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Abstract

We propose Deep Closed-Form Subspace Clustering

(DCFSC), a new embarrassingly simple model for sub-

space clustering with learning non-linear mapping. Com-

pared with the previous deep subspace clustering (DSC)

techniques, our DCFSC does not have any parameters at

all for the self-expressive layer. Instead, DCFSC utilizes

the implicit data-driven self-expressive layer derived from

closed-form shallow auto-encoder. Moreover, DCFSC also

has no complicated optimization scheme, unlike the other

subspace clustering methods. With its extreme simplicity,

DCFSC has significant memory-related benefits over the ex-

isting DSC method, especially on the large dataset. Several

experiments showed that our DCFSC model had enough po-

tential to be a new reference model for subspace clustering

on large-scale high-dimensional dataset.

1. Introduction

In this paper, we tackle the problem of subspace cluster-

ing on high-dimensional and large-scale dataset. Subspace

clustering [31] seeks to find clusters in the dataset by se-

lecting the most relevant dimensions for each cluster sepa-

rately. It has become an import topic in unsupervised learn-

ing and achieved great success in various computer vision

tasks, such as face clustering [8], image segmentation [34],

and motion segmentation [10, 27].

Recently, methods on subspace clustering based on

sparse and low-rank representation [7, 35, 16, 33, 22, 36]

have gotten attention. Many of these methods exploited

self-expressiveness property [27, 6] of data drawn from a

union of subspaces, i.e., the assumption that each data sam-

ple can be represented as a linear combination of other sam-

ples in the same subspace. The deep subspace clustering

(DSC) network [12] is a deep auto-encoder based subspace

clustering model to address the case of non-linear sub-

spaces. The authors of DSC introduced the self-expressive

layer to integrate self-expressiveness property into a deep

neural network. This deep learning-based method was

shown to outperform the other state-of-the-art subspace

clustering methods significantly. However, utilization of

DSC is restricted to ”shallow” models because the self-

expressive layer requires a massive number of parameters.

In this paper, we propose a deep neural network to im-

prove efficiency of self-expressiveness, which is termed

Deep Closed-Form Subspace Clustering (DCFSC). It con-

sists of a closed form solution of the self-expressive layer

motivated by EASER model [30], which showed that a sim-

ilar Top-N recommendation problem could be solved in

closed form by a method of Lagrange multipliers. We mod-

ified the self-expressive layer from the parameterized fully-

connected layer to a closed-form solution. In contrast to

DSC, since the proposed self-expressive layer does not have

any parameters for optimization, it is both memory-efficient

and methodologically simple. To the best of our knowledge,

this is the very first attempt that proposes to use closed-form

solution to self-expressive layer. Furthermore, our model

can use deeper neural networks for getting richer represen-

tation on subspace clustering.

We extensively evaluated our model on face clustering,

using the Extended Yale B and ORL dataset for a small case,

and on general object clustering, using COIL100 for a large

case. Our experiments showed that DCFSC achieved com-

parable performance only using 0.25% ˜ 0.44% parameters

of DSC on a small case, and the state-of-the-art result on a

large case.

2. Related Works

Subspace clustering problem usually is divided by two

subproblems. The first subproblem is finding an affinity

matrix from data. The second subproblem is clustering data

points using the affinity matrix via normalized cuts [29] or

spectral clustering [18]. Since there are already many good

articles [21, 13, 31] that dealt comprehensively with classic

subspace clustering methods, here we only deal with recent

works on subspace clustering related with deep representa-

tion learning.

Several works [26, 25, 4] proposed a type of the method-

ology that representations learned by auto-encoder were

forced to follow a specific conventional prior structure re-

lated with self-expression, e.g., Sparse Subspace Clustering



(SSC) [7] and Low-rank Representation (LRR) [16]. [15]

proposed deep-encoder based row space recovery method-

ology to make conventional low-rank subspace clustering

scalable and fast. [24] simultaneously learned a compact

representation using a neural network, and [38] proposed

combined methodology of a variant of K-subspace cluster-

ing [2] and deep auto-encoder to bypass the steps of con-

structing an affinity matrix and performing spectral cluster-

ing.

