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Abstract

Visual object tracking is an important step for many com-

puter vision applications. Visual tracking becomes more

challenging when the target object observes severe occlu-

sion, lighting variations, background clutter, and deforma-

tion difficulties to name a few. In the literature, low-rank

matrix decomposition methods have shown to be a poten-

tial solution for visual tracking in many complex scenar-

ios. These methods first arrange the particles of the target

object in a 2-D data matrix and then perform convex op-

timization to solve the low-rank objective function. How-

ever, these methods show performance degradation in the

presence of the aforementioned challenges. Because these

methods do not consider the intrinsic structure of the target

particles, therefore, the object loses its spatial appearance

or consistency. To address these challenges, we propose a

new low-rank tensor decomposition model for robust object

tracking. Our proposed low-rank tensor tracker considers

the multi-dimensional data of target particles. We employ

the recently proposed tensor-tensor product-based singu-

lar value decomposition and a new tensor nuclear norm to

promote the intrinsic structure correlation among the tar-

get particles. Experimental evaluations on 20 challenging

tracking sequences demonstrate the excellent performance

of the proposed tracker as compared with state-of-the-art

trackers.

1. Introduction

The visual object tracking is an important task for many

computer vision applications comprising video surveillance

[2], human activity recognition [49], robotics [44], and aug-

mented reality [22]. The main goal is to estimate the posi-

tion of the target object between consecutive video frames

given its bounding box position in the first frame. Visual

tracking becomes more challenging when a target object

undergoes varying lighting conditions, background clutters,

object deformation, in plane rotation, out of plane rota-

tion, scale variation, occlusion, fast motion, and motion blur
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Figure 1. Comparisons of the proposed LLT tracker with dif-

ferent state-of-the-art subspace representation-based trackers in-

cluding LST [21], LRT [58], IVT[43], l1 tracker [40], RTCT

[55], RSST [60], and MTT [57] on (a) CarScale, (b) Woman,

(c) MotorRolling, and (d) Ironman sequences taken from

OTB50 dataset [51]. These sequences present severe tracking dif-

ficulties of scale variations in (a) and (c), occlusion in (b), fast mo-

tion in (c), motion blur and illumination variation in (d). The pro-

posed LLT tracker consistently performs well against these chal-

lenges.

[52]. In the literature, many trackers have been proposed to

handle object tracking problem [7,28,33,43,46,52,53,59].

A number of potential datasets and survey studies have

also been contributed for object tracking [10, 26, 27, 30, 32,

46, 51–53]. However, visual tracking is still a challenging

problem because of the aforementioned tracking difficulties

[52].

Among the most popular tracking methods such as those

presented in [32, 52], subspace learning trackers have en-

joyed a great success in the past. David et al. proposed

subspace learning tracker in which a low-dimensional sub-

space corresponding to target object is estimated using prin-

cipal component analysis [43]. The tracker exhibited ex-

cellent performance however, due to the noise and gross

corruption in the target object, the tracker caused perfor-

mance degradation in the presence of occlusion since, the

target appearance was not fully addressed (Figs. 1 (a)-(d)).

To handle this challenge, many sparse representation-based

trackers are proposed [1, 15, 21, 33, 34, 40, 41, 55, 57, 60].

These trackers learn the target appearance based on the lin-

ear combination of the dictionary atoms. For instance, Jia et

al. proposed a local sparse representation tracker whereby

each patch inside the target region is represented by a sparse



linear combination of the dictionary elements [21]. En-

couraging results were presented in sparse representation-

based trackers [1, 15, 21, 34, 41] for many complex scenar-

ios however some of these trackers showed performance

degradation in the presence of scale variations and fast mo-

tion (Figs. 1 (a)-(d)). To handle these issues, global and

joint sparse representation trackers have also been proposed

which encode the spatial intrinsic structure of the target ob-

ject [33, 40, 55, 57, 60].

