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Abstract

Hyperspectral image (HSI) has shown promising results

in many fields because of its high spectral resolution. How-

ever, the redundancy of spectral dimension seriously affects

the classification of HSI. Therefore, many popular dimen-

sion reduction (DR) algorithms are proposed and subspace

learning algorithm is a typical one. In HSI, cube data is tra-

ditionally flatted into 1-D vector, so spatial information is

completely ignored in most dimension reduction algorithms.

The tensor representation for HSI considers both the spa-

tial information and cubic properties simultaneously, so

that tensor subspace learning can be naturally introduced

into DR for HSI. In this paper, a tensor local discriminant

embedding (TLDE) is proposed for DR and classification

of HSI. TLDE can take full advantage of spatial structure

and spectral information and map a high dimensional space

into a low dimensional space by three projection matrices

trained. TLDE can be more discriminative by calculating

an intrinsic graph and a penalty graph. The experimental

results on two real datasets demonstrate that TLDE is ef-

fective and works well even when the training samples are

small.

1. Introduction

Hyperspectral image (HSI) usually consists of hundreds

of spectral bands from the visible spectrum to the infrared

spectrum [1]. Each pixel of HSI can be represented by a

high dimensional spectral vector. It’s because of HSI’s rich

spectral information that it has not only attracted the at-

tention of the remote sensing community, but also aroused

great interest in other fields, for instance, military [2], agri-
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culture [3], urban planning, and environment monitoring

[4]. It is known that classification plays a crucial role in

these fields. However, it is because of the richly informa-

tion characteristics of HSI contain great redundancy that

it not only increases computational complexity but also re-

duces classification performance especially when the train-

ing datasets are limited. A number of classical subspace

learning algorithms are explored to address these issues.

And dimensionality reduction (DR) as the major strategy

of the subspace learning has been widely used.

One of classic linear methods is principle component

analysis (PCA) [5]. But as an unsupervised method, PCA

doesn’t take advantage of class label information. Another

one of classic linear methods is linear discriminant analy-

sis (LDA) [6], as a supervised method, it often suffers from

the small sample size problem. Unfortunately, classifica-

tion of HSI is exactly a small sample problem. However,

the biggest disadvantage of these linear methods is the fail-

ure to discover the nonlinear structure inherent in HSI.

Since nonlinear techniques have the merit of preserving

geometrical structure of data manifold, these methods can

overcome the above-problem. Laplacian eigenmaps (LE)

[7], local linear embedding (LLE) [8] and other manifold

learning algorithms have been successfully applied to HSI.

Besides, locality preserving projection (LPP) [9], as a lin-

ear version of LE, and neighborhood preserving embedding

(NPE) have been introduced to HSI. The most advantage of

LPP is that it can preserve the local structure of the original

space as much as possible. In order to overcome the diffi-

culty of LDA tending to produce undesirable results when

the samples in a class is multimodal [10], local Fisher’s

discriminant analysis (LFDA) [11] which has the advan-

tages of LDA and LPP was introduced to HSI. After that,

unlike LPP which uses only one graph to describe the ge-

ometry of the sample, local discriminant embedding (LDE)

[12] method using two graphs to characterize the geometry



structure of the sample was proposed. One as an intrinsic

graph to characterize the compact nature of the sample, and

the other as a penalty graph to describe the internal separa-

tion of the sample. Thus, LDE is more discriminative than

LPP. However, one thing in common among these above-

mentioned methods is that the calculation of the affinity ma-

trix is based on K-nearest neighborhoods method, which is

sensitive to outlier samples.

To overcome the above-problem, a graph embedding

(GE) frame work [13] was proposed. In order to represent

the sparse nature of the sample, a sparse graph embedding

(SGE) [14] is developed. Later, a sparse graph-based dis-

criminant analysis (SGDA) [15] model was developed by

exploiting the class label information, resulting in a better

performance than SGE. Based on SGDA, sparse and low-

rank graph discriminant analysis (SLGDA) [16] was pro-

posed by increasing local information of samples. Recently,

since considering curves changing description among spec-

tral bands, a graph-based discriminant analysis with spectral

similarity (GDA-SS) [17] method was proposed. However,

these methods treat each pixel as a high-dimensional spec-

tral vector along its spectral direction, which only consider

the spectral information and completely ignore the spatial

information between the pixels.

