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Abstract

In this paper we propose Structuring AutoEncoders

(SAE). SAEs are neural networks which learn a low dimen-

sional representation of data and are additionally enriched

with a desired structure in this low dimensional space.

While traditional Autoencoders have proven to structure

data naturally they fail to discover semantic structure that is

hard to recognize in the raw data. The SAE solves the prob-

lem by enhancing a traditional Autoencoder using weak su-

pervision to form a structured latent space.

In the experiments we demonstrate, that the structured

latent space allows for a much more efficient data represen-

tation for further tasks such as classification for sparsely

labeled data, an efficient choice of data to label, and morph-

ing between classes. To demonstrate the general applicabil-

ity of our method, we show experiments on the benchmark

image datasets MNIST, Fashion-MNIST, DeepFashion2 and

on a dataset of 3D human shapes.

1. Introduction and Related Work

Data structuring is widely used to analyze, visualize and

interpret information. A common approach is to employ

autoencoders [11] which try to solve this task by structur-

ing data in an unsupervised fashion. Unfortunately, they

tend to focus on the most dominant structures in the data

which not necessarily incorporate meaningful semantics.

In this paper we propose Structuring AutoEncoders (SAE)

which enhance traditional autoencoders with weak supervi-

sion. These SAEs can enforce a structure in the latent space

desired by a user and are able to separate the data accord-

ing to even subtle differences. The structured latent space

opens up a variety of applications:

1. Improving classification accuracy on datasets where

only a small number of data points is labeled.

2. Finding the most important unlabeled data points for

giving labeling recommendations.

3. An interpretable latent space for data visualization.

Figure 1. Latent spaces of the autoencoders for the 3D HumanPose

database. The colors are given by the gender, male and female.

Left: Confused latent space when using a traditional autoencoder.

Right: Clustered structure in latent space when using the SAE.

4. Morphing between properties that are hidden in the

data.

The focus of this work is to transfer data into an orga-

nized structure that reflects a meaningful representation. To

achieve this, it is necessary to uncover even subtle semantic

characteristics of data. As an enhancement of linear fac-

torization models [9], the idea of autoencoders as a tool to

naturally uncover structures has been part of research on

neural networks for decades [15, 3, 28]. They are com-

monly used to learn representative data codings and usu-

ally consist of a neural network having an encoder and a

decoder. The encoder maps the data points through one

or more hidden layers to a low dimensional latent space

from where the decoder reconstructs the input. However,

this representation is not necessarily meaningful in terms of

the underlying semantics and cannot discover well hidden

structures. There are other variants of Autoencoders which

enforce a specific distribution in the latent space, either by

a variational approach [12] or by applying a discriminator

network on the latent space known as Adversarial Autoen-

coders [20]. Other works focussed on getting disentangled

representations of data in the latent space [14, 7, 10, 1].

There are several other variants that find additional con-

straints on the latent variables, mostly for specific applica-

tions [6, 24, 18, 4, 17, 5]. However, analysis of hidden struc-

tures is rarely considered. Our approach solves this task by

improving traditional autoencoders with a weak supervision

using only a very small amount of additionally labeled data



which represents the desired formerly well-hidden seman-

tics. Furthermore, we propose a method to extend this small

set of labels efficiently by determining critical examples that

are most meaningful to improve classification. Comparing

common classification networks to our approach, they can

be interpreted as the omission of the decoder network.

As an example we consider the separation of male and

female 3D body shapes which are in different poses. The

obvious structure in the data is the pose of the body shapes

since the variation in pose is a lot stronger compared to vari-

ation in the gender regarding the reconstruction error. In

fact, passing the data through a traditional autoencoder it

will mix male and female data points as can be seen on the

left hand side of Fig. 1. To assist the autoencoder to separate

the data points into male and female we define distances be-

tween different classes. These distances shall be maintained

in the latent space while training the SAE. Following the ex-

ample we specify a distance of 1 between the male and fe-

male class. The distance metric is freely customizable to a

desired task. The right image of Fig. 1 shows a much better

organized latent space obtained by the SAE. Interestingly,

there is only a marginal increase of the reconstruction error

when using the SAE compared to standard autoencoders.