Many trackers have also considered the correlations

among the target particles [20, 54, 56, 58, 62]. For example,

Zhang et al. proposed low-rank sparse tracker in which the

global low-rank component is estimated using nuclear norm

convex regularization among the target particles [58]. The

temporal consistency and sparse representation assumption

are also incorporated for consistent object tracking. Al-

though good results are reported over many complex track-

ing sequences the tracker loses target in the presence of fast

motion and motion blur sequences (Figs. 1 (a)-(d)). More-

over, time complexity also remained the major burden for

these trackers because of the batch optimization. To ad-

dress this lack, Zhang et al. proposed an online formulation

which processes each particle sample per time instance [54].

Javed et al. recently proposed structural low-rank tracker

where the Laplacian matrices were enforced into the low-

rank component to promote the spatial and temporal struc-

ture of the target [20]. All these subspace-based trackers re-

ported good results. However, the vectorization of the target

particles in these methods disregards the intrinsic structural

information leading to an implicit loss of the spatial coher-

ence among the target objects. We hypothesize that vector-

ization scheme is adverse to robust tracking in the presence

of the tracking challenges mentioned earlier, and therefore

accountable for the performance degradation.

To address these challenges, we propose a new tracker,

dubbed as Low-rank Tensor Tracking (LTT). The proposed

tracker processes multidimensional input data comprising

target particles for visual tracking. We first create a 3-D

input data matrix of n target particles in the t-th frame us-

ing particle sampling technique [47]. We observe that there

exists a correlation among all the tensor modes of the tar-

get particles. This multi-dimensional correlation reveals the

intrinsic low-rank structure which is useful for modeling

the target object appearance consistency. We employ re-

cently proposed tensor nuclear norm based on tensor-tensor

product and tensor singular value decomposition in the fast

Fourier transform domain [16, 35, 36]. This tensor nuclear

norm regularizes all tensor modes and hence estimates the

low-rank tensor in a mixture of multiple subspaces effec-

tively. To capture the final tensors, the proposed tracker uses

an average pooling operation of folded tensors in all modes.

Our proposed LTT tracker incorporating multi-dimensional

spatial constraints into the objective function allows to track

objects in many complicated tracking scenarios, even when

the appearance of the target object varies because of occlu-

sion, fast motion, and motion blur which is quite difficult for

matrix-based subspace trackers (Figs. 1 (a)-(d)). We solve

our proposed objective function using Alternating Direction

Method of Multiplier (ADMM) optimization scheme with

convergence guarantee [37]. Experiments on 20 complex

tracking sequences demonstrate that the proposed tracker

achieves the excellent performance as compared to state-of-

the-art trackers including matrix-based low-rank trackers.

To the best of our knowledge, this is the first work which

explores the low-rank tensor for visual object tracking.

The remainder of this paper is organized as follows. In

section II, we review related work. In section III, we de-

scribe the proposed LLT algorithm in detail. The experi-

mental results are presented in Section IV. Finally, the con-

clusions are drawn in Section V.

2. Related Work

In the past decade, a plethora of methods have been pro-

posed for visual object tracking [3, 6, 9, 13, 20, 38, 41, 60].

Interested readers are referred to survey studies for more

details in [10, 30, 46, 51–53]. However, there is no unique

tracker which is able to handle all aforementioned track-

ing challenges. In this work, we classify state-of-the-art

trackers in to deep learning trackers [9, 38, 48], sparse

representation-based trackers [21, 33, 34, 41, 58, 60], corre-

lation filter-based trackers [3, 6, 13], and low-rank trackers

[20, 58, 62].

Sparse representation-based methods have achieved a

great success for visual object tracking in the past few years

[21, 29, 33, 34, 41, 58, 60]. These methods mainly represent

the target appearance using a sparse linear combination of

dictionary atoms. The dictionary is updated to cope with

target appearance variations. In global methods, the holistic

appearance of the target is modeled using sparse representa-

tion [29,34,41,55,58]. The global methods perform well in

many tracking scenarios however; they cause performance

degradation in the presence of occlusion. In local meth-

ods, local patches of the target particle are represented using

sparse combination of dictionary atoms [21, 33]. However,

local and global methods ignore the structural intrinsic re-

lationship among the particle and their patches. In [60], a

joint sparse representation tracker is proposed which jointly

learns the local and global intrinsic relationships among the

target particles and their local patches. Encouraging results

are reported for many complex tracking scenarios as the

deep features are also incorporated in this work.