Because a tool called tensor can fully capture the intrin-

sic geometry structure, it has been introduced to maintain

the intrinsic 3-D data structure of pixels in HSI. In 2005,

He et al proposed a tensor subspace analysis [18]. It gen-

eralizes the data representation form from vector (i.e., first-

order tensor) to matrix (i.e. second-order tensor). In 2008,

Lu et al introduced a multilinear principal component anal-

ysis (MPCA) [19] for tensor object feature extraction. In

2010, Jiang et al introduced subspace learning on tensor

representation [20]. In 2013, zhang et al proposed a ten-

sor discriminative locality alignment (TDLA) to exploit the

spectral-sptial features. In 2016, Guo et al proposed a sup-

per tensor machines (STM) [21] for tensor classification.

After that, tensor LPP (TLPP) [22] was proposed in 2017.

In order to take full advantage of spatial and spectral in-

formation, we use a third-order tensor to show each pixel. In

this paper, a tensor local discriminant embedding (TLDE)

approach was introduced to tensor subspace learning of

HSI. Like LDE, TLDE is also a supervised method and uses

two graphs to characterize the geometry structure of the

sample. One as an intrinsic graph to characterize the com-

pact nature of the sample, and the other as a penalty graph

to describe the internal separation of the sample. TLDE can

map a high dimensional space into a low dimensional space,

meanwhile, maintain the local structure and the discrimina-

tive information of the sample. Then, the tensor subspace

results obtained after projection can be used for classifica-

tion of HSI.

Therefore, the main contributions of this paper can be

summarized as follows: 1) The superiority of tensor struc-

ture capturing simultaneously spatial information and spec-

tral information can much advance the classification effect.

2) TLDE utilizing two graphs to characterize the geometry

structure of the sample can be more discriminative. 3) The

TLDE method can effectively deal with small training size

problem, even if the class with only two training samples.

This paper is organized as follows. Section 2 introduces

some tensor fundamentals and notations and briefly de-

scribes existing subspace learning method. Section 3 shows

the tensor representation of pixels of HSI and details of

TLDE. The experimental results compared with some state-

of-the-art methods are presented in Section 4. The conclu-

sion is drawn in Section 5.

2. Related Work

2.1. Tensor Fundamentals and notations

Some basic definitions on tensor operation are given as

follows [23, 24, 25, 26, 27, 28, 29].

Definition 1 (mode-n unfolding) The mode-n unfold-

ing of a tensor A ∈ C
n1×n2×...×nd is the operation of re-

arranging the entries of A, which reorders the elements

of nth order tensor into a matrix, denoted as A(n) ∈
C

nn×(n1×n2×...×nn−1×nn+1×...×nd).

Definition 2 (mode-n product) The mode-n product of

a d order tensor A ∈ C
n1×n2×...×nn×...×nd with a matrix

U ∈ C
mn×nn is another d order tensor B = A ×n U ∈

C
n1×n2×...×nn−1×mn×nn+1×...×nd , whose entries are given

by

(A ×n U)i1,...,in−1,mn,in+1,...id =

nn
∑

in=1

ai1,i2,...,idunin (1)

Looking at the mode-n unfolding of A×n U, then Eq. 1 can

also be delivered according to definition 1:

B = A ×n U ⇔ B(n) = UA(n) (2)

Definition 3 (Frobenius norm) The Frobenius norm of

tensor A ∈ C
n1×n2×...×nd is calculated by ‖A‖F =

(
∑

n1,n2,....nd
A
2
n1,n2,...nd

)
1
2 .

2.2. Local Discriminant Embedding (LDE)

Assume a hyperspectral dataset having N samples is de-

noted as X = {xi}
N
i existing in a R

m×1 feature space,

where m is the number of bands. And class labels yi ∈
1, 2, ...C, where C is the number of classes.

Specifically, the LDE algorithm can be described as fol-

lows.

Steps 1: Construct neighborhood graphs. An intrinsic

graph G and a penalty graph G
′

can be constructed by K
nodes of K nearest neighborhoods (KNN) over all the data

points.



