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Abstract

Complete moving object detection plays a vital role in

many applications of computer vision. For instance, depth

estimation, scene understanding, object interaction, seman-

tic segmentation, accident detection and avoidance in case

of moving vehicles on a highway. However, it becomes

challenging in the presence of dynamic backgrounds, cam-

ouflage, bootstrapping, varying illumination conditions,

and noise. Over the past decade, robust subspace learn-

ing based methods addressed the moving objects detection

problem with excellent performance. However, the moving

objects detected by these methods are incomplete, unable to

generate the occluded parts. Indeed, complete or occlusion-

free moving object detection is still challenging for these

methods. In the current work, we address this challenge

by proposing a conditional Generative Adversarial Network

(cGAN) conditioned on non-occluded moving object pixels

during training. It therefore learns the subspace spanned by

the moving objects covering all the dynamic variations and

semantic information. While testing, our proposed Com-

plete cGAN (CcGAN) is able to generate complete occlu-

sion free moving objects in challenging conditions. The

experimental evaluations of our proposed method are per-

formed on SABS benchmark dataset and compared with

14 state-of-the-art methods, including both robust subspace

and deep learning based methods. Our experiments demon-

strate the superiority of our proposed model over both types

of existing methods.

1. Introduction

Complete moving object detection is a fundamental step

in many computer vision based applications such as hu-

man activity analysis [38], smart cities traffic monitoring

[2, 19], surveillance, and security [41, 34]. However, the

aspect which makes moving object detection diverse is the

presence of many challenging conditions like occlusion,

bootstrapping, camouflage, illumination variations, and dy-
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Figure 1. Visual illustration of CcGAN for complete moving ob-

ject detection on SABS benchmark dataset [5] in comparison with

ground truth information and two state-of-the-art methods a deep

learning based : DCP [32] and a robust subspace learning based:

DECOLOR [42]. It can be seen that only our proposed CcGAN

has successfully detected moving object even if its occluded by

background information however, other two compared methods

have shown performance degradation.

namic background. To address these problems, state-of-the-

art algorithms based on Robust Principal Components Anal-

ysis (RPCA) have been applied which decompose a data

matrix into a low-rank component of background and sparse

component of moving objects. These algorithms have

shown good performance over the past decade [16, 14, 3].

RPCA methods decompose an input matrix into a low-

rank component, which corresponds to the complete back-

ground, from partial observations. While the sparse compo-

nent constitutes irregular behavior of moving objects. Many

RPCA based algorithms have been successfully employed

for moving object detection [4, 9, 17, 22, 42]. Though,

problems associated with the sparse component need to be

handled such as each element of moving object is consid-

ered independently which results in incomplete moving ob-

ject regions. Also, in the case of dynamic backgrounds, the

sparse component tends to be scattered. RPCA based meth-

ods cannot effectively handle cluttered background or very

small sized moving objects. Moreover, for camouflaged

moving objects, existing methods show degraded perfor-



mance. These limitations of RPCA based methods can be

solved by exploiting deep neural networks because robust

deep autoencoders are capable of achieving occlusion free

complete moving object detection [36, 25, 24].

In order to estimate the occlusion free complete mov-

ing object we need a discriminative model which should

have an efficient encoding properties along with a gener-

ative model to reconstruct the occluded missing informa-

tion in the moving objects. Therefore, we present a solu-

tion based on conditional Generative Adversarial Network

(cGAN) [11] with an architecture of robust deep autoen-

coder trained with occlusion free moving object detection

scenario. Our proposed model Complete cGAN (CcGAN)

is trained in the presence of different challenging environ-

ments. The occlusion free training of CcGAN aims to learn

the spanned subspace by covering all the semantic informa-

tion of the scene with dynamic background information and

complete moving object detection which has some similar-

ities with RPCA mechanism [7].

It can be seen in Figure 1 that there is a moving object

in the scene, a car on the road, as shown by the ground-

truth information. Everything else in the scene belong to

the background information including dynamic movements

of the tree as specified by SABS benchmark dataset [5].

