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Abstract

In this work, we propose a new total variation (TV)-

regularized robust principal component analysis (RPCA)

algorithm for panoramic video data with incremental gra-

dient descent on the Grassmannian. The resulting al-

gorithm has performance competitive with state-of-the-art

panoramic RPCA algorithms and can be computed frame-

by-frame to separate foreground/background in video with

a freely moving camera and heavy sparse noise. We show

that our algorithm scales favorably in computation time and

memory. Finally we compare foreground detection accu-

racy and computation time of our method versus several ex-

isting methods.

1. Introduction

Video foreground/background separation is of great

value to many computer vision algorithms for tasks such

as activity or object recognition, target tracking, surveil-

lance [5], or identifying trans-Neptunian objects in highly

noisy astronomical data studies [14]. Modern applications

such as these include a variety of challenges, ranging from

video captured from consumer mobile devices to extremely

memory-intensive video datasets. In this work, we fo-

cus on the problem of foreground/background separation in

panoramic videos, where scalability with respect to mem-

ory and computation is a key requirement.

One successful collection of solutions for fore-

ground/background separation in video leverages a prob-

lem formulation called robust principal component anal-

ysis (RPCA) [28]. RPCA naturally results in both fore-

ground/background separation and foreground recovery.

RPCA seeks to recover both a low-rank, incoherent matrix

and a sparse corruptions matrix whose sum is the observed

data [6]. Such scenarios arise in many practical contexts

where video data can be modeled as sparse foreground ob-

jects superpositioned on low-rank backgrounds.

Most RPCA work in video separation has thoroughly ad-

dressed the case of static video, but modern video, espe-

cially from consumer mobile devices, is often captured by a

camera undergoing motion, a significant challenge to mod-

els that assume a nearly constant background. More recent

work on Panoramic RPCA [10] has considered this issue,

with the observation that panoramic video can be modeled

as snapshots of small pieces of a large static scene with

many missing pixels in each frame. However, this work as

well as other existing RPCA methods become prohibitively

expensive to compute in both time and memory with higher

resolution videos and larger ranges of camera motion. The

majority of batch algorithms use the singular value decom-

position (SVD) to perform RPCA, but the standard SVD

requires all of the data to be stored in memory at compu-

tation time and can be too slow for many real-time appli-

cations [15]. The complexity of computing SVDs or thin

SVDs grows quadratically in the number of matrix columns

which may become prohibitive with large videos [26].

Finally, few RPCA models are capable of removing

sparse noise–or impulse noise–that cannot be distinguished

from the foreground, such as in surveillance camera footage

with blizzard or rainstorm conditions [27] or in hyper-

spectral images [25]. Video sequences are also often cor-

rupted with inter-channel correlated impulse noise during

the transmission stage, as a result of external effects such as

thunderstorms, electric engines, wireless phones etc [24].

We propose a novel RPCA algorithm that can handle

panoramic camera motion. Our method is online once we

compute the homographic video registration. Our method is

also robust to heavy sparse corruptions and can accurately

disentangle the noise from foreground objects in the 2017

DAVIS Challenge videos [20]. To the best of our knowl-

edge, our method is the only one that can perform incre-

mental gradient descent on the Grassmann manifold with

total-variation (TV) regularization in an online way without

using SVDs. We show our method is far more advantageous

in computation time and memory than the existing state-of-

the-art panoramic RPCA algorithm in [10].



Organization We have a literature review in Section 2,

and our model and algorithm are presented in Section 3.

Section 4 presents a performance comparison of panoramic

RPCA methods in terms of foreground separation and com-

putation time. Finally, Section 5 concludes and discusses

opportunities for future work.

2. Previous Work

2.1. RPCA Model in Video Decomposition

Robust PCA algorithms are adept at low-rank-sparse de-

composition in difficult problems with high-dimensional

and incomplete data. Video background can be thought of

as frames with high temporal correlation across the video.

Mathematically, in an idealized setting with a completely

static background, the matrix of vectorized background

video frames can be modeled as a rank-1 matrix L = b✶T
n

where b ∈ R
m is the vectorized background frame we wish

to recover. While the matrix may not be exactly rank-1 em-

pirically, it is usually very low-rank. We therefore seek to

recover the low-rank subspace U ∈ R
m×r and the weights

V T ∈ R
r×n in a matrix factorization model L = UV T with

r ≪ min(m,n). Any foreground objects in each frame

will appear as sparse corruptions in vectorized form added

to the background frame. The observed video frame matrix

X ∈ R
m×n is then X = L+ S for some sparse matrix S.