Many deep learning methods have also been proposed to

handle the visual tracking problem such as those reported

in [9, 38, 48]. These methods use already pre-trained model

for feature extraction and then employ either the classifier

or learn the correlation filters for tracking. For instance,
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Figure 2. Schematic illustration of our proposed Low-Rank Tesnsor Tracking (LTT) algorithm. (A) shows an input image at time t with

target particles bounding boxes. (B) particle sampling strategy and target particles are cropped to create input tensor X . (C) input tensor

X . (D) shows the objective function optimization. (E) shows Low-rank tensor. (F) shows the result of visual object tracking using our

proposed LTT tracker.

Wang and Yeung proposed a deep neural network model

pre-trained on natural tiny images for visual tracking [48].

Ma et al. exploited deep features hierarchy using VGG-

19 model [38]. The correlation filter response is computed

for each convolutional features map and averaged to get

the score for a target object. Danelljan et al. also ex-

ploited multiple convolutional features for visual tracking

[9]. All these deep trackers show improved performance

but they rely mainly on already pre-trained model since a

large amount of annotated data is not available for training.

Correlation filter-based trackers have also shown to be a

potential methods for tracking [3, 6, 13]. These methods

estimate the fast Fourier transform in the target window.

For instance, Bolme et al. used a luminance channel and

learnt a sum of squared error filter for tracking [3]. Several

other improvements are also proposed for tracking in [6,13].

These methods are quite simple and fast as compared to

other trackers due to the computation of fast Fourier trans-

form. However, these trackers drift due to the noise in the

target appearance variations therefore these trackers mainly

rely on the re-detection module [38]. Many low-rank track-

ers have also been proposed in the literature [20, 58, 62].

For instance, Zhang et al. were the first author to model the

correlations among the target particles using low-rank com-

putations [58]. Several other low-rank trackers are also pro-

posed to improve the tracking performance [20, 62]. These

trackers show good performance however; they ignore the

intrinsic relationship among the target particles as each tar-

get particle is represented by a column vector which leads

to the information loss and would cause performance degra-

dation.

To address this lack, we propose low-rank tensor tracker

which manipulates the tensor data by taking the advantage

of its multi-dimensional structure and improves the perfor-

mance in many tracking scenarios.

3. Proposed Methodology

The major steps of the proposed algorithm are shown in

Fig. 2. Our proposed algorithm is dubbed as Low-rank

Tensor Tracking (LTT). The LTT is based on the parti-

cle filter-based tracking approach in which we draw an n

number of target particles from a given target object at t-
th frame using particle sampling technique [47]. These n
target particles are used to construct 3-way input tensor,

X = [X1,X2, · · ··,Xn] ∈ R
n1×n2×n, where each 2-D

matrix, X ∈ R
n1×n2 , denotes target particle with width

n1 and height n2. These target particles in tensor X are

highly correlated with each other and therefore, they span a

low-dimensional common subspace in a mixture of multi-

ple low-rank subspaces. We aim to recover such a subspace

representing target appearance by enforcing nuclear norm

regularization in all modes of a tensor. In the later sections,

we describe each step of the proposed LTT in more detail.

3.1. LTT Model

We pose the problem of visual object tracking as the

problem of estimating low-rank component from target par-

ticles. Wright et al. has formulated the following convex

optimization problem for low-rank matrix decomposition as

[50]:

min
L,E

||L||∗ + λ1||E||1, such that X = L + E, (1)

where X ∈ R
d×n denotes input 2-D matrix comprising n

target particles and d = n1×n2. L ∈ R
d×n is the low-rank

representation which models the correlation among the tar-

get particles and E ∈ R
d×n is the sparse outlier comprising

occlusions and noises. In (1), ||·||∗ denotes the nuclear norm

(sum of the singular values), ||·||1 is the l1-norm (sum of the

absolute values of all the entries), and λ1 = 1/
√

max(d, n).
The low-rank representation model defined by (1) has en-

joyed a great success in the past years in a number of com-

puter vision applications including background-foreground

separation [17–19], salient object detection [42], image rain

streaks removal [31], and medical imaging [4] to name a

few.

