion information, neither intrinsic nor extrinsic, is required

to infer the basis shapes (cf. Fig. 1). This is a major sim-

plification of the non-rigid structure-from-motion problem.

The basis shapes can be converted to a metric as soon as

the cameras are calibrated without affecting the independent

subspace structure. Furthermore, in contrast to the method

by Brandt et al. [7], the our method does not require an

exhaustive search over one-dimensional subspace permuta-

tions which constitutes a combinatorial problem, nor itera-

tive optimisation for the inhomogeneous projection matri-

ces. In effect, our method is simpler, sounder and scalable.

The contributions of this work are as follows. (1) We

propose a straightforward, priorless, direct method for non-

rigid structure-from-motion by assuming statistical inde-

pendence of the basis shapes in an uncalibrated setting. (2)

In contrast to many other non-rigid factorisation algorithms

built upon the seminal algorithm of Bregler et al. [8], we

assume that the affine camera matrix, which is shared by all

1By ’prior-free’ we refer to an approach that does not make an assump-

tion, in the Bayesian sense, about the prior distribution of the basis shapes.
2Two random variables X, Y are statistically independent iff their joint

probability density can be factorised such that p(x,y) = p(x)p(y).

the basis shapes, will be solely defined by the mean, rigid

shape – this is consistent with Independent Subspace Anal-

ysis since it has been shown in [17] that this is equivalent to

analyse the original or mean corrected observations while

the structure of the latter setting is simpler. (3) To recover

the shape basis we suggest two alternative ISA algorithms

built upon mutual information minimisation: FastISA pro-

posed in [18] and FastICA [19] equipped with our compo-

nent pooling. The algorithms do not require to exhaustively

determine permutations of one-dimensional shape compo-

nents in contrast to the method in [7]. (4) To recover the

block-formed motion matrix after the ISA step, we propose

an algebraic, iteratively re-weighted least squares method

where only subspace affinities and the shape mixing coeffi-

cients are left to be estimated. (5) We propose a non-linear

refinement to obtain the final, statistically sound estimates.

2. AFFINE NON-RIGID MODEL

The standard non-rigid factorisation assumes that the

non-rigid shape can be represented as a linear combination

of the shape bases. That is, 3D points can be expressed as

x
i
j =

∑

k α
i
kbkj , where αi

k is a scalar. With a stationary

motion sequence, the model can, without a loss of general-

ity, be assumed affine, i.e., centred around the rigid, mean

shape. The 2D projection m̂
i
j of a 3D point xi

j hence is

m̂
i
j = M

i
x
i
j + t

i = M
i

(

b0j +

K∑

k=1

αi
kbkj

)

+ t
i, (1)

where Mi is 2×3 projection matrix to the image i, ti is the

corresponding translation vector, αi
k, k = 1, 2, . . . ,K are

the scalar coefficients, and bkj refers to the basis shape k;

k = 0 is the mean rigid shape. The points are indexed by j.

Assuming Gaussian noise, the maximum likelihood so-

lution with respect to the parameters M
i, ti, αi

k,bkj , i =
1, . . . , I , j = 1, . . . , J , k = 1, . . . ,K, minimises the cost

∑

i,j

‖m̂i
j−m

i
j‖2 =

∑

i,j

‖Mi(b0j+
∑

k

αi
kbkj)+t

i−m
i
j‖2

or equivalently

‖W − Ŵ‖2Fro, (2)

where the translation corrected measurements mi
j−t̂

i, t̂i =
1
J

∑

j m
i
j , are collected into the matrix W, implying
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where Bk = (bk1 bk2 · · · bkJ) and B0 is the rigid shape.

All the shape bases share the same inhomogeneous pro-

jection matrix M
i for image i. From (3) it follows that

the noise free measurement matrix has the rank constraint

R � rank Ŵ ≤ 3K + 3.