An abundance of research has developed algorithms ca-

pable of decomposing video where the background and

camera are nearly static. The work in [8] proposed Prin-

cipal Component Pursuit (PCP)–a classical batch RPCA al-

gorithm that performs singular value shrinkage on the low-

rank matrix component. Other works have followed to fur-

ther constrain the sparse foreground based on a priori infor-

mation. The authors of the Grassmannian Online Subspace

Updates with Structured-sparsity (GOSUS) algorithm [29]

enforce the foreground objects to belong to superpixels, en-

hancing the cohesiveness and smoothness of foreground ob-

jects. However, the method is expensive to compute, re-

quires a GPU solver, is slow to train, cannot separate the

foreground from video corruptions like shotgun noise, and

cannot handle missing data.

The authors in [9] proposed to separate background from

moving objects using TV-based regularization. It demon-

strated TV-based models can effectively distinguish fore-

ground, which should be smooth and spatially cohesive in

image space, from sparse corruptions like snow and rain in

poor weather conditions. Their method, called TVRPCA,

composes the video as a summation of a low-rank compo-

nent, a sparse TV-regularized foreground, and dense and

sparse noise corruptions. TVRPCA is also a batch algo-

rithm that uses the SVD for singular value shrinkage.

2.2. RPCA in Moving Camera Settings

Low-rank plus sparse separation becomes difficult with a

freely-moving camera, as background is no longer static and

cannot be modeled with a simple low-rank projection. A

common solution is to embed a global motion compensation

model into the matrix decomposition optimization problem,

jointly solving for a transformation matrix containing the

global motion of the camera along with the sparse compo-

nent and low-rank background aligned under the transfor-

mation [30]. The work in [22] proposed a fully incremental

PCP algorithm for video background modeling under cam-

era jitter, and the work in [23] expounded upon this algo-

rithm to better handle panning and camera motions with

newly observed frames. However, in general these methods

can only model for either small 2-D camera jitter or slow

2-D camera motion.

A far more challenging problem arises with cameras

undergoing rapid perspective motion. Researchers work-

ing on the DAVIS Challenge [20] dataset seek to segment

foreground objects in a large, diverse set of short, high-

resolution RGB videos where the camera undergoes large

degrees of motion. In the paper that inspired our work,

Moore, Gao, & Nadakuditi [10] showed a classic com-

puter vision technique to re-register the frames into a com-

mon reference perspective where RPCA can be applied.

Many of the videos in the DAVIS Challenge undergo per-

spective camera motion limited to eight degrees of free-

dom. Given correspondence points between frames, a ho-

mographic transformation between pairs of frames can be

estimated. This clever preprocessing step allows RPCA to

decompose the frames into a panoramic background com-

ponent that spans the entire field of view. Unfortunately,

this creates even higher-dimensional data when each trans-

formed frame in the common reference perspective is vec-

torized. It also creates large numbers of unobserved pixels

resulting from the partially overlapping views of the regis-

tered frames. This panoramic robust PCA (PRPCA) prob-

lem is the perfect storm of extremely high-dimensional and

incomplete data.

The work in [10] poses the video decomposition as a

type of algorithm similar to TVRPCA. Their formulation

is more advanced because it uses the OptShrink algorithm

[19, 18] to update the low-rank subspace (which has been

shown to be superior to singular value shrinkage algo-

rithms) while separating the foreground from video corrup-

tions like sparse and dense noise.

2.3. Online Grassmannian Subspace Tracking

The GRASTA algorithm by He et al. [15] models the

background as a subspace on the Grassmann manifold and

develops an iterative algorithm for tracking the low-rank

subspace. GRASTA uses the natural ℓ1-norm cost function

for data corrupted by sparse outliers, and operates only one



data vector at a time, making it faster than other state-of-

the-art algorithms and amenable to streaming and real-time

applications [15]. The algorithm called t-GRASTA [16] ex-

tended online video background separation to video with

severe camera jitter. GRASTA and t-GRASTA use explicit

computations for the Grassmannian geodesics and the gra-

dient of a function defined on the Grassmannian manifold

in the work of Edelman, Arias and Smith [11]. We will ex-

ploit a very similar Grassmannian update in our proposed

methods.