In case of visual tracking, the low-rank representation L

is then used to estimate the observation likelihood model

p(xit|z
i
t) for sample state z at a time instance t for i-th parti-

cle in the particle filter framework [47]. The reconstruction

error is computed between the target particles and the low-

rank representation as:



p(xit|z
i
t) = exp(−||xit − lit||

2
2). (2)

One major shortcoming of model (1) is that it can only pro-

cesses 2-D data matrix which causes performance degrada-

tion in the case of object tracking since it ignores the differ-

ence of the intrinsic structure correlation among the target

particles.

In this work, we address this problem by estimating the

correlation between all modes of a 3-D tensor X . Liu et

al. has proposed the following low-rank tensor objective

function as [35, 36]:

min
L,E

||L||∗ + λ||E ||1, such that X = L+ E , (3)

where L ∈ R
n1×n2×n is the low-rank tensor representa-

tion of target particles, E ∈ R
n1×n2×n is the sparse ten-

sor which models occlusions, and λ1 = 1/
√

max(n1, n2)n.

||L||∗ is the tensor nuclear norm which is computed in the

fast Fourier transform (see the definition in Sec. 3.2) and

||E ||1 is the l1-norm of the tensor. We observed that the

extension of low-rank matrix model (1) into low-rank ten-

sor model (3) significantly improves the performance of the

visual object tracking. In order to optimize the proposed

LLT objective function (3), we first present notations and

tensor algebra and then we explain the optimization of Eq.

(3) using ADMM method [37].

3.2. Notations and Preliminaries

In this section, we define basic notations of tensor and

several algebric structures of 3-way tensors. We use the

same notations as defined in [25].

We denote tensors by bold face calligraphic letters, e.g.,

X , matrices by bold face capital letters, e.g., X, vectors by

bold face lower case letters x, and scalars by lower case let-

ters, e.g., x. An n-way tensor is a multi-dimensional array

and it is represented by X ∈ R
n1×n2×n and its (i, j, k)-

th entry is denoted by Xijk or xijk. The slice of a tensor

is a 2-D section defined by fixing all but two indices. The

i-th horizontal, lateral, and frontal slice of a tensor X is

denoted by X (i, :, :), X (:, i, :), and X (:, :, i), respectively.

The i-th frontal slice X (:, :, i) of a tensor X is also denoted

by X(i). Similarly, the fiber is a 1-D section defined by

fixing all indices but one also known as tube of X . The

X (:, i, j), X (i, j, :), and X (i, :, j), respectively, denote the

mode-1, mode-2, and mode-3 fibers of X [24, 35, 36]. The

inner product between X and Y is defined by < X,Y >=
Tr(X∗ Y), where X∗ denotes the conjugate transpose of ma-

trix X and Tr(·) denotes the trace of a matrix. The Frobenius

norm of a tensor X is ||X ||F =
√

(
∑

i,j,k|xijk|2) , and l1-

norm of X is ||X ||1 =
∑

i,j,k|xijk|.

We denote X̄ as the result of discrete fast Fourier trans-

form along the 3-rd dimension, e.g., X̄ = fft(X , [ ], 3).
In the same manner, we can also compute X as the result

of inverse fast Fourier transform as X = ifft(X̄ , [ ], 3).
The block diagonal matrix X̄ of tensor X̄ can be written as

X̄ = bdiag(X̄ ) with its each block in its diagonal as the

frontal slice X̄
(i)

of X̄ as [24]:

X̄ = bdiag(X̄ ) =

⎡

⎢

⎢

⎢

⎢

⎣

X̄
(1)

X̄
(2)

. . .