It poses challenge to many state-of-the-art robust subspace

learning methods. The reason behind this fact is that, these

methods [42, 6] work on the assumptions of RPCA to han-

dle outliers in the input data matrix with a constraint that

background should be static and foreground/moving objects

should be dynamic. In many practical cases this assump-

tions gets violated resulting in degraded performance. Fig-

ure 1 shows that the moving object is occluded by the tree

belonging to background information. In contrast to the ex-

isting methods, our proposed CcGAN is able to reconstruct

complete moving object.

2. Related Work

Over the past decade many research studies have been

conducted to address the problem of moving object de-

tection with different challenging conditions in complex

scenes [8, 26, 4, 31, 28, 30]. The most classical and state-

of-the-art algorithms for moving object detection are based

on robust subspace learning [6, 23, 27, 22, 21]. For in-

stance, recently, Javed et al. [15] proposed a method called

MSCL based on the RPCA methodology by adding con-

straints to handle Spatio-temporal information of dynamic

as well as static background and moving objects informa-

tion. Although RPCA based methods show good perfor-

mance, the limitation of offline data processing and high

computational cost makes them unsuitable for real-time ap-

plications. Wipf et al. [7] presented an interesting study

relating classical robust subspace learning approaches with

deep learning methods. It demonstrates that Variational au-

toencoders can be understood as the natural evolution of

RPCA, which has the capability of learning nonlinear man-

ifolds of unknown dimension cloak by entire data corrup-

tions.

However, recently, supervised as well as unsupervised

robust deep learning based methods [1, 37, 10], have shown

significantly high-performance, including GANs in many

applications. For instance, Wang et al. [35] presented novel

defensive mechanism in GAN framework. It works by mod-

eling the adversarial noise via a generative network, trained

jointly with the discriminative network for classification as

a minimax game. This technique presents the robustness

of neural networks in GAN against black-box attacks. Al-

though GAN is originally unsupervised learning based al-

gorithm, nonetheless their supervised version, conditional

GANs have shown momentous performance over the past

few years. Kaneko et al. has recently proposed A robust

cGAN in which a noise transition model is incorporated so

that it can learn a noise-free/clean labeled conditional gen-

erative distribution even if training labels are noisy [18].

Most of the existing moving object detection algorithms

try to label input image pixels as moving objects or back-

ground. In the current manuscript we try to estimate com-

plete moving objects despite occlusions. For this purpose

we propose a conditional GAN as described in the follow-

ing section.

3. Proposed Methodology

Our proposed method is based on conditional Generative

Adversarial Networks (cGAN) for complete moving object

detection, as shown in figure 2. The details of the training

and testing of Complete cGAN (CcGAN) is discussed in the

following sections.

3.1. CcGAN Model

In a classical GAN, there are two neural networks, a dis-

criminator D and a generator G, competing with each other.

The purpose of the generator network is to map a random

noise sample z to an output y by generating a 2d image sam-

ple G(z), i.e., G(z) : z �→ y. Whereas the discriminator

network maps the input given to it into a single value D(·)
which is considered as a probability of whether it belongs

to training data or generated data by generator network. In

conditional GAN, the generator learns mapping from ran-

dom noise sample z and observed image sample x to an

output image y i.e., G(z) : {z, x} �→ y. Similar to GAN,

cGAN is also trained by using a two-player minimax game:

min
G

max
D

Φ1(G,D) = Ex,y∼pdata(x,y)[log(D(x, y))]

+Ex∼pdata(x),z∼pz(z)[log(1−D(x,G(x, z)))].
(1)

During training, the discriminator network aims to mini-

mize the probability of classifying generated data as real



data. Nonetheless, the objective of the generator network is

to fool the discriminator by generating as similar as possi-

ble to training samples. Previously proposed approaches

[13, 32] have suggested that cGAN training can be im-

proved by updating it with a more traditional loss such as

L1 or L2 loss. Since we aim to improve the output of gener-

ator, therefore, using L1 distance rather than L2 along with

the adversarial loss encourages less blurring:

Φ2(G) = Ex,y∼pdata(x,y),z∼pz(z)[||y −G(x, z)||1]. (2)

In this way discriminator network purpose does not change

but generator network has to generate samples similar to

training data by minimizing not only its adversarial loss but

also the L1 loss between its generated samples and actual

training data. The final objective function is formulated as:

F = argmin
G

max
D

Φ1(G,D) + δΦ2(G), (3)

where δ is weight term for L1 loss working with conven-

tional adversarial loss of cGAN.