The matrix minimising (2) with the rank constraint is

obtained by the singular value decomposition of W =
USV

T by truncating the smallest singular values, keeping

the 3K+3 largest, and removing the corresponding singular

vectors. The truncated matrices being Ũ, S̃ and Ṽ yields

Ŵ =

(
1√
J
ŨS̃

)

︸ ︷︷ ︸

�M̃

(√
JṼT

)

︸ ︷︷ ︸

�B̃

= M̃A
︸︷︷︸

�M̂

A
−1

B̃
︸ ︷︷ ︸

�B̂

= M̂B̂, (4)

where A is an unknown affine transformation. To find the

estimates for the non-rigid structure B̂ and motion matrix

M̂, we need to find the linear transformation A that (1) sep-

arates the statistically independent shape subspaces and (2)

recovers the block structure of the motion matrix. Our so-

lution is described in the following section.

3. PROPOSED METHOD

This section describes the proposed method. It consists

of the following steps: estimation of the rigid and non-

rigid components (Sec. 3.1), independent subspace analysis

(Sec. 3.2), block-form motion matrix recovery (Sec. 3.3),

and non-linear refinement (Sec. 3.4).

3.1. Factorisation

To facilitate ISA processing and for clarity, we divide

the translation corrected measurement matrix into rigid and

non-rigid part as follows. We first compute the nearest rigid

affine reconstruction by the standard Tomasi–Kanade fac-

torisation [23] that yields the rigid approximation

W0 = M0B0, (5)

where the inhomogeneous projection matrices, up to an

affine transform, are M0 = 1√
J
U0S0 and the mean rigid

shape is B0 =
√
JVT

0 . We then subtract the rigid compo-

nent from the measurement matrix

∆W = W −W0, (6)

and work with the non-rigid part ∆W.

Now, by using the remaining constraint rank ∆W ≤
3K for the non-rigid part, we truncate all the singular val-

ues, and singular vectors, up to the 3K largest that yields

∆W ≈ ∆W̃ ≡ U
′
S
′
V

′T = M
′
B

′, (7)

where M
′ = 1√

J
U

′
S
′ and B

′ =
√
JV′T.

3.2. Independent Subspace Analysis

By independent subspace analysis (ISA), we map the

singular vectors into new vectors that form subsets that will

be as statistically independent to each other as possible.

Without a loss of generality, our ISA estimate (ISA1) is

formed by two steps: (1) estimating the one-dimensional

ICA components, and (2) grouping them. By definition, the

ICA components minimise the mutual information

I(Z) =
∑

j

H(Zj)−H(Z) (8)

where H refers to differential entropy and Y = AICAZ is

the random vector of the mixed signals, corresponding to

the columns of B′; Z is the random vector of the sources,

and AICA is the mixing matrix. By construction, mixing

matrix AICA will be orthogonal, hence,

M
′
B

′ = M
′
AICA

︸ ︷︷ ︸

�MICA

A
T
ICAB

′
︸ ︷︷ ︸

�BICA

≡ MICABICA. (9)

where the rows in BICA will be in as statistically indepen-

dent as possible. Here, we compute the mixing matrix by

the FastICA algorithm [19].

The remaining problem is the pooling of the one-

dimensional components into groups of three. We use

the image population statistics, so that we project the

non-rigid measurement matrix ∆W onto the orthogonal,

3K-dimensional ICA basis BICA and estimate the 3K ×
3K covariance matrix C = 1

J
BICA∆W

T∆WB
T
ICA −

1
4I2J

BICA∆W
T
11

T∆WB
T
ICA of these projections. For

a statistically independent component pair, the covariance

will vanish, i.e., the covariance matrix will show block di-

agonal structure, as soon as the components are correctly

permuted. We thus estimate the ICA component permu-

tation matrix P, and further the orthogonal transformation

A
T
ISA = PA

T
ICA, by a greedy strategy: in analogy to us-

ing Givens rotations, we compute the sequence of optimal

pairwise variable permutations that decrease the off-block-

diagonal covariation in the covariance matrix.