For ordering data with respect to the relative distance mea-

sures in this work Multidimensional Scaling (MDS) is ap-

plied [32]. Alternative approaches such as t-SNE, which

is based on a Stochastic Neighbor Embedding [26, 25] or

Uniform Manifold Approximation and Projection (UMAP)

[21] are conceivable. These methods can be used to visual-

ize the level of similarity of individual examples of a dataset

and can be seen as related ordination techniques which is

used in information visualization. To preserve desired dis-

tances in the latent space we use MDS in this work. By

applying MDS on sparsely known labels of the training set,

it allows to structure the data in such a fashion, that data

points with the same labels have a small distance in the la-

tent space, whereas data belonging to different labels are

enforced to keep a certain distance. This is formulated as

the structural loss in addition to the decoders reconstruction

error. A diagram of the proposed autoencoder training in-

cluding a structured latent space visualization and the used

losses is shown in Fig. 2.

We show experiments on the benchmark dataset MNIST

[16] which we randomly decompose into three classes. The

results underline the fact that the SAE efficiently separates

the latent space according to a freely selected structure that

is invisible the raw data. Moreover, using only a very sparse

set of data (6000 labeled samples) the SAE outperforms

comparable neural networks trained solely for the classifi-

cation task. These results are confirmed on the recent more

diverse dataset Fashion-MNIST [30] and our own dataset

of 3D meshes of human body shapes. A real-world applica-

tion is shown on the recently published DeepFashion2 [8]

Figure 2. Our Structuring AutoEncoder (SAE) projects data into a

structured latent space. It uses Multidimensional Scaling to calcu-

late the class centers in the latent space. By applying an additional

structural loss the SAE maintains distances between the classes

according to a desired metric. Losses are colored in blue.

dataset where our SAE outperforms comparable classifiers.

Additionally, we show that our guided labeling approach

only needs 600 training samples combined with the 100
most meaningful samples that are automatically detected to

achieve good classification results. This provides a tool to

significantly reduce labeling time and cost.

Summarizing, our contributions are:

• An autoencoder that structures data according to given

classes and preserves distances present in the label

space.

• A method to deal with sparsely labeled data while pre-

venting the overfitting of traditional approaches.

• Better classification performance than comparable

neural networks trained for classification using the

same amount of training data.

• Similar training performance (reconstruction loss)

with and without structured training.

• A technique to improve the labeling efficiency by de-

termining critical data points.

2. Structuring Autoencoder

We assume that the input data can be separated into sev-

eral classes which are not obvious in the data itself. These

classes are only known for a small fraction of the input data.

We further assume that the data can be projected to a latent

space that preserves the distances between the classes. As

a toy example we separate the Fashion-MNIST dataset [30]

into the three classes summer clothes (top, sandals, dress

and shirt), winter clothes (pullover, coat and ankle boot),

and all-year fashion (sneaker, trousers, bag). The left hand

side of Fig. 5 shows the latent space of this. Here, as an ex-

ample we define an equal distance between the classes. Ob-

viously, the season depending decomposition is not given



by the data itself. The following sections describe the pro-

posed autoencoder architecture and training. Algorithm 1

describes the steps for training the network.