On the other hand, [12] firstly introduced deep subspace

clustering network. The biggest contribution of [12] was

that they firstly designed the self-expressive layer and cor-

responding loss function which models self-expressiveness

property of data into deep auto-encoder. Since DSC showed

great performance on various benchmarks, there have been

many subsequent studies [41, 37, 40, 39] that tried to im-

prove the DSC in several aspects. Deep adversarial sub-

space clustering [41] exploited GAN-like adversarial learn-

ing framework to supervise sample representation learn-

ing and subspace clustering. [37] proposed a dual self-

supervision framework which exploited the output of spec-

tral clustering to supervise the training of the feature learn-

ing module and the self-expression module. [40] introduced

a new type of loss called distribution consistency loss to

guide learning of distribution-preserving latent representa-

tion. [39] re-formulated subspace clustering as a classifica-

tion problem, which in turn removed the spectral clustering

step from the computations.

Despite the effectiveness and impact of DSC, the disad-

vantages of DSC have also been pointed out in some stud-

ies [38, 39]. The main disadvantage of DSC, which was

commonly pointed out in these works, is that the memory

footprint for training DSC is too high to access the sub-

space clustering problem for the large-scale dataset. This

memory problem is caused by two factors of DSC. First,

the self-expressive layer consists of N2 parameters for N -

size dataset. Second, the process of clustering data points

from the affinity matrix has a quiet high memory require-

ment. Neural Collaborative Subspace Clustering [39] tried

to solve the latter, but did not face the former problem.

Therefore, this paper is the primary work to solve the mem-

ory requirement problem of DSC’s self-expressive layer.

3. Proposed Framework

3.1. Deep Subspace Clustering

Here, we firstly give a brief introduction on deep sub-

space clustering [12], which is one of key papers in this

work. The core of DSC is joint training of deep auto-

encoder and self-expressive layer. Let AEΘae
: RN×D →

R
N×D denote the auto-encoder, which is parameterized

with Θae.1 AE consists of two parts of feed-forward func-

tions, a encoder EncΘenc
: R

N×D → R
N×d and a de-

coder DecΘdec
: RN×d → R

N×D. Enc and Dec are pa-

rameterized with Θenc and Θdec, respectively. Let matrix

X ∈ R
N×D represent a N -size whole dataset. Each row

of X refers to each D-dimensional data point. Standard

auto-encoder is trained to optimize (L2) reconstruction er-

ror L(X; Θae):

L(X; Θae) = ‖X−AE(X)‖2F = ‖X−Dec(Enc(X))‖2F .
(1)

However, training with Equation 1, the latent representation

Enc(X) is not guaranteed to have any beneficial property

for subspace clustering.

For the guarantee, DSC utilizes self-expressiveness

property of data drawn from union of linear subspaces

[27, 6, 7]. Self-expressiveness property of set of points

is that there exists a matrix C ∈ R
N×N which satisfies

X = CX if each row data of X are drawn from one of the

multiple linear subspaces. C is called self-representation

coefficient matrix. If each subspace is independent with

other subspace, self-representation coefficient matrix C has

a block-diagonal structure [11]. With matrix norm con-

straint on C, finding optimal C under these two assumptions

is formulated as the following:

min
C

‖C‖p s.t. X = CX, diag(C) = 0. (2)

Usually, complex high-dimensional data points in original

data space itself do not satisfy self-expressiveness property

so appropriate C cannot be found.