GRASTA operates under the rank-sparsity model which

assumes the foreground is sparse and its entries are dis-

tributed in a uniformly random pattern. This model works

well in most instances, but it could further benefit from a

priori knowledge that the foreground objects are smooth

and spatially cohesive in image space. This is especially

complicated if the video is heavily corrupted by sparse

noise. The rank-sparsity model is incapable of distinguish-

ing between a sparse signal of interest and sparse corrup-

tions, and foreground recovery is poor. We will show that

our proposed algorithm inspired by GRASTA that we call

PanGAEA (Panoramic Grassmannian Augmented Estima-

tion Algorithm) not only achieves better foreground seg-

mentations in clean video, but is also adept at handling

sparse corruptions.

3. Methods

Our contribution is a novel Grassmannian descent algo-

rithm that can handle missing data in panoramic video, op-

erate orders of magnitude faster than batch methods, and

can update its estimates with single streaming vectors in an

online setting. We use the same panoramic mosaicking and

preprocessing procedure as the authors in [10]. Although

the algorithm will be a batch method because of the homog-

raphy registration, our Grassmannian algorithm still updates

it estimates one data vector at a time in an online fashion.

3.1. Registering two frames with a homography [10]

Given a point p = [x, y, 1] in a frame and its correspond-

ing point p̃ = [x̃, ỹ, 1] in another frame, under the planar

surface model, the points are related via the projective trans-

formation

κp̃ = HT p

for some arbitrary nonzero scaling constant κ and H ∈
R

3×3 with H33 = 1. The homography matrix H has eight

unknown degrees of freedom we can estimate by minimiz-

ing

min
h

‖Ah‖2 s.t. h9 = 1, (1)

where h = vec(H), and given c correspondences {pi �→
p̃i}

c
i=1, AT = [AT

1 , . . . , A
T
c ] where

Ai =

[

0 pTi −ỹip
T
i

pTi 0 −x̃ip
T
i

]

∈ R
2×9

To make the least squares problem well-conditioned, a

minimum of four correspondence points is required, where

each correspondence pair gives two independent linear

equations and eight are needed to recover the eight unknown

degrees of freedom. The solution to Eq. (1) is the right-

most singular vector of A scaled so the last element is 1.

This vector best approximates the vector in the null space

of A to minimize the objective in Eq. (1).

The correspondence points are also unknown, and we

can use any popular computer vision feature algorithm, e.g.

SIFT [17] or SURF [3], to find them and use RANSAC [13]

to robustly estimate the H with the best objective value in

(1). Usually 10 correspondence points are best in each iter-

ation of RANSAC to ensure a well-conditioned A.

3.1.1 Homographic video registration

The PRPCA problem registers each of the frames

F1, . . . , Fn ∈ R
a×b to the common reference. Like [10],

we choose the middle frame Fk̃ as the “anchor” frame, or

the common reference, where k̃ = ⌊n/2⌋. Each frame is

highly correlated with the frame preceding and following

it, so we can accurately estimate the homographies Hk :=
Hk �→k+1 between frames k and k+1. Let Hk := Hk+1 de-

note the linear transformation between all points in frames

k and k + 1. Each transformed frame F̃k ∈ R
ã×b̃, where ã

and b̃ are the height and width of the region defined by the

union of the registered frame extents, can be computed with

respect to the anchor frame by

F̃k =

⎧

⎪

⎨

⎪

⎩

(Hk̃−1 ◦ Hk̃−2 ◦ . . . ◦ Hk)(Fk) k < k̃

Fk k = k̃

(H−1

k̃
◦ H−1

k̃+1
◦ . . . ◦ H−1

k−1)(Fk) k > k̃

(2)

We then construct our data matrix X ∈ R
m×n for the

RPCA problem where m = ãb̃ as

X = [vec(F̃1) . . . vec(F̃p)] (3)

As an example, we illustrate the homographic frame

registration result for “Horsejump-High” from the DAVIS

Challenge [20] in Fig. 1. The horse and jockey jump over

the gate and gallop towards the red gate seen at the right.

Here, each frame has been transformed to a global coordi-

nate system in reference to the video’s anchor frame and

overlain in reverse sequence.