3.2. CcGAN Discriminator Network Architecture

The discriminator network of our proposed CcGAN

takes input of size 256 × 256 × 3 pixels and has four con-

volutional downsampling layers in which the 1st layer gen-

erates 64 feature maps, and the 4th layer generates 512 fea-

ture maps with size 30× 30. Randomly initialized weights

of 3 × 3 spatial filters are applied in all convolutions by a

stride of 2. Furthermore, the convolutions are followed by

leakyReLU activation function. The last layer of CcGAN is

a fully connected layer which transforms the features map

to a 1d vector followed by a Sigmoid function.

3.3. CcGAN Generator Network Architecture

The generator network of our proposed CcGAN is an

Unet encoder-decoder network with skip connections [29]

comprising of four downsampling layers each followed by

a convolutional operation. The decoder has four upsam-

pling layers followed by a deconvolutional operation to re-

construct an output image sample with the same size as the

input image. Similar to [13], the generator network of our

proposed CcGAN has overall eight convolutional layers in

which the last layer of encoder generate 512 feature maps,

and the last layer of decoder generates 64 feature maps. The

decoder architecture is structured similar to the encoder ex-

cept deconvolutional operation in reverse order for upsam-

pling. The weights are randomly initialized in all the layers

with ReLU activation functions except the last deconvolu-

tion layer that generates our occlusion free moving objects

by using Tanh activation function.

4. Implementation of CcGAN

Our proposed method CcGAN is a conditional GAN

composed of two different neural networks with architec-
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Figure 2. Visual representation of training and testing of or pro-

posed CcGAN.

tures explained in sections 3.2 and 3.3. The training data of

CcGAN is fixed at dimension 256×256×3 with input image

containing the whole scene conditioned on its occlusion free

corresponding moving objects segmentation. The model is

optimized via Adam [20] with a momentum β = 0.5 and a

learning rate of 0.0002 for 200 epochs. The empirical value

of δ mentioned in eq (3) is set to be 100. The random flip-

ping of training images also does data augmentation during

training. For testing occluded data is given to the trained

model so that it can detect occlusion free complete moving

objects.

5. Experiments

We have evaluated our proposed CcGAN on a syntheti-

cally created dataset SABS1 [5] with seven video sequences

containing occluded moving objects in different challenging

conditions: ‘Basic’, ‘Noisy Night’, ‘Light Switch’, ‘Dark-

ening’, ‘Camouflage’, ‘No Camouflage’ and ‘Bootstrap’.

For the training of the CcGAN model, we have used 70%

of SABS dataset from each category and 30% for testing in

the evaluation of the scene-specific model. We have com-

pared our method with 14 state-of-the-art-methods in which

9 methods are robust subspace learning including MSCL

[15], DECOLOR [42], LSD [21], GRASTA [12], TVRPCA

[6], 3TD [22], BMTDL [31], MoG-RPCA [39] and BRTF

[40], 4 methods are deep learning including ForeGAN [33],

1http://www.vis.uni-stuttgart.de/hoeferbn/bse/
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Figure 3. Visual illustration of CcGAN for complete moving ob-

ject detection.