X̄
(n)

⎤

⎥

⎥

⎥

⎥

⎦

(4)

Tensor-Tensor Product [24]: To define a new tensor-

tensor product, we first define three main block-based oper-

ators. For tensor X ∈ R
n1×n2×n, its block circulant matrix

bcirc(X ) ∈ R
n1n×n2n can be defined as:

bcirc(X ) =

⎡

⎢

⎢

⎢

⎣

X(1) X(n) · · · X(2)

X(2) X(1) · · · X(3)

...
...

. . .
...

X(n) X(n−1) · · · X(1)

⎤

⎥

⎥

⎥

⎦

(5)

The unfold operation also known as block-vectorization,

and its opposite operator fold can be defined as:

unfold(X ) =

⎡

⎢

⎢

⎢

⎣

X(1)

X(2)

...

X(n)

⎤

⎥

⎥

⎥

⎦

,fold(unfold(X )) = X .

(6)

Finally, the tensor-tensor product (t-product) Z ∈
R

n1×n4×n, between any two 3-way tensors X ∈
R

n1×n2×n and Y ∈ R
n2×n4×n can be defined as:

Z = X ∗Y = fold{bcirc(X )unfold(Y)}. (7)

It should be noted that the tensor X ∈ R
n1×n2×n, can be

treated as n1 × n2 matrix with each entry as a tube in the

third dimension. This t-product is analogous to the matrix-

matrix product except that the circular convolution replaces

the product operation between the elements. The t-product

in the original domain corresponds to the matrix multiplica-

tion of the frontal slices in the fourier domain [24, 35, 36].

Tensor Transpose [24]: The transpose of a tensor X ∈
R

n1×n2×n, is an n2 × n1 × n tensor which is obtained by

transposing each frontal slice of X and then reversing the

order of the transposed frontal slices 2 through n.

Identity Tensor [24]: The identity tensor can be denoted



Algorithm 1: Tensor SVD Algorithm.

Input: Input tensor X ∈ R
n1×n2×n.

Output: U , S, V .

1. Compute X̄ = fft(X , [], 3)
2. for k = 1 : n do

3. Compute [U ,S,V ] = SVD(X̄ (k)).
4. Ū (k) = U , S̄(k) = S, V̄(k) = V .

end

5. U = ifft(Ū , [ ], 3), S = ifft(S̄, [ ], 3),
V = ifft(V̄ , [ ], 3).
6.Return U , S, V .

as I ∈ R
n1×n1×n and it is defined as a tensor whose first

frontal slice is the n1 × n1 identity matrix and all other

frontal slices are zero.

Orthogonal Tensor [24]: The tensor Q ∈ R
n1×n1×n, is

said to be orthogonal, if and only if Q⊤∗Q = Q∗Q⊤ = I ,

where ∗ is the t-product.

f-Diagonal Tensor [24]: A tensor is said to be f-diagonal if

each of its frontal slices is equal to a diagonal matrix.

Tensor Singular Value Decomposition (t-SVD) [24]: The

t-SVD of tensor X can be factorized as follows:

X = U ∗ S ∗ V⊤, (8)

where U ∈ R
n1×n1×n and V ∈ R

n2×n2×n are orthogonal

tensors, respectively. S ∈ R
n1×n2×n is a f-diagonal tensor

and * denotes the t-product. This t-product can be computed

more effieciently in the fast Fourier transform domain as

presented in Alg. 1 of t-SVD.

Tensor Nuclear Norm (TNN) [16,35,36,45,61]: The TNN

of a tensor X ∈ R
n1×n2×n is denoted by ||X ||∗ and it can

be defined as the average of the nuclear norms of all the

frontal slices of X̄ as:

||X ||∗ =
1

n

n
∑

j=1

||X̄
(j)

||∗ =
1

n

n
∑

j=1

min(n1,n2)
∑

i=1

|S(i, i, j)|,

(9)

where S is the singular values computed by Alg. 1. It

should be noted that the TNN in (9) is defined in the fast

Fourier domain. It is also closely related to the nuclear norm

of the block circulant matrix in the original domain as:

||X ||∗ =
1

n

n
∑

j=1

||X̄
(j)

||∗ =
1

n
||X̄||∗

=
1

n
||(Fn ⊗ In1

).bcirc(X ).(F−1
n ⊗ In2

)||∗

=
1

n
||bcirc(X )||∗.