Following panoramic transformation, the moving cam-

era video data is expressed as a static space-time matrix

where each row corresponds to a fixed point in space and

where missing matrix entries are unobserved pixels of the



Figure 1. Frames of the video “Horsejump-high” registered in

panoramic mosaic.

panoramic mosaic scene [10]. We then perform RPCA on

the registered frames matrix with our fast Grassmannian

stochastic gradient descent algorithm.

3.2. Model and Algorithms

We propose our algorithm called PanGAEA (Panoramic

Grassmannian Augmented Estimation Algorithm) that ad-

heres to rank-sparsity theory for well-posed separability

while regularizing the foreground with TV smoothing. This

should not only improve segmentation generally but also

make the segmentation robust to sparse noise.

PanGAEA is motivated from TVRPCA [9] and

GRASTA [15] to obtain fast video separation using iterative

Grassmannian descent with TV-regularization of the fore-

ground vector in the objective function. We first model the

batch problem using all n frames of the video X ∈ R
m×n

for vectorized frames of ambient dimension m:

min
U,W,S,E

TV(S) + βS‖S‖1 + ‖E‖1

s.t. AΩ(X) = AΩ(UW + S + E)

UTU = I

(4)

Above, ‖Y ‖1 =
∑

i,j |Yij | for some m × n matrix Y .

The linear operator AΩ(·) extracts the pixels observed in

the panorama mosaic scene on the set Ω ⊂ {1, . . . ,m} ×
{1, . . . , n}. We assume all original frame pixels are ob-

served. U ∈ R
m×r is the orthonormal matrix whose

columns span the rank-r subspace from which the back-

ground frames approximately lie in. We say that U is a

point on the Grassmann manifold of subspaces, denoted

U ∼ G(m, r), which is the set of all subspaces of dimen-

sion r in R
m. The Grassmannian is a compact Riemannian

manifold, and its geodesics can be explicitly computed [1].

The matrix W ∈ R
r×n is the weights matrix. The ma-

trix S ∈ R
m×n captures the sparse foreground objects, and

E ∈ R
m×n models sparse corruptive noise. The hyperpa-

rameter βS balances the smoothness of the foreground sig-

nal with the sparsity of the noise. Here TV(S) = ‖WCS‖1,

where C is the block-circulant first-order differences matrix

formed by

C ∈ R
2m×m =

[

IN ⊗DM

DN ⊗ IM

]

(5)

Here, DM is the M ×M first-order differences matrix. Re-

call that M,N are the dimensions of the registered frames

in the common reference. W is the square, diagonal matrix

of weights whose diagonal d has zeros on the indices corre-

sponding to the circulant boundaries and ones otherwise.

We rewrite the problem in Eq. (4) in terms of each frame,

or column, at time instance t where each column is observed

on the set Ωt ⊂ {1, . . . ,m} for n = T columns:

min
st,et,U,wt

T
∑

t=1

‖WCχΩt
(sΩt

)‖1 + βS‖sΩt
‖1 + ‖eΩt

‖1

s.t. xΩt
= UΩt

wt + sΩt
+ eΩt

UTU = I

Here, UΩt
denotes the |Ωt| × r submatrix formed by ex-

tracting the rows indexed observed on Ωt, and similarly for

xΩt
, sΩt

, and eΩt
. We also denote the linear operator χΩt

(·)
which zero pads a vector argument of length |Ωt| to dimen-

sion m on the indices in the complement of Ωt. We then

minimize this objective function with a stochastic gradient

descent procedure for each time instance t:

min
st,et,U,wt

‖WCχΩt
(sΩt

)‖1 + βS‖sΩt
‖1 + ‖eΩt

‖1

s.t. xΩt
= UΩt

wt + sΩt
+ eΩt

UTU = I (6)

Note that we have enforced the foreground in st to be

TV-smooth in image space but also sparse. While Moore,

Gao, & Nadakuditi [10] argue the sparsity constraint is

over-restrictive, we found it was actually necessary in our

model to be accountable to rank-sparsity theory and achieve

any kind of acceptable separation. The two regularizers

work in concert to separate foreground objects that are

recoverable in the RPCA sense, but also conform to our

heuristical understanding of how foreground objects should

appear and behave in video.