Algorithm 1 Autoencoder training

X ← training samples

D ← distances

while no convergence do

Z = fenc(X) {project X into latent space}
Z∗ = MDS(Z) {calculate desired positions}
ZZ+ = USV T {singular value decomposition}
set all singular values ≥ 0 to 1
R = US∗V T {calculate ideal rotation}
Z̃ = RZ∗ {final positions in latent space}
train SAE with loss LSAE(x, z̃) and LAE(x,fae(x))

end while

2.1. Architecture and Loss Functions

Our method is not restricted to a specific autoencoder ar-

chitecture. That means every architecture can be applied,

for instance fully connected, (fully) convolutional, or ad-

versarial autoencoders. We define two loss functions. The

first loss

LAE(x,fae(x)) = ‖x− fae(x)‖
2
2, (1)

is the mean squared error (MSE) between the input x and

the output of the autoencoder fae(x) as it is commonly

used. With fenc(x) as the function of the encoder that

projects x to the latent space a structural loss is defined as

LS(fenc(x), z̃) = ‖fenc(x)− z̃‖22. (2)

It is calculated by the MSE between the latent values

fenc(x) and the desired locations z̃ in the latent space that

are calculated at each iteration. The estimation of these lo-

cations using Multidimensional Scaling is described later in

Sec. 2.3. This gives the combined loss

LSAE(x, z̃) =

γLS(fenc(x), z̃) + (1− γ)LAE(x,fae(x)), (3)

with γ = [0, 1] as the balancing parameter between the two

losses. Note that γ = 0 corresponds to the traditional au-

toencoder training while a higher value of γ gives a higher

importance to the structural loss. In section 3.6 the influence

of γ is analyzed and its choice for experiments is explained.

For unlabeled data LSAE = LAE is considered since there

is no z̃ defined.

2.2. Initialization

Following the toy example from above a distance matrix

D between the three classes is calculated where each row

and column marks a training sample and the entries are the

distances. Here, we can define an equal distance (e.g. of

1) between different classes. The intra class distance is 0.

Since the distances between the classes stay the same dur-

ing training the distance matrix only needs to be calculated

once.

2.3. Structuring the latent space

The autoencoder is trained iteratively. In every iteration

the data x is projected into the latent space by the encoder

which gives the latent variables

z = fenc(x). (4)

This is done for the complete training set. By stacking all z

vectors we obtain the matrix Z. To calculate the desired la-

tent positions Z̃ we apply Multidimensional Scaling (MDS)

[13] to the distance matrix D that is defined in Section 2.2.

MDS is able to arrange data points in a space of an arbi-

trary dimension in a way that the given distances should be

preserved. The Shepard-Kruskal algorithm [13] is an iter-

ative method to find such an arrangement. After an initial-

ization the stress between the actual and the given distance

measures is minimized until a local minimum is found. In

contrast to manually setting the desired latent locations the

MDS can automatically adapt to the data and therefore to

the training process. This results in a target matrix of loca-

tions Z∗ in the latent space.

Since there is an infinite number of possible target loca-

tions and we want to compute locations close to Z the MDS

algorithm is initialized with them. To get the best possible

target locations an orthogonal alignment [22] is applied to

Z∗ to best fit Z. Naturally, MDS results in centralized data

points. Therefore, we only need to compute the ideal rota-

tion around the origin. Let P be a projection matrix that

projects Z∗ to Z by

Z = PZ∗. (5)

We assume that there is a Moore-Penrose-Inverse Z+ of Z∗

with Z∗Z+ = I , where I is the identity matrix. This states

true if there are more data points than latent dimensions,

which is always the case in a meaningful experimental set-

ting. The singular value decomposition of P ∗ = ZZ+

gives

P ∗ = USV T . (6)

A new matrix S∗ is defined by copying S and setting all

nonzero singular values to 1. Then the ideal rotation R can

be found by

R = US∗V T . (7)

The desired latent positions are calculated by

Z̃ = RZ∗. (8)



Figure 3. Visualization of the iteration steps. With each iteration the two classes are separated better in the latent space. The images show

the same two dimensions in every step for the 3D body shape dataset.