(10)

where Fn denotes the n× n discrete Fourier transform ma-

trix and ⊗ denotes the Kronecker product. The above Eq.

(10) preserves more spatial intrinsic relationship among the

tensor modes and therefore improves the tracking perfor-

mance.

3.3. LTT Optimization

LTT model (3) is the convex optimization problem and

therefore, we can solve it using the standard ADMM

method [5, 37]. The proof of the global convergence can

be found in [37, 61]. To solve it, we first formulate its aug-

mented Lagrangian function as:

L(Y ,L,E , µ) = ||L||∗ + λ||E ||1+

< Y ,X −L− E > +
µ

2
||X −L− E ||2F ,

(11)

where Y ∈ R
n1×n2×n is the Lagrangian multiplier and

µ > 0 is the penalty scalar for violating the linear con-

straints. Problem (11) can now be solved using divide and

conquer strategy by solving one variable and fixing others.

The optimization process will converge to the optimal so-

lution when µk increases and bounds in the k-th iteration

[36, 37, 61].

Updating L: Consider the following sub-problem from

(11) by fixing S as:

Lk+1 = argmin
L

L(L,Ek,Yk, µk)

= argmin
L

||L||∗ +
µk

2
||L−Z1||

2
F

= min
L

τ ||L||∗ +
1

2
||L−Z1||

2
F ,

(12)

where Z1 = X − Ek + 1
µkY

k and τ > 0. The Lk+1 has a

following closed-form solution by the tensor singular value

convoluting as [16, 36, 37, 61]:

Lk+1 = Cτ (Z1) = U ∗ Cτ (S) ∗ V⊤ (13)

where U , S, and V is the tensor singular value decomposi-

tion of Z1 and Cτ (S) = S ∗J , where J is an n1×n2×n
f-diagonal tensor whose diagonal element in the Fourier do-

main is J̄ (i, i, j) =
(

1− τ
S̄j(i,i)

)

+
, where t+ is the positive

part of t.
Updating E : Consider the following sub-problem in (11)

by fixing L as:

Ek+1 = argmin
S

L(Lk+1,E ,Yk, µk)

= argmin
E

λ||E ||1 +
µk

2
||F −Z2||

2
F ,

(14)
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Figure 3. Visual results of the propsoed LTT tracker and its comparison with other state-of-the-art trackers including KCF [13], LRT [58],

DSST [6], SRDCF [8], RSST [60], and MUSTer [14]. Frame indexes with associated tracking challenge and sequence names are shown in

each row in black and yellow colors. Our proposed LTT tracker has consistently performed well against these sequences as compared to

other trackers. The proposed tracker has consistently performed better than other trackers in these complex tracking scenarios.

where Z2 = X −Bk+1+ 1
µkY

k. The closed-form solution

of Ek+1 can be derived as [36, 61]:

Ek+1 = shrink

( 1

µk
Yk +X −Bk+1,

λ

µk

)

, (15)

where shrink(c, τ) (for any c, τ ∈ R) , is the element-

wise soft thresholding operation [11, 16, 36, 61] defined as:

shrink(c, τ) = sign(c)max(|c| − τ, 0). (16)

The proof for both solutions (12) and (14) can be found in

[11, 16, 36, 37, 61]. Similarly, the Lagrangiang multiplier

can be updated as:

Yk+1 = Yk + µk(X −Lk+1 − Ek+1) (17)

The sequences L̄ and Ē generated by the ADMM model

(11) converges to the optimal solution when ||Lk+1 −
Lk||∞ ≤ η, ||Ek+1−Ek||∞ ≤ η, ||Lk+1−Ek+1−X || ≤ η,

where ||·||∞ dentoes the infinity norm and it is equal to

||X ||∞ = maxijk|xijk| and η = 1e− 8 [36].