Instead of building assumption of self-expressiveness on

data space, DSC enforces latent space of data Enc(X)
to satisfy self-expressiveness property while training deep

auto-encoder. Self-representation coefficient matrix is in-

stantiated as trainable parameters of self-expressive layer

SELΘsel
: R

N×d → R
N×d. Θsel ∈ R

N×N de-

notes parameters of self-expressive layer. Mapping by

self-expressive layer is simply expressed as linear map-

ping among input data i.e. SEL(Y ) = ΘselY where

Y ∈ R
N×d. Under DSC framework, AE(X) is defined

as Dec(SEL(Enc(X))). Θae = {Θenc,Θdec} and Θsel

are jointly optimized with constraints and regularization de-

rived from the self-expressiveness property (Equation 2):

L(X; Θae,Θsel) =‖X −Dec(SEL(Enc(X)))‖2F (3)

+ λ1‖Θsel‖p

+
λ2

2
‖Enc(X)− SEL(Enc(X))‖2F

s.t. diag(Θsel) = 0,

1In the rest of the paper, when there is no confusion, the subscript that

represent the learnable parameters is omitted sometimes for simplicity of

notation. This applies not only to AEΘae
, but also to all parameterized

functions.



Algorithm 1 Deep Subspace Clustering [12]

Input: Data Matrix X ,

Encoder with Pre-trained Parameters EncΘenc,

Parameters of Self-expressive Layer Θsel,

Decoder with Pre-trained Parameters DecΘdec,

Hyper-parameters for Loss Weights λ1, λ2,

Number of Training Iteration EndStep

Output Θ̃sel

1: Θ ← {Θenc,Θsel,Θdec}
2: n iter ← 0
3: while n iter < EndStep do

4: Xlatent ← EncΘenc
(X)

5: Xlatent
′ ← Θsel Xlatent

6: Xrecon ← DecΘdec
(Xlatent

′)
7: Update Θ to minimize Equation 3

8: n iter ← n iter + 1

9: Θ̃sel ← Θsel

10: return Θ̃sel

where p = 1 or p = 2 in [12]. In this work, we only con-

sider p = 2 case. This is because using L-2 norm makes op-

timization free from the diagonal constraint [11] and usually

shows better performance than using L-1 norm. Algorithm

1 shows the whole training scheme of DSC.

After the network is trained, parameters of self-

expressive layer Θsel is used for constructing affinity ma-

trix A ∈ R
N×N . This affinity matrix is then used for spec-

tral clustering [18] to yield the final data clustering result.

For building affinity matrix from the parameters of the self-

expressive layer, the official implementation of DSC utilizes

sparse subspace clustering (SSC) algorithm [7]. To clus-

ter data points from the affinity matrix, spectral clustering

method [18] is used.

3.2. Closed Form Solution of Self-Expressive Layer

In this section, we consider the following optimization

problem:

min
Θsel

‖X ′ −ΘselX
′‖2F + λ‖Θsel‖

2

F s.t. diag(Θsel) = 0.

(4)

Problem 4 is the partial problem of DSC’s objective when

X ′ is defined as EncΘenc
(X). Specifically, Problem 4 is

the problem excluding auto-encoding loss term (Equation

1) from the minimization problem of the DSC’s objective

function (Equation 3).

The optimization problem 4 is usually dealt in several

works [19, 20, 5, 30] in field of Top-N recommendation

problem. Recently, [30] showed that this problem could be

simply solved in closed form by method of Lagrange mul-

tipliers. Motivated from it, our main approach to optimize

Equation 3 is to adopt this closed-form solution of Prob-

Algorithm 2 Deep Closed-Form Subspace Clustering

Input: Data Matrix X ,

Encoder with Parameters EncΘenc,

Decoder with Parameters DecΘdec,

Matrix Regularization Parameter λ,

Number of Training Iteration EndStep

Output Self-representation Coefficient Matrix B

1: Θ ← {Θenc,Θdec}
2: n iter ← 0
3: while n iter < EndStep do

4: Xlatent ← EncΘenc
(X)

5: P ← compute p(Xlatent, λ)
6: B ← compute b(P)

7: B̄ ← Stop Gradients(B)
8: Xlatent

′ ← B̄ Xlatent

9: Xrecon ← DecΘdec
(Xlatent

′)
10: Update Θ to minimize Equation 1

11: n iter ← n iter + 1
return B

lem 4 and minimize only Equation 1, instead of minimizing

Equation 3 by first-order methods.