To make the terms in the objective function of (6) separa-

ble in each variable and compatible with the ADMM model,

we can rewrite the problem using linear constraints as

min
zt,st,ξt,et,U,wt

‖Wzt‖1 + βS‖ξΩt
‖1 + ‖eΩt

‖1

s.t. zt = CχΩt
(sΩt

)

xΩt
= UΩt

wt + ξΩt
+ eΩt

ξΩt
= sΩt

UTU = I

(7)

with zt ∈ R
2m, xt, st, ξt, et ∈ R

m, and wt ∈ R
r. The

problem is nonconvex because of the coupling between



U and wt and because U lies on the Grassmann mani-

fold. First, we form the augmented Lagrangian and opti-

mize by block-coordinate descent. We alternate by holding

U fixed and solving for the variables zt, st, ξt, et, and wt

with ADMM; then, holding all variables fixed except for

U , our algorithm takes a geodesic step along the manifold

in the direction of the negative gradient of the augmented

Lagrangian.

From Eq. (7), we form the augmented Lagrangian with

the dual variables of appropriate dimensions λ1t, λ2t, and

λ3t at time t. After completing the square and ignoring

constant terms, the augmented Lagrangian becomes

L(U, zt, st, ξt, et, wt, λ1,2,3t) =

‖Wzt‖1 + βS‖ξΩt
‖1 + ‖eΩt

‖1

+
ρ1
2
‖CχΩt

(sΩt
)− zt +

λ1t

ρ1
‖22 +

ρ2
2
‖ξΩt

− sΩt
+

λ2t

ρ2
‖22

+
ρ3
2
‖UΩt

wt + ξΩt
+ eΩt

− xΩt
+

λ3t

ρ3
‖22 (8)

The smoothing penalties ρ are user-defined, and we will as-

sume all three penalties are equal to 1.8, which works well

in practice.

3.2.1 Updates of the principal weights, sparse vec-

tors, surrogate variables, and dual variables with

ADMM

Given an estimate of the subspace Û , the problem in (7) is a

constrained convex optimization problem with strong dual-

ity [7]. Given the partial observation xΩt
and the observed

entries indices Ωt, the optimal (z∗t , s
∗
t , ξ

∗
t , e

∗
t , w

∗
t , λ

∗
1,2,3t

)
in Eq. (6) can be found by minimizing the augmented La-

grangian in Eq. (8) with respect to these variables:

(z∗t , s
∗

t ,ξ
∗

t , e
∗

t , w
∗

t , λ
∗

1,2,3t
) =

argmin
zt,st,ξt,et,wt,λ1,2,3t

L(Û , zt, st, ξt, et, wt, λ1,2,3t)

(9)

We efficiently update each variable in Eq. (9) with

ADMM in an alternating fashion, yielding the updates given

in Steps (5) and (6) of Algorithm 2.

We note that z = Sβ(y) = sign(y)⊙max(|y| − β, 0) in

Algorithm 2 is the elementwise soft-thresholding operator

of argument vector y ∈ R
d for some positive constant β

that yields the vector z ∈ R
d [4, 12].

The matrix-vector product CχΩt
(sΩt

) in Algorithm 2

can be efficiently computed by taking the first order dif-

ferences of only the observed pixels in the frame. We also

assume above that the matrix UT
Ωt
UΩt

is always invertible,

which has been shown to be guaranteed if |Ωt| is large

enough [2].

The derived update of sΩt
originally involves the inverse

of a very large matrix (I + CTC) ∈ R
m×m, assuming all

ρ’s are equal. Computing the inverse is prohibitive for our

applications in video where m is usually very large. Fortu-

nately, the matrix has block-circulant structure, and it can

be shown there is a fast and efficient update that does not

involve difficult matrix inverses [21]:

sk+1

Ωt
= AΩt

(

F−1
2

(

F2(ρ1C
T (zkt − λk

1t
/ρ1) + ρ3r

k+1
t )

1 + ρ1F2(c)

))

,

(10)

where F2 : RMN → R
MN (again, M,N are the dimen-

sions of the registered frames in the common reference, and

where the ambient dimension of the video data becomes

m = MN ) denotes the operator that reshapes its input

into an M ×N matrix, computes the 2D fast Fourier trans-

form, and vectorizes the result. The operator AΩt
extracts

the observed vector indices. The vector c = CTC[:, 1] de-

notes the first column of the matrix CTC. This denomina-

tor is a constant and can be precomputed. The total com-

putational complexity of one update is dominated by the

Fourier updates at O(m log(m)). ADMM empirically con-

verges very quickly, usually within a few tens of iterations.