DCP [32], DeepBS [1] and CNN [37] and one method is

color model, LRGB [28]. Note that, since we only used

30% of SABS dataset per category for testing, in order to

do a fair comparison with other state-of-the-art methods,

we have used the same 30% dataset to evaluate all meth-

ods. The evaluation is done by using F1 measure:

Pr =
TP

TP + FP

, Re =
TP

TP + FN

, (4)

F1 =
2(Pr ·Re)

Pr +Re

. (5)

The quantitative measure we used to estimate the occlusion

free results is Jaccard similarity coefficient also known as

Intersection over Union (IOU), calculated by:

IOU =
TP

TP + FP + FN

, (6)

where FN is False Negatives, FP is False Positives, TP is

True Positives, Pr is precision and Re is Recall. Another

metric we used to estimate complete moving object detec-

tion is ‘Mean Sum of Square Error or MSSE‘ which is cal-

culated by following:

MSSE =
1

mnf

f∑

k=1

m−1∑

i=0

n−1∑

j=0

[GT (i, j, k)−O(i, j, k)]2,

(7)

where GT ∈ Rm×n is the ground truth information, O ∈
Rm×n is the estimated output which is complete moving

object detection and f is the total number of frames in a

test sequence. For more efficient complete moving object

detection empirical value of MSSE should be low as shown

in table 3. The details of the results evaluation per category

is discussed as follows:

Basic category in SABS dataset, is defined with an ar-

tificially created road scene where the cars are considered

to be the only moving objects while the rest of the infor-

mation is considered as background as shown in figure 3.

F1 measure evaluated on category basic as presented in ta-

ble 1, which shows that our proposed CcGAN has achieved

F1 measure (0.92) which is a significantly high score of as

compared to all state-of-the-art methods. While table 2 also

shows that our proposed CcGAN has achieved IOU score

(0.86), highest among all the compared methods. Visual re-

sults presented in figure 3 and 4 shows that even if some

background information occludes the moving objects, our

proposed method can detect complete moving objects.

Noisy Night category in SABS dataset is also defined

with an artificially created road scene, as shown in figure 4

in a noisy environment with low illumination. The state-of-

the-art robust subspace learning based method DECOLOR

[42] has achieved F1 measure (0.84), highest in this cate-

gory as shown in table 1, and our proposed CcGAN have

achieved F1 measure (0.82), which is second-best score but

with a minimal difference. However, for the case of occlu-

sion free complete moving object detection, our proposed

CcGAN has achieved best, IOU score (0.73) and MSSE

score (2.20) as compared to all methods.

Light Switch category in SABS dataset is also defined

with same artificially created road scene, as shown in fig-

ure 4 with dynamic conditions in a low illumination en-

vironment. Our proposed CcGAN have achieved best F1

measure (0.80) and IOU score (0.71) while robust subspace

learning based method MSCL [16] and TVRPCA [6] has

achieved the second best score.

Darkening category in SABS dataset, is also defined in

a similar way as artificially created road scene as shown in

figure 4 with dynamic high to low illumination environment

including occluded moving objects. Our proposed CcGAN

have also achieved the best F1 measure (0.85) while Fore-

GAN [33] has achieved the second best score. Nonethe-

less, our proposed method has also achieved the best IOU

score and MSSE in this category too, thus achieving com-

plete moving object detection, as shown in table 2 and 3. A

visual illustration is presented in figure 3 of occlusion free



Categories CcGAN ForeGAN [33] DCP [32] MSCL [15] LRGB [28] DECOLOR [42] LSD [21] GRASTA [12] TVRPCA [6] 3TD [22] BMTDL [31] MoG-RPCA [39] BRTF [40] CNN [37] DeepBS [1]

Basic 0.92 0.79 0.78 0.82 0.79 0.78 0.73 0.76 0.77 0.75 0.78 0.80 0.41 0.87 0.90

Noisy Night 0.82 0.65 0.59 0.75 0.75 0.84 0.72 0.51 0.59 0.76 0.59 0.79 0.54 0.71 0.80

Light Switch 0.80 0.59 0.42 0.79 0.24 0.66 0.62 0.36 0.41 0.53 0.32 0.57 0.56 0.64 0.66

Darkening 0.85 0.80 0.65 0.82 0.77 0.51 0.70 0.67 0.61 0.59 0.67 0.68 0.60 0.63 0.70