Following derivation in Section 3.1 of [30], the closed-

form solution of Equation 4 is given as the following:

B = I − P · diagMat(
−→
1 ⊘ diag(P )), (5)

where P = (XXT + λI)−1. In Equation 5, diagMat(·),
−→
1

⊘, and diag(·) denote operation converting vector to diag-

onal matrix, a vector of ones, Hadamard division of matri-

ces, and operation converting diagonal matrix to vector, in

order. With reconfiguration of Equation 5, the solution can

become more computationally efficient form:

Bij =

{

0 if i = j

−
Pij

Pii
otherwise.

(6)

3.3. Deep Closed-Form Subspace Clustering

Our DCFSC is a variant of DSC with closed form solu-

tion of self-expressive layer. Algorithm 2 describes how

training procedure of DCFSC works. The main differ-

ences between Algorithm 1 and Algorithm 2 are indi-

cated by magenta and blue, respectively. Two core steps

of DCFSC, compute p(·, ·) and compute b(·), are directly

matched with Equation 5. Listing 1 is Tensorflow [1] im-

plementation for compute p(·, ·) and compute b(·). As the

readers can see, DCFSC is easy to implement as much as

DSC.

Compared with DSC (Algorithm 1), DCFSC does not

retain N ×N -size parameters for self-representation coeffi-

cient matrix so does not need to optimize them. Moreover,

there is no need to compute gradient over B or P because



1 import tensorflow as tf

2

3 def compute_p(encoded, coef_lambda):

4 # In: encoded (Tensor with shape [N, d])

5 # In: coef_lambda (float)

6 # Out: Tensor with shape [N, N]

7 encoded_t = tf.transpose(encoded)

8 gram_matrix = tf.matmul(encoded, encoded_t)

9 identity = tf.eye(encoded.shape[0])

10 gram_matrix += coef_lambda * identity

11 p = tf.linalg.inv(gram_matrix)

12 return p

13

14 def compute_b(p):

15 # In: p (Tensor with shape [N, N])

16 # Out: Tensor with shape [N, N]

17 diag_p = tf.linalg.diag_part(p)

18 b = p / (- diag_p[:, tf.newaxis])

19

20 zeros = tf.zeros(b.shape[0:-1])

21 b = tf.linalg.set_diag(b, zeros)

22 return b

Listing 1 Implementation of compute p and compute b on

Tensorflow.

closed form solution for self-representation coefficient ma-

trix is directly derived from Xlatent only via forward pass.

In case of small dataset such as ORL (N = 400) and Ex-

tended Yale B (N = 2, 432), it results in little benefit over

the existing DSC method. However, if size of of dataset is

relatively large like COIL-100 (N = 7, 200), our approach

has a significant benefit on memory efficiency. On large

datasets, advantages of DCFSC over DSC enable us to use

deeper architecture to get better latent representations for

subspace clustering. In contrast to DCFSC, DSC only al-

lows shallow models to be used because of memory issue

related with self-representation coefficient matrix.

4. Experiments

Compared Methods and Performance Metric For per-

formance comparison among several subspace clustering

methods, we adopted list of methods and benchmark re-

sults from the previous works [26, 12]: Low Rank Rep-

resentation (LRR) [16], Low Rank Subspace Clustering

(LRSC) [32], Sparse Subspace Clustering (SSC) [7], Ker-

nel Sparse Subspace Clustering (KSSC) [23], SSC by

Orthogonal Matching Pursuit (SSCOMP) [35], Efficient

Dense Subspace Clustering (EDSC) [11], SSC with the

pre-trained convolutional auto-encoder features (AE+SSC),

EDSC with the pre-trained convolutional auto-encoder fea-

tures (AE+EDSC), and Deep Subspace Clustering (DSC)

[12]. Since the performances of DSC with L2 regulariza-

tion were reported to be consistently better than those of L1

regularization, only performances of L2-regularized version

of DSC were reported here. We also used the clustering er-

ror rate as metric for evaluating performance of each sub-

space clustering method, as same with [12]. We collected

benchmark results of various methods from the DSC paper.