In our algorithm, we found 50 iterations to work well for

high-dimensional video to where the Karush-Kuhn Tucker

(KKT) conditions are met within precision of some small ǫ.

3.2.2 Grassmannian geodesic gradient step

The partial derivative of the augmented Lagrangian with re-

spect to the components of U given estimates of the other

variables from ADMM is

∂L

∂U
= χΩt

(λ3
∗

t+ρ3(UΩt
w∗

t +ξ∗Ωt
+e∗Ωt

−xΩt
)w∗

t
T ) (11)

From the work of [11], the gradient of the augmented

Lagrangian on the Grassmannian is

∇L = (I − UUT )
∂L

∂U
= Γw∗

t
T , (12)

where

Γ1 = λ3
∗

t + ρ3(UΩt
w∗

t + ξ∗Ωt
+ e∗Ωt

− xΩt
)

Γ2 = UT
Ωt
Γ1

Γ = χΩt
Γ1 − UΓ2

(13)

It is easily verified that ∇L is a rank-1 matrix with a

trivial SVD whose only nonzero singular value is σ =
‖Γ‖‖w∗

t ‖ with left and right singular vectors Γ/‖Γ‖ and



w∗
t /‖w

∗
t ‖ respectively. From [11], the gradient step on the

Grassmann manifold for some positive length η in the di-

rection of −∇L is

Ut+1(η) = Ut +

(

(cos(ησ)− 1)
Utw

∗

t

‖w∗

t ‖
− sin(ησ)

Γ

‖Γ‖

)

w∗

t

T

‖w∗

t ‖
(14)

PanGAEA is fully summarized in Algorithm 1.

3.2.3 Complexity Analysis

The total cost of PanGAEA is O(|Ω|r3 + Km log(m) +
K|Ω|r+mr2). Algorithm 1 costs O(|Ω|r3 + |Ω|r+mr2)
flops like GRASTA. The wt and soft-thresholding updates

in the ADMM solver in Algorithm 2 are simple linear alge-

braic computations and require at most O(K|Ω|r) flops. A

notable advantage of PanGAEA is its savings in these up-

dates from operating on dimensions |Ω|, the number of ob-

served pixels, compared to the full ambient dimension m.

The update for st is the most costly in the ADMM solver,

requiring O(Km log(m)). PanGAEA also avoids comput-

ing SVDs, a cost which grows quadratically in the number

of video frames. PanGAEA relies on simple, efficient linear

algebra operations with linear complexity in the data dimen-

sions, is constant in memory use, and is numerically stable

by maintaining orthonormality on the Grassmann manifold.

Algorithm 1 Algorithm for PanGAEA

Input: A m × r orthonormal matrix U0. A sequence of

corrupted vectors xt, each vector observed in entries

Ωt ⊂ {1, ...,m}. Step size η > 0. Regularizer βS > 0.

Augmented Lagrangian penalty ρ.

Output: U and wt, sΩt
, eΩt

at time t.

1: Form C =
[

IN ⊗DM DN ⊗ IM
]T

2: Compute c = CTC[:, 1]
3: Compute φ = 1 + ρF2(c)
4: for t = 0 to T do

5: Extract UΩt
from U : UΩt

= AΩt
(U)

6: Estimate w∗
t , s

∗

Ωt
, ξ∗Ωt

, e∗Ωt
, λ3

∗

t via Algorithm 2.

7: Compute Γ by Eq. (13).

8: Update the subspace with Eq. (14).

9: end for

10: return Ut+1 and wt, sΩt
, eΩt

, ∀t = 0, . . . , T

4. Experiments & Evaluation

Next we show experimental results of our algorithms on

three RGB videos from the 2017 DAVIS Challenge [20]

compared to RPCA with OptShrink [8, 10], GRASTA [15],

and PRPCA [10]. The DAVIS Challenge provides ground-

truth binary masks of the foreground objects in each video

frame for 60 training videos. We show the results of each

algorithm on three of those videos, “Tennis,” “Paragliding,”

Algorithm 2 ADMM Solver for PanGAEA

Input: A |Ωt| × r orthonormal matrix UΩt
. A sequence

of corrupted vectors xt, each vector observed in entries

Ωt ⊂ {1, ...,m}. Augmented Lagrangian penalty ρ.