Steps 2: Compute affinity weights. An affinity matrix

W of the intrinsic graph G and an affinity matrix W
′

of the

penalty graph G
′

can be computed as follows:

wij =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

exp(−||xi − xj ||
2/t) xj ∈ O(K,xi)

or xi ∈ O(K,xj)

and yi = yj ;

0 otherwise

(3)

and

w′

ij =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

exp(−||xi − xj ||
2/t) xj ∈ O(K,xi)

or xi ∈ O(K,xj)

and yi �= yj ;

0 otherwise

(4)

where O(K,xi) represents the K nearest neighborhoods of

data xi and the parameter t is a kernel width parameter.

In order to ensure that xi and xj with the same class label

are close, their low-dimensional embedding are also very

close. When xi and xj with different class labels are close,

their low-dimensional embedding are far apart. In [12], the

optimization problem of LDE is described as follows:

argmax
P

∑

i,j

||PTxi − PTxj ||
2W

′

ij

s.t.
∑

ij

||PTxi − PTxj ||
2Wij = 1

(5)

In [30], the equivalent form of Eq. 5 is given as follows:

argmin
P

∑

i,j

||PTxi − PTxj ||
2Wij

s.t.
∑

ij

||PTxi − PTxj ||
2W

′

ij = 1
(6)

where P is the projection matrix.

Steps 3: Complete the embedding. The projection matrix

P can be obtained by solving the eigenvectors correspond-

ing to the H smallest nonzero eigenvalues of the following

generalized eigenvalue problem:

X(D −W )XTP = ∧X(D
′

−W
′

)XTP (7)

where ∧ is a diagonal eigenvalue matrix. D and D
′

are

diagonal matrices with Dii =
∑N

j=1 Wi,j and D
′

ii =
∑N

j=1 W
′

i,j .

3. Our Work

This TLDE method is mainly composed of three parts.

Firstly, the tensor representation of pixels should be created

to capture simultaneously spatial information and spectral

information of HSI. Secondly, the projection matrices can

be computed by alternate iteration. Thirdly, a tensor sub-

space that retains the original space information as much as

possible can be got by the operation of mode-n product.

(a) (b)

Figure 1. Patches of different window size 2n − 1× 2n − 1 and h

bands: (a) n = 2, (b) n = 4. The black area represents the center

pixel, the gray areas represent the local region neighborhood of

the center, and the white areas represent the value of zero when

the pixel is not in HSI.

3.1. Tensor Representation of Pixels of HSI

As we all know, HSI is a three order tensor. Con-

sider a HSI data X ∈ R
l×w×h with h representing the

number of bands and l × w representing the spatial struc-

ture, and assume a three order spatial-spectral tensor A ∈
R

(2n−1)×(2n−1)×h as a small patch of X ∈ R
l×w×h, the cen-

tral of A is a pixel of HSI, the rest of the A is the local

region neighborhood of the center. Therefore, the pixels of

a HSI data X ∈ R
l×w×h can be denoted as {Ai}

m
i=1, where

Ai ∈ R
(2n+1)×(2n+1)×h denotes the ith pixel and m is the

number of pixels, as show in Fig. 1.

3.2. TLDE

The purpose of TLDE [30] is to seek projection matri-

ces, which can be described as follows. Consider n data

points A1,A2, ...,An in the tensor space C
i1×i2×...×ik , and

k projection matrix {Uj}
k
j=1 ∈ C

lj×ij ,where lj ≤ ij , j =
1, 2, ..., k. And according to Eq. 1, the n corresponding

embedded data points B1,B2, ...,Bk ∈ C
l1×l2×...×lk can be

computed by Bi = Ai ×1 U1 ×2 U2 × ... ×k Uk, where

i = 1, 2, ..., k. The classes of the samples are y1, y2, ..., yn ∈

{1, 2, ...,C}, where
∑C

c=1 nc = n and nc is number of the

cth class samples.

Like LDE [12], the intrinsic graph and the penalty

graph are first structured and denoted as G and G’ respec-

tively, which respectively represent the local within-class

and between-class neighborhood relationship. We then de-

fine the affinity matrix of G and G’ as S = [sij ] and

S′ = [s′ij ] as follows:

sij =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

exp(−‖Ai − Aj‖
2
F /t) if Aj ∈ O(K,Ai)

or Ai ∈ O(K,Aj)

and yi = yj ;

0 otherwise

(8)