Design of Experiments We separated experiments into

two cases by size of dataset: small N cases (Section 4.1)

and large N case (Section 4.2).

The design of small N case experiments was to show

performance of DCFSC under the very same settings of

DSC paper. The only difference were the algorithm part of

DSC and DCFSC. The other settings of experiments (e.g.,

model architecture, training procedure, and evaluation pro-

tocol) were same with ones of the original DSC paper. In

terms of performance, it might be quiet unfavorable and un-

fair for DCFSC because DCFSC has much smaller model

parameters than DSC in same architecture setting. Thus,

design of these experiments was intended to answer how

well DCFSC worked in exactly the same settings as DSC in

its paper, regardless of superior point of DCFSC on memory

efficiency. In the small N cases, Extended Yale B dataset

[14] and ORL dataset [28] were used.

In contrast to small N cases, the experiment on large

N case was designed to verify performance with full use

of DCFSC’s memory efficiency. In the experiment, convo-

lutional auto-encoder architecture, which was deeper than

that used in the work of DSC, was used for implementation

of our DCFSC. Note that this deeper architecture was quiet

computationally intractable under the DSC method. Thus,

this experiment was intended to show our DCFSC’s compu-

tational efficiency and the followed possibility of stronger

representation learning. COIL-100 dataset [17] was used

for large N case.

System Environment Implementation of DCFSC for ex-

periments was done with minimum modification of public

implementation of the DSC paper.2 The Python version

used was 3.5.2, and the Tensorflow version was 1.8.0. In

addition, a single NVIDIA TESLA V100 GPU with 40 In-

tel Xeon E5-2698 CPUs were used for the experiment, and

the CUDA and CuDNN version used were 9.0 and 7.1.4,

respectively.

4.1. Small N Case: E-YaleB and ORL

Data Description Both Extended Yale B (E-YaleB) [14]

and ORL [28] are face databases. Tuples representing num-

ber of classes, number of images per class, total number of

images, and size of images on E-YaleB and ORL dataset

are (38, 64, 2432, 192 × 168) and (40, 10, 400, 112 × 92),
respectively. The main difficulty of E-YaleB is known as ex-

treme illumination, whereas the difficulty of ORL is known

2https://github.com/panji1990/

Deep-subspace-clustering-networks



Layers Encoder-1 Encoder-2 Encoder-3 Self-Expressive Decoder-1 Decoder-2 Decoder-3

Deep Subspace Clustering (Total # of Parameters: 5,929,615)

Kernel Size 5 × 5 3 × 3 3 × 3 - 3 × 3 3 × 3 5 × 5

# of Channels 10 20 30 - 30 20 10

# of Parameters 260 1,820 5,430 5,914,624 5,420 1,810 251

Deep Closed-Form Subspace Clustering (Total # of Parameters: 14,991)

Kernel Size 5 × 5 3 × 3 3 × 3 - 3 × 3 3 × 3 5 × 5

# of Channels 10 20 30 - 30 20 10

# of Parameters 260 1,820 5,430 0 5,420 1,810 251

Table 1: Comparison on Network settings for Extended Yale B. DCFSC has only model parameters of 14,991

5,929,615
× 100% =

0.25% as compared to DSC.

Layers Encoder-1 Encoder-2 Encoder-3 Self-Expressive Decoder-1 Decoder-2 Decoder-3

Deep Subspace Clustering (Total # of Parameters: 160,702)

Kernel Size 5 × 5 3 × 3 3 × 3 - 3 × 3 3 × 3 5 × 5

# of Channels 5 3 3 - 3 3 5

# of Parameters 130 138 84 160,000 84 140 126

Deep Closed-Form Subspace Clustering (Total # of Parameters: 702)

Kernel Size 5 × 5 3 × 3 3 × 3 - 3 × 3 3 × 3 5 × 5

# of Channels 5 3 3 - 3 3 5

# of Parameters 130 138 84 0 84 140 126

Table 2: Comparison on Network settings for ORL. DCFSC has only model parameters of 702

160,702
× 100% = 0.44% as

compared to DSC.

as deformation and various pose. Like experiment setting

of the DSC paper [12], images of E-YaleB were resized to

48× 48, and images of ORL were resized to 32× 32.