We additionally experiment another ISA algorithm

(ISA2) that yields an estimate for the orthonormal, subspace

separation matrix A
T
ISA. It is principally the FastISA algo-

rithm [18] that has been developed from the FastICA [19]

algorithm with the difference that the statistical indepen-

dence of individual components is not assumed but instead

between vectors residing in different subspaces. This is in

analogy to assuming sparsity or group sparsity of multivari-

ate signals. However, the approach has been reported lo-

cal hence relatively sensitive to intialisation. Moreover, the

construction of FastISA is based on an ad hoc probability

density model that may compromise its statistical perfor-

mance. To cope with the locality, we compute FastISA from

multiple initialisations and take the estimate that maximises

the likelihood of the solution with the density assumption.



3.3. Recovery of the Block Structure

By a blind subspace separation method, the independent

subspaces can be recovered only up to an unknown linear

transform for each independent subspace, since the energy

of the independent components cannot be recovered [17].

In other words, after ISA, we need to estimate the 3 × 3
mapping Dk from the rigid shape coordinate system onto

coordinate system of the independent subspace k.3 Let D

be the block diagonal matrix containing all the K subspace

affinities in the respective blocks. We may then write

MISABISA = MISAD
︸ ︷︷ ︸

�M̂

D
−1

BISA
︸ ︷︷ ︸

�B̂

≡ M̂B̂ (10)

that also maps the motion matrix MISA into the block-form

matrix. To compute an algebraic estimate for D, we use

the assumption that each shape basis component, including

the rigid shape, share a common affine projection matrix to

each view, and minimise

min
D,α

∑

i,k

‖Mi
kDk − αi

kM
i
0‖2Fro (11)

subject to ‖Dk‖2Fro = 1 for k = 1, 2, . . . ,K, where M
i
k is

the 2 × 3 block of MISA, indexed by k and i. The matrix

M
i
0 is the inhomogeneous affine projection matrix i in M0

in (5). The estimate can be found by iteratively reweighted

least squares as detailed in Appendix A.

3.4. Non-linear Refinement

Since (11) is an algebraic criterion, we finally make a

non-linear refinement to minimise the reprojection error, or

min
D,α

‖∆W −M
α
0D

−1
BISA‖2Fro (12)

where M
α
0 is defined by the matrix M0 repeated K times,

and having the scalar weights αi
k on the corresponding 2×3

blocks, c.f. (3). Using the fact that the rows of 1√
J
BISA are

orthonormal,

‖∆W −M
α
0D

−1
BISA‖2Fro

=

∥
∥
∥
∥

1

J
∆WB

T
ISABISA −M

α
0D

−1
BISA

∥
∥
∥
∥

2

Fro

+

+

∥
∥
∥
∥
∆W

(

I− 1

J
B

T
ISABISA

)∥
∥
∥
∥

2

Fro

=

∥
∥
∥
∥

1√
J
∆WB

T
ISA −M

α
0D

−1

∥
∥
∥
∥

2

Fro

+

+

∥
∥
∥
∥
∆W

(

I− 1

J
B

T
ISABISA

)∥
∥
∥
∥

2

Fro

,

(13)

3In the calibrated case, Dk would be the 3×3 rotation Rk between the

rigid and the non-rigid shape basis. Here, however, Dk is a general 3× 3
matrix, constrained to unity norm to fix the arbitrary scale of the solution.

where the latter term does not depend on Dk and αi
k and

can be dropped. That yields an equivalent bilinear problem

min
D,α

∥
∥
∥
∥

1√
J
∆WB

T
ISA −M

α
0D

−1

∥
∥
∥
∥

2

Fro

(14)

that we minimise by standard non-linear least squares.

4. EXPERIMENTS

4.1. Torressani’s Shark Dataset

For the first experiment, we use Torressani’s synthetic

Shark data set [24]. It is a degenerate data set with K = 1.