Algorithm 1 TLDE-Based HSI Classification Algorithm

Input: Training sets Xtrain, the class labels of training set

ytrain, testing sets Xtest, the class labels of testing set ytest,
where

Xtrain = {Ai|Ai ∈ R
I1×I2×I3 , ı = 1, 2, ...,mtrain},

Xtest = {Aj |Aj ∈ R
I1×I2×I3 , j = 1, 2, ...,mtest},

and ytrain ∈ {1, 2, ...,C}, ytest ∈ {1, 2, ...,C}
Output: The class labels of testing samples

Initialize: Projection matrix Un = In, where In is identity

matrix, n = 1, 2, 3, Tmax = 100, ǫ = 10−6;

1: Structure neighborhood graphs G and G’, and compute

affinity matrices S and S’ by Eq. 8 and Eq. 9, respec-

tively;

2: for t = 1, 2, ... , Tmax do

3: for n = 1, 2, 3 do

4: B
n
i = Ai ×1 U1 × ... ×n−1 Un−1 ×n+1

Un+1...kUk;

5: B
(n)
i ⇐= B

n
i ;

6: H1 =
∑

ij sij(B
(n)
i − B

(n)
j )(B

(n)
i − B

(n)
j )T ;

7: H2 =
∑

ij s
′

ij(B
(n)
i − B

(n)
j )(B

(n)
i − B

(n)
j )T ;

8: H1Vt = λtH2Vt, V t ∈ R
In×In ;

9: Choose K eigenvectors corresponding to the K

smallest nonzero eigenvalue to form the matrix V′,

where V′ ∈ R
pn×In(pn ≤ In);

10: Then, Ut
n = V′;

11: end for

12: if t > 2 and
∑

n ‖Ut
n − U

(t−1)
n ‖F < ǫ then

13: break;

14: end if

15: end for

16: Obtain the training samples Bi in a low dimensional

space from Ai in the original space, where Bi = Ai ×1

U1 ×2 U2 ×3 U3;

17: Obtain the testing samples Bj in a low dimensional

space from Aj in the original space, where Bj = Aj ×1

U1 ×2 U2 ×3 U3;

18: Perform classification on testing samples Bj (j =
1, 2, ...,mtest) by support vector machine (kernel is

rbf).

and

s′ij =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

exp(−‖Ai − Aj‖
2
F /t) if Aj ∈ O(K,Ai)

or Ai ∈ O(K,Aj)

and yi �= yj ;

0 otherwise

(9)

where O(K,Ai) represents the K nearest neighborhoods of

sample Ai and t is a kernel width parameter.

The graph G and the graph G’ can be combined to

express more complete information of the local structure.

Then, the projection matrices UI ,U2, ...Uk should be found

for projecting high dimensional into a low dimensional

space. Based on the Eq. 6, the optimal projection matri-

ces of TLDE can be obtained by minimizing the following

objective function:

argmin J(U1, ...,Uk)

=
∑

ij

‖Bi − Bj‖
2
F sij

s.t.
∑

ij

‖Bi − Bj‖
2
F s

′

ij = 1

(10)

From the Eq. 10, it can be seen that the samples com-

ing from the same class in the original space would be keep

close to each other in the low dimensional space, while sam-

ples from different classes would be keep away from each

other.

Obviously, the Eq. 10 can not be solved because the

projection matrices UI ,U2, ...Uk can not be obtained at

the same time. Similar to most tensor subspace learn-

ing method, an iterative scheme would be applied to over-

come this difficult. When updating Un, we assume the pro-

jection matrices U1,U2, ...,Un−1,Un+1, ...,Uk are known,

and define B
n
i = Ai ×1 U1 ×2 U2 × ... ×n−1 Un−1 ×n+1

Un+1 × ... ×k Uk. In addition, we denote B
(n)
i as the

mode-n unfolding of B
n
i . According to definition 3, we

have ‖A‖F = ‖A(n)‖F . And accord to Eq. 2, we know

‖B
n
i ×n Un‖

2
F = ‖UnB

(n)
i ‖2F . By sij and s′ij are a scalar

and the operation of trace is linear, we can rewrite the Eq.