Experiment Settings For small N cases, we used the al-

most same neural architecture used in DSC with little mod-

ification. The only difference was that we removed the self-

expressive layers from the DSC network and changed the

training algorithm from Algorithm 1 to Algorithm 2. Table

1 and Table 2 show overall comparisons of number of pa-

rameters between DSC and DCFSC for two small N cases

experiments. Note that we did not extensively search for

any other optimal training hyper-parameter or neural archi-

tecture for DCFSC.

All other settings of experiments for E-YaleB dataset and

ORL dataset were same with experiments in the DSC paper.

To measure the robustness of the DCFSC model for various

numbers of clusters, we measured performance on several

K subjects in the E-YaleB dataset. Here, number of clusters

K was {10, 15, 20, 25, 30, 35, 38} and each subject was

set to have 64 face images. For ORL dataset, number of

clusters was set to 40, just like the original subject number

of the ORL dataset. For both E-YaleB and ORL, learning

rate and matrix regularization parameter λ in the DCFSC

are set as 0.001 and 5e5, respectively. The model weights

in the DCFSC were initialized to the pre-trained weights

used in the DSC experiments. For fine-tuning stage, the

DCFSC model was trained by 50+25K epochs for each K

in E-YaleB dataset and by 700 epochs in ORL dataset.

Results and Discussions In terms of the number of pa-

rameters, the DCFSC model had only 0.25% and 0.44%,

compared with the DSC model. The module that occu-

pied most of the parameters in the DSC was the self-

expressiveness layer. DCFSC and DSC showed no signif-

icant difference in terms of memory requirements during

training. For instance, the amount of GPU memory required

in training of DSC on ORL dataset was 1,022MB, whereas

in DCFSC it was 942MB. Therefore, in small N cases, it is

hard to say that DCFSC has a great advantage in learning

procedure over DSC.

Benchmark results of small N cases are shown in Ta-

ble 3 and Figure 1a. For various number of clusters in the

E-YaleB dataset, the DCFSC showed mean of clustering er-

ror rate of 6.13%. This was significantly worse than DSC’s

mean error rate (2.67%), but it was much better than other

hard baselines (11.64% or higher). On the ORL dataset,

DCFSC resulted in an error rate of 14.8%, which was

slightly worse than 14.0% of DSC (but not significantly).

In short, in the small N cases, the DCFSC showed almost

equal or worse performance than the DSC on nearly the

same settings as the experiment in the DSC paper. However,



Method LRR LRSC SSC
AE+

SSC
KSSC

SSC-

OMP
EDSC

AE+

EDSC
DSC DCFSC

10 subjects

Mean 22.22 30.95 10.22 17.06 14.49 12.08 5.64 5.46 1.59 5.72

Median 23.49 29.38 11.09 17.75 15.78 8.28 5.47 6.09 1.25 5.63

15 subjects

Mean 23.22 31.47 13.13 18.65 16.22 14.05 7.63 6.70 1.69 5.33

Median 23.49 31.64 13.40 17.76 17.34 14.69 6.41 5.52 1.72 5.10

20 subjects

Mean 30.23 28.76 19.75 18.23 16.55 15.16 9.30 7.67 1.73 4.93

Median 29.30 28.91 21.17 16.80 17.34 15.23 10.31 6.56 1.80 4.92

25 subjects

Mean 27.92 27.81 26.22 18.72 18.56 18.89 10.67 10.27 1.75 4.92

Median 28.13 26.81 26.66 17.88 18.03 18.53 10.84 10.22 1.81 5.00

30 subjects

Mean 37.98 30.64 28.76 19.99 20.49 20.75 11.24 11.56 2.07 5.35

Median 36.82 30.31 28.59 20.00 20.94 20.52 11.09 10.36 2.19 5.52

35 subjects

Mean 41.85 31.35 28.55 22.13 26.07 20.29 13.10 13.28 2.65 5.93

Median 41.81 31.74 29.04 21.74 25.92 20.18 13.10 13.21 2.64 5.96

38 subjects

34.87 29.89 27.51 25.33 27.75 24.71 11.64 12.66 2.67 6.13

Table 3: Clustering error (in %) on Extended Yale B. The lower the better. Lower is better. The bold and underlined text

refer to the 1st and 2nd ranked score, respectively.