SAE

(ours)

AE

VAE

MNIST HumanPose
Fashion-

MNIST

AAE

Figure 4. The scatterplots show 2D projections of the latent space

when using different types of autoencoders. For each instance an

appropriate projection was chosen. Points of the same color repre-

sent samples from the same class. It can be clearly seen that only

a Structuring Autoencoder is able to separate the latent variables

well.

With these target locations the autoencoder is trained batch-

wise for a complete epoch. After the epoch the steps in

this section are repeated until convergence. The data in the

latent space during the training steps is visualized in Fig. 3.

3. Experiments

We show the performance of our algorithm in sev-

eral experiments using diverse datasets including images

and vector data. The evaluation is done on the bench-

mark datasets MNIST [16], the recently published fashion

datasets Fashion-MNIST [30] and DeepFashion2 [8], and

our own 3D body shape dataset created using SMPL [19]. It

is important to note, that we focus on artificially set classes.

That means we try to find clusters that are not evident or

barely visible in the original data, e.g. a season depending

decomposition of Fashion-MNIST. Furthermore, we show

summer

winter

all-year upper body clothes

others

Figure 5. Comparison of two projections of the latent space using

different decompositions of the data. Note that the distance of two

samples is highly influenced by the chosen decomposition so this

setting is a method to individually control data.

that the SAE generalizes very well if only a small subset of

the training data is used. Since we achieve a clear separa-

tion of the defined classes in the latent space after training

we can fit an optimal hyperplane between the classes using

Support Vector Machines [27]. This allows for the defini-

tion of a classification error considering the separation in the

latent space. We further use the term reconstruction error

as the root-mean-square error (RMSE) between the input

and output of the autoencoder. We only train on unaug-

mented data in all our experiments. This allows for a fair

performance comparison between different classifiers even

for data where no augmentation is possible, e.g. the 3D

body shape data. We are aware of the fact, that state-of-the-

art classification performance cannot be completely reached

without data augmentation. However, we want to empha-

size that the focus of the paper is on semantically structuring

the latent space of autoencoders and not on state-of-the-art

classification results on benchmark datasets. Therefore, we

use standard fully connected and convolutional neural net-

works for all experiments and compare against comparable

classification networks. This means the classification net-

work uses the same architecture as the encoder of the SAE

to be compared plus a fully connected output layer.

3.1. Datasets and Neural Networks

To show an example on a well-known benchmark dataset

we randomly divide MNIST into three classes A =
(0, 1, 9), B = (4, 6, 8), and C = (2, 3, 5, 7). As a

more realistic example we evaluate on the Fashion-MNIST

dataset which was published in 2017 to have a benchmark
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Figure 6. Test error for different sizes of the training set without using data augmentation. The SAE outperforms a comparable traditional

neural network and an adversarial autoencoder on each of the datasets significantly, especially if the number of labeled training samples is

low.

which is a lot harder than the old original MNIST. It con-

sists of a training set of 60,000 examples and a test set of

10,000 examples of various fashion items divided into 10

classes. According to the authors these images reflect real

world challenges in computer vision better than the origi-

nal MNIST dataset. We split Fashion-MNIST into the three

classes summer clothes (top, sandals, dress and shirt), win-

ter clothes (pullover, coat and ankle boot), and all-year

fashion (sneaker, trousers, bag).

For both datasets, MNIST and Fashion-MNIST, a convo-

lutional neural network is used for the encoder. It consists

of three 3× 3 convolutional layers (8, 16, 32 filters), ReLU

activation and pooling layers. The latent space has a dimen-

sion of 10 for MNIST and 64 for Fashion-MNIST.

We used a subset of DeepFashion2 dataset where we

only considered skirts and shorts to show the behaviour in

borderline cases. For the encoder we use the convolutional

part of the original VGG implementation [23] and a latent

space size of 192. In all networks the decoder always mir-

rors the encoder.