10 as follows:

argmin Jn(Un)

=
∑

ij

‖B
n
i ×n Un − B

n
j ×n Un‖

2
F sij

=
∑

ij

‖UnB
(n)
i − UnB

(n)
j ‖2F sij

=
∑

ij

tr{Un((B
(n)
i − B

(n)
j )(B

(n)
i − B

(n)
j )T sij)U

T
n}

= tr{Un(
∑

ij

(B
(n)
i − B

(n)
j )(B

(n)
i − B

(n)
j )T sij)U

T
n}

s.t. tr{Un(
∑

ij

(B
(n)
i − B

(n)
j )(B

(n)
i − B

(n)
j )T s′ij)U

T
n} = 1

(11)

The unknown projection matrix Un will be obtained by the

Eq. 11. In fact, the Eq. 11 is equal to a generalized eigen-

value problem, which is described as follows:

(
∑

ij

(B
(n)
i − B

(n)
j )(B

(n)
i − B

(n)
j )T sij)u

= λ(
∑

ij

(B
(n)
i − B

(n)
j )(B

(n)
i − B

(n)
j )T s′ij)u

(12)



where λ is a diagonal eigenvalue matrix, and u is con-

structed by the K eigenvectors corresponding to the K

smallest nonzero eigenvalues. The other projection matri-

ces can be computed in a similar way.

Thus, TLDE for HSI classification is carried out follow-

ing the steps in Algorithm 1.

4. Experiment

In this section, we will apply TLDE on two real datasets,

respectively. Firstly, we introduce the Indian Pines dataset

and the University of Pavia dataset and how to choose the

training and testing samples. Secondly, how to choose the

best experimental parameters would be given. Finally, The

classification accuracy and classification maps on compared

algorithms and TLDE algorithm would be shown. The

TLDE algorithm is implemented by python. The results

are generated on a personal computer equipped with an In-

tel Core i7-3370 with 3.40 GHz. The personal computer’s

memory is 4GB.

4.1. Experimental Datasets

The first dataset was acquired by Airborne Visi-

ble/Infrared Imageing Spectrometer (AVIRIS) senors over

the Indian Pines test site in the North-western Indian in June

1992. The image include 145 × 145 pixels and 220 spec-

tral bands in the wavelength range 0.4 − 2.45 − µm. In

our experiments, 20 spectral bands (bands 104-108, 150-

163, and 220) covering the region of water absorption are

removing. Then, a total of 200 bands is used. Thus, the

image contains a total of 10249 ground-truth samples with

16 different classes.

The second dataset was acquired by the Reflective Op-

tics System Imaging Spectrometer (ROSIS) sensor over the

University of Pavia in Italy. The image includes 610× 340
pixels and 115 spectral bands in the wavelength range

0.43 − 0.86 − µm. In our experiments, 12 spectral bands

covering noisy are removing. Then, a total of 103 bands

is used. Thus, the image contains 9 different classes and a

total of 42776 ground-truth samples. Considering the issue

that the memory of our experimental machine can not store

so much tensor data, we decide to choose a part of the Uni-

versity of Pavia dataset as our second experimental dataset,

as [31] did.

In this paper, we randomly choose 10% of all samples

as training sets and the remaining for testing sets. More

detailed information of the number of training and testing

samples is summarized in Table 1 and Table 2, respectively.

4.2. Experimental Parameters

Window size, and the dimensionality of the tensor sub-

space are two important parameters of TLDE, which should

be determined for obtaining an acceptable result.

Table 1. Number of training and testing samples for the Indian

Pines dataset
Class Name Training Testing

1 Alfalfa 6 40

2 Corn-notill 154 1274

3 Corn-mintill 88 742

4 Corn 26 211

5 Grass-pasture 53 430

6 Grass-trees 72 658

7 Grass-pasture-mowed 3 25

8 Hay-windrowed 52 426

9 Oats 2 18

10 Soybean-notill 104 868

11 Soybean-mintill 226 2229

12 Soybean-clean 56 537

13 Wheat 17 188

14 Woods 112 1153

15 Buildings-Grass-Trees-Drive 44 342

16 Stone-Steel-Towers 9 84

Total 1024 9225

Table 2. Number of training and testing samples for the University

of Pavia dataest
Class Name Training Testing

1 Asphalt 36 352

2 Meadows 43 428

3 Gravel 18 153

4 Trees 25 247

5 Painted Metal Sheets 18 245

6 Bare Soil 13 146

7 Bitumen 104 1007

8 Self-Blocking Bricks 70 676

9 Shadows 20 206

Total 347 3460

To demonstrate the effectiveness of TLDE algorithm, the

svm (the kernel is rbf) is chosen to verify. And the results

will be compared with other ten classical algorithms, i.e.,

PCA, LDA, LPP, LDE, LFDA, LGDA, SGDA, SLGDA,

GDA-SS, TLPP.