Parameter µ0. φ = 1 + ρF2(c). Tolerance ǫ.
Output: wt, sΩt

, eΩt
at time t.

1: Precompute P = (UT
Ωt
UΩt

)−1UΩt

T

2: µk = µ0

3: for k = 0 to K or until convergence do

4: Update principal weights:

wk+1 = P (xΩt
− ξkΩt

− ekΩt
− λk

3/µ
k)

5: Update foreground sparse vector:

rk+1 = χΩt
(ξkΩt

+ λk
2/µ

k)

sk+1
Ωt

= AΩt
(F−1

2 (
F2(µ

kCT (zk
−λk

1/µ
k)+µkrk+1)

φ ))
6: Update soft-thresholded variables:

hk = xΩt
− UΩt

wk+1 − λk
3/µ

k

ξk+1
Ωt

= 1
2SβS/µk(hk − ekΩt

+ sk+1
Ωt

− λk
2/µ

k)

ek+1
Ωt

= S1/µk(hk − ξk+1
Ωt

)

zk+1
t = Sd./µk(CχΩt

(sk+1
Ωt

) + λk
1/µ

k)
7: Update the residuals of the linear equality con-

straints:

yk1 = CχΩt
(sk+1

Ωt
)− zk+1

t

yk2 = UΩt
wk+1 + ξk+1

Ωt
+ ek+1

Ωt
− xΩt

yk3 = ξk+1
Ωt

− sk+1
Ωt

8: Update the dual variables

λk+1
1 = λk

1 + µkyk1
λk+1
2 = λk

2 + µkyk2
λk+1
3 = λk

3 + µkyk3
9: Update the ADMM penalty µk+1 = ρµk

10: if max{‖y1‖2, ‖y2‖2, ‖y3‖2} ≤ ǫ then

11: Converge and break the loop

12: end if

13: end for

14: return w∗
t = wk+1, s∗Ωt

= sk+1
Ωt

, e∗Ωt
= ek+1

Ωt

and “Horsejump-High,” with and without sparse additive

noise. We compare performance with receiver operating

curves (ROC), area under the curve (AUC), computation

time, and mean peak signal-to-noise ratios (PSNR) when

sparse noise is added. We also show frames from the recov-

ered videos.

Both Grassmannian algorithms (PanGAEA and

GRASTA) are specified to learn a rank-1 subspace. We

found that βS = 0.5 worked well in PanGAEA. We run

PanGAEA for 7 epochs, randomly shuffling the frames and

diminishing the step size each epoch. We run GRASTA for

10 epochs with diminishing step size and random frame

order. PRPCA is computed with the code provided and

hyperparameters suggested by the authors in [10]. We

test each algorithm with “clean” video–i.e. video with

no sparse corruptions–and noisy data with 20% shotgun



noise, a challenging scenario where most RPCA algorithms

should perform poorly to separate foreground objects from

the sparse noise.

Table 1 shows that PanGAEA is competitive on area un-

der the curve (AUC). Table 2 shows similar performance on

PSNR. Most importantly, Chart 1 shows that PanGAEA is

significantly faster than PRPCA while still achieving com-

petitive performance. It is still slower than GRASTA and

RPCA, but its separation performance overall is signifi-

cantly more accurate.

Fig. 2 shows two frames of PanGAEA separation results

on “Tennis” from the DAVIS Challenge [20] which has 69

frames, each corrupted with 20% shotgun noise. This is a

challenging video with a wide and fast camera pan. To save

computation time during testing, we down-sampled the res-

olution by one-fourth to give a resolution of 120 × 214.

Computing “Tennis” cost PanGAEA 272.65 seconds and

PRPCA 2108.40 seconds running both algorithms 150 it-

erations on a 2.6 GHz Intel Core i7 MacBook Pro. The

average time of PanGAEA to cycle over the entire video

once was 38.69, seconds whereas the average for PRPCA

was 14.55 seconds. However, PRPCA’s proximal gradient

descent method requires many iterations over the data to

obtain acceptable separation results compared to our Grass-

mannian descent approach which requires far fewer cycles.

As the number of video frames grows, we expect this ad-

vantage over PRPCA to improve as PRPCA’s SVD compu-

tations take more time.