(a) ORL (b) COIL-100

Figure 1: Subspace clustering error on ORL and COIL100. Methods are sorted in descending order of error. Lower is better.

For both benchmarks of DCFSC, mean of ten trails is reported.



Deep Subspace Clustering (Total # of Parameters: 51,842,600)

Layers Encoder-1 Self-Expressive Decoder-1

Kernel Size 5 × 5 - 5 × 5

Stride Size 2 - 2

# of Channels 50 - 50

# of Parameters 1,300 51,840,000 1,300

Deep Closed-Form Subspace Clustering (Total # of Parameters: 81,913)

Layers Enc-1 Enc-2 Enc-3 Enc-4 Enc-5
Self-

Expressive
Dec-1 Dec-2 Dec-3 Dec-4 Dec-5

Kernel Size 5 × 5 3 × 3 3 × 3 3 × 3 1 × 1 - 1 × 1 3 × 3 3 × 3 3 × 3 5 × 5

Stride Size 1 2 1 2 1 - 1 2 1 2 1

# of Channels 24 24 48 48 72 - 72 48 48 24 24

# of Parameters 696 5,280 10,560 20,928 3,528 0 3,648 20,928 10,464 5,280 601

Table 4: Comparison on Network settings for COIL-100. DCFSC has only model parameters of 81,913

51,842,600
× 100% = 0.16%

as compared to DSC. Note that on the architecture used in DCFSC batch normalization layers [9] were used except for the

last layer of the encoder and decoder.

the performance of DCFSC was dominant over all other ex-

isting baselines except DSC. The reason that DCFSC was

inferior in performance to DSC might be that the neural ar-

chitecture was not deep enough to yield the potential self-

expression directly from data. Therefore, there still is room

for improvement in DCFSC performance, like searching

for an optimal architecture or hyper-parameter. These re-

sults, however, still show that convergence is experimen-

tally guaranteed even in small N cases.

4.2. Large N Case: COIL-100

Data Description For large N case, COIL-100 dataset

[17], which is a object database, was used to measure the

performance of object clustering. On COIL-100 dataset,

number of classes, number of images per class, total num-

ber of images, and size of images are 100, 72, 7200, and

128 × 128, respectively. The main difficulties of dealing

with COIL-100 dataset are known as deformation and rota-

tion. For consistency with previous studies [3, 12], images

of COIL-100 were resized to 32× 32.

Experiment Settings The model architecture, used in

the original DSC work [12] for COIL-100 dataset, was a

very shallow auto-encoder structure consisting of one en-

coder layer, a self-expressive layer, and one decoder layer.

This was because the number of parameters that the self-

expressive layer should retrain in case of large N was too

huge to adopt deeper neural architecture due to memory

problems. We used much deeper auto-encoder architecture

to show that DCFSC could have tremendous advantages in

this situation. Table 4 shows the difference between model

architectures of DSC and DCFSC, used in the experiments.

Unlike DSC, five encoder layers and five decoder layers

were used in DCFSC.

The number of clusters was set to 100, which was equal

to the number of subjects in COIL-100. Learning rate and

matrix regularization parameters were set to 0.001 and 10,

respectively. While DSC had pre-trained model weights,

the architecture of DCFSC in this experiment did not have

such pre-trained model weights because new architecture

was designed for training the DCFSC model. Thus, in the

large N case experiment DCFSC was trained from scratch

without pre-training. Because the DCFSC model did not

use pre-training weights, it was trained for 175 epochs,

which was longer than 120 epochs used in the DSC. All

other experiment settings were same as in DSC’s ones.