Moreover, the original measurement matrix (I = 240,

J = 91) has rank 5 after the translation correction. Hence,

the deformation basis is degenerate. This implies a non-

unique reconstruction as there will be a 3-parameter-family

of solutions for even a single 3D shape basis. We compared

the proposed method against the pseudoinverse method

proposed by Dai et al. [10], as well as their Block Ma-

trix Method, and Kong and Lucey’s priorless compressible

method [21]. Since our method is affine and the reconstruc-

tion will be known only up to an unknown affine transfor-

mation, it will not be meaningful to compare the results

in the 3D space. Instead, we compare the reprojections

onto the image plane between the methods. The results are

shown in 3, and in Tab. 1.
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Figure 2. Affine reconstruction on Torresani’s Shark dataset for

which the projections onto the image plane can be modelled by

a single degenerate (planar) 3D shape basis. (Left column) rigid

affine 3D Shape from two different directions; (right column) il-

lustration of the estimated non-rigid ISA component on both sides

around the rigid shape.



Table 1. Relative reprojection error, reported as the inverse SNR, for the tested NRSFM approaches on different data sets.

Inverse SNR [%] PI (Dai et al. [10]) BMM (Dai et al. [10]) Kong&Lucey [21] Proposed ISA

Shark 3.5 0.33 160 0.12†

Balloon 0.11 0.012 1.2 0.12†

Face LS3D-W 0.025 0.024 0.93 0.014†

Face Binghamton ∗ ∗ 9.3 0.015‡

† by ISA1 variant; ‡ by ISA2 variant; ∗ no result within 24 hours.

It can be seen from Tab. 1 that the proposed method

(ISA2) achieves the lowest reprojection error, measured by

the inverse signal-to-noise-ratio. The other prior free meth-

ods do not perform well for this dataset due to the degener-

acy, especially, the compressible method failed completely,

as also reported in [21]. In spite of the degeneracy of the

data set, our method was able to pinpoint the major mode

of deformation that is a vector field normal to a reference

plane, as Fig. 2 illustrates. Here, since only one deforma-

tion subspace was considered, the pooling step was trivial.

4.2. Balloon Deflation

For the second test data set, we use the balloon deflation

from the NRSfM Challenge 2017 [20]. It is a simulated data

set with I = 51 projections generated by reprojecting real

tracked 3D data points (J = 211) by a virtual, perspective

camera having a circular camera trajectory. By using an

affine camera model, we can thus only achieve an approxi-

mation of the ground truth camera geometry. We then esti-

mated the result using the reference approaches and our ISA

methods. We assumed five deformation modes (K = 5).
The results are in Tab. 1, and Fig. 3 and 6.

For this data set, the Block Matrix Method of [10] gave

the best result, whereas the Pseudoinverse and the proposed

ISA approach obtain similar scores. Fig. 6 illustrates the

estimated, statistically independent modes. The third com-

ponent most clearly indicates the size change, whereas the

other modes represent different kinds of non-linear shape

deformations. The mode covariance matrix (Fig. 6b) shows

that the highest correlations are concentrated onto the diag-

onal, hence, the independence assumption is fair. Nonethe-

less, there are some off-block-diagonal-correlations that

most likely contributed to the higher score.

4.3. Face LS3D-W Dataset

For the third experiment, we use the LS3D-W data set

[9] consisting of matched feature points for 7200 human

faces with various expressions. Each face contains 68 2D

feature points that were automatically found and matched,

as described in [9]. The faces were in random orientation

and order so no temporal smoothness could be applied. We

compare our method (ISA2) against Dai’s [10] and Kong

and Lucey’s [21] methods. Dai’s method is computation-

ally most demanding due to the size of the database: the

computation of the result took about 2 CPU days, Kong and

Lucey’s about 6 CPU hours. In contrast, an ISA estimate

could be computed in about twenty CPU minutes. The re-

sults are shown in Tab. 1, and in Figs. 4 and 7.