To show general applicability for different types of data

we create a 3D HumanPose dataset that consists of ran-

domly created human models with 3000 male an 3000 fe-

male meshes in various poses and body shapes using SMPL

[19]. We only use the x, y, z coordinates of the 6890 ver-

tices for training by stacking them in a vector. Since the

data points are in vectorial form we use a fully connected

network consisting of two dense layers 2048 and 256 neu-

rons, respectively. The latent space has 30 dimensions. This

covers a variety of data from simple images (MNIST) and

more complicated image (Fashion-MNIST) to data in vec-

torial form (3D HumanPose) and different network archi-

tectures. Note that our approach is flexible such that an ar-

bitrary network structure can be applied for the encoder and

decoder networks.

3.2. Structure Analysis

As already mentioned, some structure cannot be detected

by traditional autoencoders because it is hidden in the data.

This effect can be visualized easily by projecting into the la-

tent space. Fig. 4 compares 2D projections of standard au-

toencoders (AE), variational autoencoders (VAE), adversar-

ial autoencoders (AAE) and our proposed Structuring Au-

toencoders (SAE) for all datasets. Standard autoencoders

barely show any structure in the form of clusters, whereas

a slight clustering of samples of the same class can be ob-

served when using variational autoencoders. However, the

desired clear separation cannot be seen at all while our SAE

provides a clean structured latent space. These examples

use a fixed distance of 1 between classes. However, the in-

ter class distance can be freely defined. Additionally, also

the decomposition of the data is free of choice. For exam-

ple Fashion-MNIST can be decomposed in another way, e.

g. differentiating between clothes worn at the upper body

and other fashion items. Fig. 5 compares the projections of

the resulting latent space using this decomposition along-

side the previously used one (summer, winter, all-year).

3.3. Improved Classification

Since the autoencoder separates the data in the latent

space it is possible to train a simple linear classifier on the

latent space. We show that a linear SVM trained on the

latent variables achieves a better accuracy compared to a

neural network of similar structure as the encoder. Since

the SAE enforces a latent space that can be decoded over-

fitting is prevented even if only a small amount of training

data is used. Fig. 6 shows the error on the test set with

different numbers of labeled samples compared to an ad-

versarial autoencoder and a neural network solely trained

for classification. For the training of the adversarial autoen-

coder we performed the semi-supervised method described

in Section 2.3 of the corresponding paper [20] and applied

SVM after training. It can be clearly seen that the SAE

outperforms traditional classification networks on MNIST,



Figure 7. Examples from the DeepFashion2 dataset where the class

membership is visually hard to determine or features of the op-

posite class occur. In contrast to traditional classifiers the SAE

assigns meaningful low confidence values to these samples.

Figure 8. Relation between the prediction score and the actual pre-

cision which is computed over samples from binned sets of pre-

diction scores. Contrary to the noisy plot of the standard classifier,

the smooth SAE plot shows that there is a clear mapping between

prediction scores and the actual precision. Thus it is evident that

the scores provided by our SAE are much more reliable for critical

decisions.

Fashion-MNIST, and 3D HumanPose, especially when us-

ing only a few samples.

Note that all experiments are done without data augmen-

tation. For comparison, when applying data augmentation

to the training data we achieve classification rates of 99.04%

on MNIST using only 6000 samples.

3.4. Decision Confidence

Traditional neural networks used for classification aim

to predict a class with high confidence mostly applying a

softmax activation in the last layer. As a result their de-

cision confidences appear to be relatively high even if the

actual decision is uncertain. Our SAE avoids the uncer-

tain predictions and gives a meaningful and interpretable

confidence measurement. In real-world applications, for

instance reflected by the DeepFashion2 [8] data set, there

are several samples that are hard to assign to one class be-

Figure 9. Histogram of prediction scores when using a standard

classifier and our SAE. While the standard classifier tends to pre-

dict scores near 0 and 1, the SAE outputs are more uniformly dis-

tributed over the interval to reflect the confidence better.