4.2.1 Window Size for TLDE

Obviously, the window size is a very important parameter.

If the window size is too small, it will fail to obtain enough

spatial information to achieve a satisfy result. Whereas a

window size is too large, which will greatly increase the

computational cost. What a worse thing is it will mislead

the training process of svm because the pixels may come

from multiple classes. Considering to the personal com-

puter’s memory, the window size is searched in the range of

{3× 3, 5× 5, 7× 7, 9× 9}.

The Fig. 2 shows the classification performance of test-

ing samples by the TLDE method in different window sizes

for different experimental datasets. It can be seen from the

Fig. 2 that when the window size expands from 3 × 3 to



Figure 2. Parameter tuning of window size for TLDE.

(a) (b)

Figure 3. The overall accuracy corresponding to different spec-

tral dimension and different spatial dimension for TLDE under the

condition of window size of 5 × 5: (a) Indian Pines dataset; (b)

University of Pavia dataset.

5 × 5, the overall accuracy of testing samples is increas-

ing, and reaches the highest point 95.27% and 99.04% in

5×5 for two real experimental datasets, respectively. How-

ever, the overall accuracy is decreasing with the window

size continuing to increase to 9× 9, and reaches the lowest

point 87.38% and 94.92% in 9 × 9, respectively. There are

7.89% and 4.12% difference from the highest point. Thus,

the 5 × 5 window size is the best choice for TLDE for two

real experimental datasets.

(a) (b)

Figure 4. The overall accuracy corresponding to the different spec-

tral dimension for different methods: (a) the Indian Pines dataset;

(b) the University of Pavia dataset.

4.2.2 The Dimensionality of the Tensor Subspace

The spectral dimension is considered carefully by searched

in the range of {2, 5, 7, 10, 11, 12, 15, 17, 20, 23, 25, 30, 35,
40, 45, 50, 55, 60, 65, 70, 75}.

The Fig. 3 shows the overall accuracy of testing sets of

TLDE which correspond to different spectral dimension and

different spatial dimension in two real datasets.

In Fig. 3 (a), when we project each 5 × 5 × 200 testing

sample to 1× 1× d (d is the spectral dimension), the clas-

sification performance is very poor and no more than 50%.

Nevertheless, when we map to 2 × 2 × d (d ≥ 25), the

classification performance is particularly good. It’s obvi-

ously that classification accuracy increases as the projected

dimensions increase. And when the projected dimensions

is m ×m × d (3 ≤ m ≤ 5, d ≥ 15), no wonder the classi-

fication performance is doing so well.

In Fig. 3 (b), when we project each 5 × 5 × 103 testing

sample to 1 × 1 × d (d ≤ 7, d is the spectral dimension),

the overall accuracy is very poor and no more than 30%.

Nevertheless, the overall accuracy dramatic increases and

stabilized at about 80% when d ≥ 10. Besides, the overall

accuracy is generally at a high level and more than 90%

under the condition of the other values.

Considering computational complexity, time complexity,

storage capacity and classification accuracy, 2× 2× d (d ≥
2) is the best choice for TLDE in two real datasets.

The spatial dimension have been determined, now we

will seek the best spectral dimension for TLDE. The Fig. 4

shows the overall classification accuracy correspond to the

different number of spectral dimension for different meth-

ods.

In Fig. 4 (a), the overall accuracy of the classic vector-

based methods (for instance, PCA, LDA, LPP, SGDA,

SLGDA, and so on) has a poor performance when the num-

ber of spectral dimension is no more than 35. And with the

number of spectral dimension increasing, it become stable

but would be no more than 80%. Conversely looking at the

tensor-methods TLPP and TLDE method, although the clas-

sification performance is at a very low level when the num-

ber of spectral dimension is small (d ≤ 15), it will increase

greatly when the number of spectral dimension jumps from

15 to 20. After that, the overall accuracy of TLDE will con-

tinue to increase until it approaches 96% with the number

of spectral dimension increasing.