From the results, it can be seen that the proposed method

gave the best numerical results with almost a half of the

inverse SNR when compared to either of the methods by

Dai et al. [10]. When looking at the reprojections, it can

be seen that their approach had more difficulties in repro-

ducing the fine structure of the mouth (see columns 2, 4,

6, 8, and 9 in Fig. 4) than the proposed method. Each es-

timated basis shape, shown in Fig. 7a, demonstrate a clear

semantic interpretation. From the mode correlation matrix

(Fig. 7b) it can be seen that the strongest off-block-diagonal

covariance is between the the first and fourth basis shape.

One can also note that the lips are slightly distorted in both

modes that suggest that there is in fact a statistical depen-

dency between the modes while the statistical independence

assumption yields an accurate approximation for the shapes

and poses in the data set.

4.4. Binghamton 3D Facial Expression Dataset

The data set [27] contains 25 shapes of 100 subjects with

7 different expressions (neutral, happy, disgusted, fear, an-

gry, surprised, sad) recorded by a 3D-face scanner. All the

expressions, except the neutral, were recorded in four differ-

ent strengths. The subjects had varying ethnic background

and their age range was from 18 to 70 years. A total of 56%
of the subjects were female and 44% male. We obtained

7308 3D-correspondences between the shapes by non-rigid

registration [14]. 2D correspondences, simulated from the

3D correspondences, were used as the input for the experi-

ment. Results are shown in Tab. 1, and Fig. 8. A comparison

with the baseline algorithms by Dai et al. [10] was not pos-

sible since both methods did not converge within a reason-

able amount of time. The result by Kong and Lucey [21]

was modest probably due to the fact there was no tempo-

ral structure in the data. Our method (ISA1) was able to

produce an accurate fit, as the low inverse SNR demon-

strates. Also, as can be seen in Fig. 8, the estimated shape

basis was able to capture the major structure variations in

the database, including those related to person expression

changes. From the mode covariance marix (Fig. 8n), it can

be seen that the covariance was concentrated onto the diag-

onal while the statistical dependences are not as strong as

with the LS3D-W data set.
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Figure 3. Reprojections (blue) to random frames against ground truth projections (red) with the Shark dataset; K = 1. (1st row) Pseu-

doinverse Method Dai et al. [10]; (2nd row) Block Matrix Method Dai et al. [10]; (3rd row) Kong&Lucey’s Priorless Compressible

Method [21]; (4th row) proposed ISA.
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Figure 4. Reprojections (blue) to random frames against ground truth projections (red) with the Balloon deflation dataset; K = 5. (1st

row) Pseudoinverse Method Dai et al. [10]; (2nd row) Block Matrix Method Dai et al. [10]; (3rd row) Proposed ISA.
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Figure 5. Reprojections (blue) to random frames against ground truth projections (red) with the LS3D-W face dataset; K = 9. (1st row)

Pseudoinverse Method Dai et al. [10]; (2nd row) Block Matrix Method Dai et al. [10]; (3rd row) Proposed ISA.

5. CONCLUSIONS

In this paper we proposed a generalisation for non-rigid

structure-from-motion. In contrast to the earlier belief that

the recovery of shape basis would be ambiguous without

prior information, we have shown that only assuming sta-

tistical independence between the 3D basis shapes yields
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Figure 6. (a) Affine ISA Shape Basis on the Balloon deflation dataset with K = 5. (left column) Rigid affine 3D Shape B0; (the other

columns) estimated non-rigid ISA shape basis component on both sides around the rigid shape. The arrows illustrate the drift of the points

from the mean shape positions. The basis shapes are the components B = B0 ± αkB̂k, where αk is a positive scalar. (b) The 3K × 3K

mode covariance matrix C demonstrating the 3× 3 block diagonal structure.