One can further improve the computational performance

of PanGAEA by subsampling the panoramic-registered

frames to rapidly learn the panoramic background spanning

the field of view, since our method can robustly estimate the

low-rank subspace from partial information in only a few

epochs. Then, the sparse components can be estimated by

running PanGAEA with full sampling for one pass over the

data. We were able to get comparable performance results

subsampling only 20% of the pixels in the registered frames

for 6 epochs and fully sampling the 7th. For denoising and

separating “Tennis”, PanGAEA achieved 0.9413 AUC and

20.90 dB PNSR in 193.40 seconds.

Similar results are shown for the videos “Paragliding”

and “Horsejump-High” in Fig. 2. The paraglider is quite

small and should be difficult to recover in heavy noise. Nev-

ertheless, the TV-regularized algorithms are capable of de-

noising the separation while their non-augmented counter-

parts fail. Even with larger foreground objects like the horse

and jockey, which begin to encroach on rank-sparsity as-

sumptions, PanGAEA is able to distinguish each compo-

nent with minimal separability issues.

Our separation results demonstrate PanGAEA’s ability to

improve segmentation in noiseless regimes and successfully

recover foreground in the presence of heavy sparse corrup-

tions using far less total computation time and memory than

Sequence PanGAEA PRPCA GRASTA RPCA

Fig. 3a 0.9768 0.9649 0.9694 0.8488

Fig. 3d 0.9698 0.9532 0.8602 0.7621

Fig. 3b 0.9767 0.9793 0.9870 0.9618

Fig. 3e 0.9817 0.9771 0.9221 0.8824

Fig. 3c 0.9597 0.9432 0.9556 0.7755

Fig. 3f 0.9561 0.9476 0.8484 0.6608

Table 1. Area Under Curve (AUC) of each algorithm.

Sequence PanGAEA PRPCA GRASTA RPCA

“Tennis” 21.72 22.50 17.79 17.86

“Paragliding” 25.96 26.33 18.58 18.63

“Horsejump-High” 21.29 22.92 17.13 17.23

Table 2. Mean PSNR (dB) of each algorithm’s denoised frames.

272.65PanGAEA 180.01
132.57

2108.40PRPCA 1392.40
1323.00

8.58GRASTA 10.92
7.24

13.36RPCA 11.05
9.54

“Tennis”
“Paragliding”
“Horsejump-High”

0 500 1000 1500 2000 2500

Chart 1. Total computation time (seconds) for each video.

PRPCA. Table 1 shows our method achieves higher area un-

der the ROC than competitor methods. However, it is worth

noting the batch methods’ denoised frames obtain slightly

better peak signal-to-noise (PSNR) with respect to the orig-

inal frame than the Grassmannian algorithms, as seen in Ta-

ble 2. In particular, our method experiences more leakage

of the sparse foreground component into the sparse noise

component than PRPCA. However, it does not seem to sig-

nificantly affect the foreground detection capability.

5. Conclusions and Future Work

In this paper we have presented a novel TV-regularized

RPCA algorithm that can estimate subspaces on the Grass-

mann manifold and perform foreground-background sepa-

ration in panoramic video. Our algorithm achieves com-

petitive performance with PRPCA in far less computa-

tional time by performing first-order gradient descent on the

Grassmann manifold. Our optimization method is online by

nature and can process data frame-by-frame.

Our future work aims to make the panoramic RPCA

problem truly online where the frames do not need to be

pre-registered and the geometric transformation between

frames is estimated in the objective function on the fly.



Figure 2. PanGAEA separation results on DAVIS Challenge 2017 videos [20]. From top to bottom: Original frames, Corrupted frames

with 20% shotgun noise (Observed), Recovered Background, Recovered Sparse Corruptions, Recovered Foreground. Left to right: “Ten-

nis”,“Paragliding”, “Horsejump-High”.
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Figure 3. ROC curves for DAVIS Challenge videos. PanGAEA achieves the largest area under its curve in both clean and noisy video and

outperforms its competitors.

We also seek an adaptive step size like the one proposed

for GRASTA in [15] so that PanGAEA may track time-

dynamical subspaces. Combining these goals, we also in-

tend to study developments that can perform separation

even with fast and wide camera pans. Also of key inter-

est is making our algorithm robust to dense noise and im-

puting missing values of the sparse components, since our

method can only complete the low-rank background when

given partial information.
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