Figure 10. Comparison of the guided and unguided sampling ap-

proach for the MNIST initially trained on 600 samples. In epoch

200 the 100 most uncertain assigned data points according to the

SAE were added. The standard classifier threshold is a CNN

of comparable structure as the encoder network which is solely

trained for classification.

cause of occlusions or the presence of features from several

classes. Therefore, it is desirable to have expressive predic-

tion scores.

For example in Figure 7 some images of the DeepFash-

ion2 dataset [8] are shown where it is hard to determine if

the picture shows a skirt or shorts, even for a human ob-

server. We compared the prediction scores and their ex-

pressiveness of the SAE and an equivalent traditional clas-

sifier for skirts and shorts. We normalized the prediction

scores provided by the SVM by scaling the scores between

the class centers into the interval [0...1]. Fig. 8 shows the

relation between the prediction scores and the actual preci-

sion. The noisy graph of the traditional classifier shows that

the prediction score provides only a rough evidence about

the class membership probability. For example the real pre-

cision of 0.4 can be reflected by a prediction score between

0.25 and 0.65. In contrast the stable and monotonous rela-

tion when using the SAE shows that its prediction scores re-

flect the uncertainty much better. That means the confidence

given by the SAE is much more reliable and expressive. In

contrast softmax activations in combination with cross en-

tropy loss let traditional classifiers tend to predict scores that
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Figure 11. Influence of the balancing parameter γ on the autoencoder error and the classification error. For MNIST and Fashion-MNIST

only 6000 labeled training samples (10% of the data) were used. The training set of 3D body shape dataset consists of 1000 body shapes.

are either close to 1 or 0 as seen in Figure 9. Confidences

between these extremes are mostly noisy with a low infor-

mative value. Structuring Autoencoders do not suffer from

this drawback since they naturally achieve a smooth separa-

tion of the classes and make use of the reconstruction loss

given by both the labeled and unlabeled samples. Regard-

ing only classification tasks the reconstruction loss can also

be interpreted as a regularization term for the structural loss

function.

3.5. Guided Labeling

Since the SAE combined with an SVM provides a reli-

able decision confidence it can be used to efficiently dis-

cover important samples in the test set. After projecting

into the latent space samples with a high uncertainty for a

class do not show any exceptionally high SVM classifica-

tion score compared to the rest of the classes. We iden-

tify these critical samples by calculating the scores for each

class and compare the highest score to the second high-

est score. A small difference indicates a high uncertainty.

The most important of these data points under this criterion

can then be labeled manually and included in the training

data. This guides the training process such that only a small

amount of data needs to be labeled. To achieve a realis-

tic setting we did not delete the points from the test set but

instead define an unlabeled set of samples from the train-

ing set of the respective datasets. Note that misclassified

data points are not detected by this method. However, our

experiments show that the classification performance sig-

nificantly improves on the unchanged test set which means

formerly misclassified samples are now correctly classified.

Fig. 10 shows the performance of a SAE combined with an

SVM classifier initially trained with 600 samples for 200
epochs on MNIST. In epoch 200 the 100 most important

data points from the unlabeled set are automatically de-

tected and included in the training set. This results in a

decrease of the classification error from approximately 4%

to 3%. It is compared against a SAE trained with randomly

sampled data to show that the better performance is a result

of the intelligent choice of new samples and not of the in-

creased number of samples. Additionally, we show that our

methods outperforms a neural network of the same struc-

ture as the encoder part of the SAE which is solely trained

for classification. Using the guided labeling approach the

time and cost for manual annotations can be significantly

reduced since only the most important samples (i.e. the

samples with the highest uncertainty) need to be labeled

manually.