(a) (b)

Figure 7. (a) Affine ISA shape basis for the LS3D-W data set with K = 9. (Left column) rigid affine 3D Shape B0; (the other columns)

the 9 estimated 3D ISA basis shapes B = B0 ± αkB̂k, where αk is a positive scalar. (b) The 3K × 3K mode covariance matrix C

demonstrating the 3× 3 block diagonal structure.

an uncalibrated, affine shape basis and affine, non-rigid

structure and motion estimates. In analogy to the theory

about rigid structure-from-motion, estimating an affine re-

construction instead of an Euclidean one yields a simpler

solution for the non-rigid structure-from-motion problem,

and independent subspace analysis serves as a natural tool

to resolve the basis ambiguity. Our experiments showed that

the approach is suitable for large data sets and it facilitates

modelling and analysis of non-rigid structures in an uncali-

brated setting. The approach hence opens the way for solv-

ing the non-rigid structure-from-motion problem for sta-

tionary motion sequences. In future, we are going to extend

our methodology to handle missing data and to cope with

more versatile statistical dependencies between the shape

bases.

A. IRLS FOR BLOCK-FORM RECOVERY

Problem: Find αi
k ∈ R and Dk ∈ R3×3 such that

∑

i,k

‖Mi
kDk − αi

kM
i‖2Fro −→ min, (15)

subject to ‖Dk‖Fro = 1, k = 1, 2, . . . ,K, where

M
i
k,M

i ∈ R2×3.

Solution:

Let dk = vec(Dk), m
i = vec(Mi). Now, for i =

1, 2, . . . , I , k = 1, 2, . . . ,K,

‖Mi
kDk−αi

kM
i‖2Fro

=

∥
∥
∥
∥
∥

⎛

⎝

M
i
k 0 0

0 M
i
k 0

0 0 M
i
k

⎞

⎠

︸ ︷︷ ︸

�N
i

k

dk − αi
km

i

∥
∥
∥
∥
∥

2

2

=

∥
∥
∥
∥

(
N

i
k −m

i
)
(
dk

αi
k

)∥
∥
∥
∥

2

2

.

(16)

By collecting all the coefficients Ni
k,m

i into a 6IK× (9+
I)K matrix N the problem (15) is equivalent to the con-

strained least squares problem

‖N(d1, . . . ,dK , α1
1, . . . , α

1
K , α2

1, . . . , α
2
K , . . . , αI

K)‖2
−→ min,

(17)
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Figure 8. Reconstructions of the K = 8 basis shapes computed from the Binghamton, BU3DFE [27] dataset. (a) The mean rigid shape

B0; (b–r, except n) the estimated 3D ISA basis shapes B = B0±αkB̂k, shown in red and blue, respectively. (n) Mode covariance matrix.

subject to ||dk‖2 = 1, k = 1, 2, . . . ,K. The estimate can

be found by the iteratively reweighted least squares by first

assuming that α
1,(n)
k = 1/K for n = 0, k = 1, . . . ,K and

finding the solution of the reduced system

‖N\α1(d1, . . . ,dK , α2
1, . . . , α

2
K , . . . , αI

K)− c
(n)‖2

−→ min,
(18)

where N\α1 is constructed from N by dropping the

columns corresponding to α1
k, for all k, and c

(n) =

−Nα1(α
1,(n)
1 , . . . , α

1,(n)
K ). The estimate for α

1,(n+1)
k is

computed as α
1,(n+1)
k ← α

1,(n)
k /‖d(n)

k ‖, and the compu-

tation is iterated until convergence. This reweighting fol-

lows from the weighting wi
k = ‖d(n)

k ‖−2 in the iterated

reweighted least squares (IRLS) scheme seeking to adjust

the mixing weights in the first view that results in the unity

Frobenius norms for the estimate of Dk. The IRLS solution

typically converges in only a few iterations, so the compu-

tational overhead is negligible.
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