Results and Discussions Most of the model parameters

of DSC, which were used for large N case experiment, be-

longed to the self-expressive layer, and this tendency was

much greater than in small N cases. This was because size

of the self-expressive layer is proportional to the square

of dataset size. In reality, the DSC model for COIL-100

required huge amount of self-expressive layer parameters

(7, 200× 7, 200 = 51, 840, 000). By storing these parame-

ters in double precision, simply maintaining these parame-

ters required about 3.2 GB of memory space. Furthermore,

about 8.6GB of GPU memory was required to train the very

shallow COIL-100 model presented in the DSC paper. This

drawback of DSC made it be not able to use deeper archi-

tecture. Therefore, performance constraint of DSC on large

dataset was practically inevitable. Our DCFSC is free from

these limitations of DSC model. Number of parameters of

the auto-encoder used in DCFSC was about 32 times of the

DSC auto-encoder. Despite using much deeper architecture

than the one used in the DSC, the GPU memory require-



ment to train it was 10.8GB, which was only 26% higher

than the DSC architecture. This means that the DCFSC can

actually use a deeper architecture than the DSC.

Figure 1b shows several benchmark results on COIL-100

dataset. Our DCFSC model showed a clustering error of

27.3% and outperformed all other models including DSC,

without pre-training. These results reveal the performance

advantage of DCFSC on larger dataset. In addition, they

implies that deep learning based subspace clustering still

has room to benefit from learning richer latent represen-

tations through deeper architecture. It is also noteworthy

that performance of the DCFSC in this experiment was re-

ported to be comparable with 26.6%, which was reported

in the study [37] combining more sophisticated methodolo-

gies such as self-supervised learning with the DSC. Since

DCFSC is easy to combine with the more advanced mod-

els [41, 37, 40, 39] of DSC, there is possibility of further

enhancing the performance of these modified models with

deeper neural architecture.3

4.3. Effect of λ: Case of COIL-100

We further investigated the effect of selection of matrix

regularization parameter λ on performance of DCFSC. This

is to see how sensitive DCFSC performance is to the choice

of λ, or how robust it is. For benchmarking, performances

were reported by changing λ from 1 to 1e6 in multiples of

10 in the same settings as the COIL-100 dataset (Section

4.2).

Figure 2 shows variation of subspace clustering error in

COIL-100 with different selection of λ. It can be seen that

choosing λ from 1 to 100 guaranteed better performance

than DSC, and selection from 1 to 10 gave the best per-

formance. Conversely, too large λ (≥ 1e3) degenerated

performance. On the other hand, with fine-tuning the pre-

trained model in small N cases (Section 4.1), a relatively

large λ (5e5) was the appropriate choice for stable conver-

gence. Therefore, the effect of λ selection on performance

and the following optimal λ selection method need to be

investigated further in terms of size of dataset, presence or

absence of pre-training, and so on.

5. Conclusions

In this paper, we firstly propose a variant of the existing

DSC method, which does not require retaining parameters

of self-expressive layer. We call our method Deep Closed-

Form Subspace Clustering (DCFSC) because it is moti-

vated by recently proposed closed form of shallow auto-

encoder model. Our DCFSC has advantages in methodolog-

ical simplicity and memory efficiency compared to DSC.

3It is also remarkable that in ’Deep Adversarial Subspace Clustering’

paper [41] the proposed model could not be used to try experiment in

COIL-100, even with a very shallow auto-encoder model. It was also due

to a memory shortage problem.

Figure 2: Effects of λ on clustering performance of COIL-

100 experiments. Performance of DSC baseline is shown as

red. For all benchmarks, mean of ten trials is reported.

Experiments on several benchmarks give two conclusions

with regard to DCFSC. First, the DCFSC model could be

trained and converged despite the disadvantage of much less

model parameters even in small datasets under the same set-

tings as DSC. Second, in large dataset, DCFSC could take

advantage of memory and eliminate the performance limita-

tions of DSC. Considering these strengths, we believe that

DCFSC can be regarded as a model remedying the short-

comings of the existing DSC.
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