3.6. Effect of MDS

As stated earlier our modification to a standard autoen-

coder training only has a minor influence on the autoen-

coders reconstruction. This influence is regulated by the

parameter γ in Eq. 3, where γ = 0 means that the struc-

tural loss is ignored during training, i.e. a traditional au-

toencoder is trained. Setting γ = 1 means only the struc-

tural loss is considered. Fig. 11 shows the reconstruction

error and the classification error on the three datasets with

different values for γ. Assuming that a low reconstruction

error and a low classification error is desired we can es-

timate the best values for γ in Fig. 11 as 0.5 for MNIST

and 0.75 for Fashion-MNIST. The best value for 3D Hu-

manPose lies around 0.0041. The reconstruction error does

not increase much when applying the structural loss. That

means the reconstructions remain equally good for a wide

range of values for γ.

Having a closer look at the results in Fig. 11 for MNIST

and Fashion-MNIST reveals a slight rise when γ gets close

to 1 (i.e. the network is mostly optimized for classification).

This underlines our claim that the SAE efficiently com-

bines the natural structuring properties of traditional au-

toencoders with an additional structural information.

For subjective evaluation Fig. 12 shows some exam-

ple reconstructions for MNIST and Fashion-MNIST while

Fig. 13 shows examples for 3D HumanPose. The recon-

structions of the SAE and the traditional autoencoder are

nearly indistinguishable.

1This low weight can be explained by the numerical low reconstruction

error as seen in Fig. 11.



Figure 12. Reconstructions of MNIST and Fashion-MNIST ob-

tained by the SAE compared to ground truth and a standard au-

toencoder. The SAE produces a quality of output images that is

comparable and in some cases subjectively better compared to the

traditional autoencoder.

Figure 13. Reconstructions (green) obtained by the SAE of the 3D

body shapes compared to ground truth (red). Body shape and pose

are reconstructed well. Only minor deviations can be seen in the

extremities.

3.7. Class Transitions

By exploiting the separated latent space it is possible to

transition from one class to another. For visualization we

use the 3D HumanPose dataset and the corresponding au-

toencoder trained to separate into male and female body

shapes. The deformation vector is defined by the vector

from the class center of the female class to the center of

the male class or vice-versa. To morph between classes the

scaled deformation vector is added to the latent variables.

The morphed reconstruction is then obtained by applying

the decoder to the changed latent variables. The step-wise

morphing from male to female is visualized in Fig. 14. As

can be seen there is a smooth transition between the classes.

Interestingly the body pose does not change much while

morphing. That means the autoencoder learns to structure

the latent space for the pose component by itself. Moreover,

this structure seems to be similar for the male and female

clusters in the latent space. This underlines our claim that

the self structuring properties of traditional autoencoders

can be efficiently combined with another given structure us-

ing the SAE.

Figure 14. Visualization of the body shape morphing in the latent

space. The two classes male and female are well separated. When

adding the directional vector defined by vector between the cen-

ters of the male and female clusters the male body shape clearly

transitions to female while maintaining the body pose.

4. Conclusion and Future Work

We presented a method to improve traditional autoen-

coders such that they are able to structure the latent space

according to given labels. Our SAE is able to separate dif-

ferent classes in the latent space even if this separation is

not present in the data. By combining the traditional Mul-

tidimensional Scaling technique with novel autoencoder ar-

chitectures the latent space is not only well structured but

also preserves predefined distances between the different

classes. We showed that a simple linear classifier on the

latent variables outperforms comparable neural networks in

classification tasks. In sparsely-supervised settings the SAE

helps lowering the amount of required training data to re-

duce labeling cost and time. At the same time the predic-

tion of unknown samples is more interpretable which, un-

like standard classifiers, enables a reliable decision confi-

dence. Based on this we developed a guided labeling ap-

proach by exploiting distances to class boundaries in the

latent space which detects the unlabeled data points with

the highest classification uncertainty. Additionally, an ex-

ample for the combination of the self structuring properties

of traditional autoencoders with the proposed MDS method

is shown.

Our proposed SAE could be used in the future to improve

tasks like human pose estimation [29] and anomaly detec-

tion [31]. Furthermore, it may be combined with Markov

Chain Neural Networks [2].
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