Camouflage 0.81 0.78 0.71 0.80 0.76 0.60 0.75 0.59 0.80 0.64 0.78 0.75 0.30 0.80 0.81

No Camouflage 0.84 0.74 0.72 0.79 0.81 0.84 0.80 0.63 0.76 0.70 0.79 0.82 0.60 0.75 0.80

Bootstrap 0.84 0.77 0.71 0.84 0.74 0.59 0.70 0.66 0.71 0.65 0.67 0.70 0.38 0.65 0.59

Average 0.84 0.73 0.65 0.80 0.69 0.69 0.71 0.59 0.66 0.66 0.66 0.73 0.49 0.72 0.75

Table 1. Quantitative comparison of CcGAN on SABS dataset with twelve state-of-the-art methods using F1-measure. The first and second

best performing methods are shown in red and blue colors, respectively.

Categories CcGAN ForeGAN [33] DCP [32] DECOLOR [42] TVRPCA [6] 3TD [22]

Basic 0.86 0.69 0.68 0.65 0.59 0.59

Noisy Night 0.73 0.62 0.54 0.42 0.49 0.48

Light Switch 0.71 0.50 0.37 0.45 0.51 0.50

Darkening 0.77 0.64 0.55 0.67 0.55 0.57

Camouflage 0.72 0.63 0.60 0.62 0.51 0.58

No Camouflage 0.76 0.68 0.60 0.61 0.58 0.55

Bootstrap 0.74 0.62 0.57 0.54 0.53 0.51

Average 0.75 0.62 0.55 0.56 0.53 0.54

Table 2. Quantitative comparison of CcGAN on SABS dataset

with five state-of-the-art methods using IOU. The first and sec-

ond best performing methods are shown in red and blue colors,

respectively.

Categories CcGAN ForeGAN [33] DCP [32] DECOLOR [42] TVRPCA [6] 3TD [22]

Basic 1.91 2.89 3.11 2.91 5.72 3.01

Noisy Night 2.20 2.93 4.06 3.10 8.27 3.27

Light Switch 1.24 6.33 5.10 3.50 6.71 3.44

Darkening 1.75 1.93 3.17 2.77 2.00 4.15

Camouflage 0.96 1.03 3.44 4.12 2.95 3.91

No Camouflage 0.78 0.80 4.60 5.82 1.19 8.90

Bootstrap 1.46 1.87 3.47 5.17 1.85 5.62

Average 1.47 2.54 3.85 3.91 4.09 4.61

Table 3. Quantitative comparison of CcGAN on SABS dataset

with five state-of-the-art methods using MSSE. The first and sec-

ond best performing methods are shown in red and blue colors,

respectively.

complete moving object detection by our proposed CcGAN.

Camouflage category in SABS dataset is also same pre-

sented with the scene as shown in figure 4 with dynamic

background environment, including occluded camouflage

moving objects. Our proposed CcGAN have also achieved

best F1 measure (0.81), IOU score (0.72) and MSSE score

(0.96) while robust subspace learning based method TVR-

PCA [6] have achieved a second-best score with a minimal

difference.

No Camouflage category in SABS dataset is the same

as previous category (figure 4) with similar dynamic back-

ground environment including occluded moving objects.

Table 1 shows that our proposed CcGAN and robust

subspace learning based method DECOLOR [42] have

achieved equal best F1 measure (0.84) as compared to all

methods. However, for occlusion free complete moving ob-

ject detection, our proposed CcGAN has achieved best IOU

score (0.76) and MSSE score (0.78) as presented in table 2.