In Fig. 4 (b), the overall accuracy of the classic vector-

based methods is also obviously inferior to the result of the

tensor-methods. Although those vector-based methods have

been achieved satisfactory results, the overall accuracy is no

more than 96%. Conversely looking at the TLDE method,

except for the case where the spectral dimension is 2, the

overall accuracy of the TLDE is the highest of these meth-

ods, what the important is that all of the overall accuracy are

more than 95% and become stable at 99% with the number
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Figure 5. Classification maps of different methods for the Indian Pines dataset: (a) ground truth; (b) PCA: 69.98%; (c) LDA: 66.60%; (d)

LPP: 78.52%; (e) LDE: 79.19%; (f) LFDA: 79.38%; (g) LGDA: 79.79%; (h) SGDA: 79.81%; (i) SLGDA: 71.36%; (j) GDA-SS: 76.48%;

(k) TLPP: 89.57% (l) TLDE: 95.27%
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(g) (h) (i) (j) (k) (l)

Figure 6. Classification maps of different methods for the University of Pavia dataset: (a) ground truth; (b) PCA: 90.00%; (c) LDA:

87.49%; (d) LPP: 90.61%; (e) LDE: 93.99%; (f) LFDA: 94.08%; (g) LGDA: 93.32%; (h) SGDA: 94.16%; (i) SLGDA: 92.69%; (j):

GDA-SS: 92.72%; (k) TLPP: 88.68%; (l) TLDE: 99.04%

of spectral dimension increasing.

Considering computational complexity, time complexity,

storage capacity and classification accuracy, 2 × 2 × 75 is

the best choice for TLDE in two real datasets.

Through those experiments, we have a conclusion that

tensor subspace learning method have a better performance

than those classic vector-based methods owing to tensor

structure superiority of capturing spatial information.

4.3. Experimental Results

4.3.1 Classification Accuracy

The tables 3-4 show the classification performance of each

class, overall accuracy (OA), average accuracy (AA) and

kappa coefficient (κ) in the Indian Pines dataset and the

University of Pavia dataset, respectively.

From the table 3, in addition to the class 6, the classi-

fication accuracy of each class of the TLDE method is far



Table 3. Classification Accuracy for the Indian Pines dataset
* PCA LDA LPP LDE LFDA LGDA SGDA SLGDA GDA-SS TLPP TLDE

1 0 0 8.70 0 43.48 2.17 45.65 6.52 47.83 94.74 100

2 57.49 70.59 67.30 74.58 79.27 74.51 75.00 69.68 73.74 85.11 93.00

3 38.80 41.69 62.17 70.48 64.34 67.60 63.13 58.43 63.51 88.29 91.96

4 24.89 8.44 46.84 41.35 47.26 39.66 55.70 31.22 55.70 93.67 94.26

5 54.68 75.98 91.30 89.23 89.23 91.51 87.16 81.99 89.03 88.84 99.76

6 93.42 90.68 98.22 96.16 96.99 96.44 96.71 90.41 95.21 92.72 96.46

7 0 0 53.57 0 10.71 50.00 25 7.14 39.29 100 96.15

8 99.16 89.75 98.95 99.37 96.65 99.16 99.37 98.74 99.79 94.00 99.53

9 0 0 0 0 10 0 10 0 0 94.44 100

10 58.02 28.09 69.44 66.53 67.39 66.77 67.59 62.55 64.92 87.33 92.27

11 82.29 81.02 84.81 87.09 81.30 85.17 81.14 69.90 71.16 85.98 95.07

12 24.45 29.85 61.38 59.19 69.48 59.36 77.74 40.81 64.76 93.95 98.36

13 93.17 80.49 90.73 99.02 95.61 93.17 98.05 86.34 96.59 98.38 100

14 95.18 96.28 96.76 96.76 92.57 96.13 91.38 92.49 94.07 94.85 97.91

15 51.04 44.56 49.48 31.35 66.58 62.18 69.95 61.40 68.65 97.47 90.06

16 90.32 0 94.62 92.47 48.39 91.40 90.32 82.80 80.65 94.81 100

OA 69.98 66.60 78.52 79.19 79.38 79.79 79.81 71.36 76.48 89.57 95.27

AA 55.81 46.09 67.14 62.66 66.20 67.20 70.87 58.78 69.06 92.78 96.55

κ 65.08 60.91 75.32 76.01 76.27 76.75 76.85 67.25 73.17 88.05 94.60

Table 4. Classification Accuracy for the University of Pavia dataset
* PCA LDA LPP LDE LFDA LGDA SGDA SLGDA GDA-SS TLPP TLDE