Bootstrap category in SABS dataset is also same (figure

4 and 3) with similar dynamic background including oc-

cluded moving objects but in bootstrapped scenario. Note

that the bootstrap is only related to background information,

so it means that it does not affect our proposed CcGAN. In

this category also our proposed CcGAN and MSCL [16]

have achieved equal best F1 measure (0.84) as compared to
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Cc
G

A
N

3T
D

R
OL

OCE
D

TV
RP

CA
Fo

re
G

A
N

D
CP

In
pu

t
G

T

Figure 4. Visual comparison of CcGAN with five state-of-the-

art methods and ground truth information on seven categories of

SABS dataset, where NN is Noisy Night, LS is Light Switch,

Camo is Camouflage, and No Camo is No Camouflage.

all state-of-the-art methods. While in case of IOU our pro-

posed CcGAN has achieved the highest score as compared

to all methods.

5.1. Comparative Analysis of CcGAN with Robust
Subspace Learning

As mentioned in table 1 that on average, our proposed

CcGAN has achieved best F1 measure (0.84), while a

subspace learning based method MSCL [16] has achieved

second-best score as compared to all state-of-the-art meth-

ods. It is due to the fact that MSCL has incorporated the

spatial and temporal sparse robust subspace clustering into

the basic framework of RPCA. Thus, these spatio-temporal

constraints embedded with the RPCA objective function en-

forces the background model to be spatially and temporally

consistent, on linear as well as nonlinear manifolds. There-

fore, it ensures that any dynamic background information

should not be included in the sparse components of the input

data matrix, which are the moving objects. However, due to

unavailability of MSCL code, we could not compute its IOU



and MSSE scores. Furthermore, table 2 shows that our pro-

posed CcGAN has achieved best IOU score, and TVRPCA

[6] has achieved a second-best score in a challenging cate-

gory ‘Light Switch’ containing varying illumination condi-

tions. The reason behind this fact is TVRPCA works on the

assumption that the dynamic background is sparser than the

moving objects with a smooth trajectory. As video sequence

in TVRPCA is decomposed into low-rank static background

information, a sparse and smooth moving objects informa-

tion, and sparser dynamic background information. It can

deal with dynamic background variations and perform mov-

ing object detection, as shown in figure 4; however, occlu-

sion free moving object is still a challenge for TVRPCA.

On the other hand, our proposed CcGAN method can not

only detect moving objects successfully but also detect oc-

clusion free complete moving objects. Subsequently, in the

case of MSSE, our proposed CcGAN has also achieved the

best score, and TVRPCA has again achieved the second best

score in category ‘Bootstrap’ for the same reason mentioned

previously. Moreover, for category ‘Light Switch’, CcGAN

has again achieved the best score of MSSE and another ro-

bust subspace learning based method 3TD [22] has achieved

the second best MSSE score. Since 3TD is designed to

address the problem of simultaneous turbulence mitigation

and moving object detection, so it decomposes the data ma-

trix into a three-term low-rank matrix with components: the

object, the background, and the turbulence. Therefore, oc-

clusion free moving object detection is also challenging for

3TD. For instance, in category ‘Bootstrap’ as shown in fig-

ure 3 the moving object, the red car in the scene, is occluded

by the tree, which is part of background information. The

test input contains missing or occluded regions of moving

objects, but CcGAN can generate the occluded regions thus

achieving occlusion free complete moving object detection,

on the other hand, it poses a significant challenge to robust

subspace learning based method TVRPCA as shown in fig-

ure 3 and 4.

6. Conclusion

In this study, we addressed the problem of recovering

complete moving objects in the presence of occlusions in

complex scenes. Robust subspace learning based methods

have also been used for moving object detection, though

these methods cannot recover the occluded parts of these

objects. For this purpose, we proposed CcGAN, which is

a generative adversarial network conditioned on the com-

plete objects during training. Therefore, the proposed GAN

not only detect the moving objects but also estimates the

occluded part of these objects. It is because, during train-

ing, CcGAN learns the subspace spanned by the moving

objects covering all the dynamic changes and semantic in-

formation. It can, therefore, successfully generate complete

moving objects at test time. The evaluation of the proposed

CcGAN is done on SABS benchmark dataset for occlusion-

free complete moving object detection and compared with

state-of-the-art methods. The proposed CcGAN has shown

excellent performance compared to the existing robust sub-

space learning and deep learning based methods.
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