1 77.84 55.11 82.95 77.84 86.08 78.98 89.49 84.94 93.18 80.27 99.06

2 90.19 93.93 97.90 96.73 94.39 92.06 88.08 94.16 90.42 84.73 100

3 48.37 67.32 43.79 73.20 85.62 81.70 83.01 71.90 82.35 91.35 100

4 99.60 98.79 99.19 100 99.19 97.98 99.60 98.38 99.19 96.59 100

5 97.55 99.18 100 99.59 100 100 99.18 100 100 99.59 99.56

6 54.11 57.53 63.70 78.08 68.96 85.36 75.34 51.37 68.49 93.33 100

7 95.83 95.83 95.83 98.21 96.31 96.52 97.62 97.42 93.35 92.03 97.73

8 95.41 94.53 89.20 96.60 96.30 95.56 96.30 95.41 93.35 80.26 99.18

9 100 74.27 99.51 99.51 100 99.51 100 100 100 98.74 100

OA 90.00 87.49 90.61 93.99 94.08 93.32 94.16 92.69 92.72 88.68 99.04

AA 84.32 81.83 85.80 91.09 91.95 91.76 92.07 88.18 91.15 90.76 99.50

κ 87.92 84.84 88.69 92.75 92.88 91.97 92.99 91.19 91.29 86.22 98.84

superior to other compared methods, and the classification

accuracy of the class 6 is only 0.53% lower than the high-

est value, which can be ignored. At the same time, the OA,

AA, and κ of TLDE are also much higher than other com-

pared methods. On details, compared with other methods,

the OA of TLDE is about 5.7% to 28.67% higher, the AA of

TLDE is about 3.77% to 50.46% higher, and the κ of TLDE

is about 6.55% to 33.69% higher. Especially, the classifi-

cation performance of TLDE have a excellent performance

under the condition of few labeled training samples. For

instance, the training samples of the class 1, class 9 and

class 16 are all less than 10, but the classification accuracy

of the TLDE method is at the highest level compared with

other methods and it reaches a highly level of 100%, 100%,

100%, respectively. It is worth mentioning that the classi-

fication accuracy of class 9. The other compared methods

are 0% because the number of training samples is only 2,

yet the TLDE achieves at 100%. Besides, the classification

accuracy of class 1 is also greatly awesome, in comparison,

the other compared methods are unsatisfactory.

From the table 4, in addition to the class 5 and the class

7, the classification accuracy of each class of the TLDE

method is superior to other compared methods, and the clas-

sification accuracy of the class 5 is only 0.44% lower than

the highest value, which can be also ignored. Meanwhile,

the OA, AA, and κ of TLDE are also much higher than other

compared methods. On details, compared with other meth-

ods, the OA of TLDE is about 4.88% to 11.55% higher, the

AA of TLDE is about 7.43% to 17.67% higher, and the κ
of TLDE is about 5.85% to 14.00% higher. Similarity, the

classification performance of TLDE have a excellent per-

formance under the condition of limited training samples.

For example, the training samples of the class 4 and class

6 are all less than 25, but the classification accuracy of the

TLDE method is best. Especially for the class 6, its classi-

fication performance is 100% while the classification accu-

racy of the compared methods change between 53.37% and

85.36%.

4.3.2 Classification Maps

The Fig. 5 and Fig. 6 illustrate the classification maps re-

sulting from the classification of all the methods. For the

Fig. 5 and the Fig. 6, the classification map of the TLDE

method contains least noise and is best accurate.

In the Fig. 5, the number of misclassified points in the

class 1 (Alfalfa), the class 16 (Stone-Steel-Towers), and es-

pecially for the class 6 (Oats) of TLDE are significantly less

than other methods.

In the Fig. 6, the number of misclassified points in the

class 4 (Trees), the class 8 (Bricks) of TLDE are signifi-

cantly less than other methods.

Those further illustrate that the result in Table 3 and 4

are indeed believable.

5. Conclusion

In this paper, we introduce TLDE to HSI, which is one of

a tensor subspace learning method. The superiority of ten-

sor structure capturing simultaneously spatial information

and spectral information can much advance the classifica-

tion accuracy. And TLDE utilizing two graphs to character-

ize the geometry structure of the sample can be more dis-

criminative. The experiment results demonstrates that the

TLDE method can effectively deal with small training size

problem, even if the class with only two training samples.
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