4. Experimental Evaluations

We evaluated the performance of our proposed LTT

tracker on 20 challenging video sequences including Bird2,

Car4, Bolt, FaccOcc1, Girl2, Lemming, Suv, Tiger1,

David2, Dog, Board, Coupon, Skater, Subway, Toy, Cou-

ple, Box, MotorRolling, Ironman, and Biker taken from

OTB13 [51] and OTB15 [52] datasets. These sequences

pose the 11 different tracking challenges including Occlu-

sion (Occ), Fast Motion (FM), Illumination Variation (IV),

Scale Variation (SV), In-Plane Rotation (IPR), Out of Plane

Rotation (OPR), Background Clutter (BC), Low Resolution

(LR), Motion Blur (MB), Out-of-View (OV), and Deforma-

tion (Def). These sequences also contain ground truth ob-

ject locations and varying resolutions.

We compared the performance of the proposed LTT

tracker with 10 existing current state-of-the-art trackers in-

cluding KCF [13], LRT [58], DSST [6], SRDCF [8], RSST

[60], MUSTer [14], LCT [39], DLT [48], BACF [23], and

Struck [12]. For comparison purpose, we used the pub-

licly available source codes and we use the implementa-

tions provided by the original author’s. The number of par-

ticles in our LTT tracker is set as n = 1000. All the ex-



Table 1. Comparison of the average Center Location Error (CLE) in pixels of 10 different trackers on 20 sequences. Top and second best

performing tracker is shown in red and blue colors, respectively.

Categories Bird2 Car24 Bolt FaccOcc1 Girl2 Lemming Suv Tiger1 David2 Dog Board Coupon Skater Subway Toy Couple Box MotorRolling Ironman Biker Average

LCT 2.9 6.5 7.2 8.7 4.1 62.3 193 19.8 6.2 7.0 7.2 7.5 10.7 5.2 2.5 6.6 7.1 8.8 3.5 4.5 19.0

RSST 1.1 3.5 4.0 4.2 4.7 75.8 37.0 4.7 9.1 9.8 6.4 9.2 10.6 3.1 2.5 3.8 5.1 1.6 9.6 9.9 10.7

BACF 2.5 3.4 3.5 1.9 2.8 59.3 174.2 12.4 140 6.8 2.5 6.2 12.8 2.8 1.5 4.1 3.1 3.4 1.7 3.6 22.4

KCF 6.0 9.8 8.0 7.7 3.9 15.3 194.9 21.1 7.6 112.5 12.8 10.2 18.6 6.3 2.8 4.6 3.8 3.6 4.2 5.6 22.7

MUSTer 2.2 1.8 3.7 2.6 2.4 23.0 129.3 7.1 7.2 8.0 4.1 9.0 15.1 3.6 2.2 5.1 6.2 2.2 3.2 3.7 12.0

Struck 2.7 4.8 6.8 5.3 5.2 106.1 129.7 16 38.8 11.9 15.7 9.3 10.9 375 4.4 11.2 7.6 3.3 2.9 3.9 38.5

DLT 2.7 2.2 4 2.4 2.4 109.6 84.4 11.5 5.9 61.5 4.2 178.3 12.4 5.2 3.6 6.6 8.1 1.9 4.2 6.8 25.7

LRT 5.2 9.6 5.5 2.3 7.9 9.9 66.3 11.6 6.6 10.2 4.4 3.7 20.4 15.6 7.4 7.1 9.9 1.8 5.1 3.1 10.3

DSST 1.4 3.2 4.5 2.8 4.5 7.5 39.6 5.6 6.1 11.5 4.7 11.2 3.6 3.1 2.8 6.2 5.5 5.6 4.4 4.2 6.7

SRDCF 2.1 2.5 4.2 2.1 2.5 16.3 41.2 6.8 7.2 11.1 4.6 7.6 11.1 3.5 1.9 9.1 7.9 6.1 6.4 4.5 7.6

Proposed 1.0 1.2 1.7 0.9 1.2 4.8 31.1 1.2 2.7 3.2 0.5 2.7 4.1 0.6 0.2 3.6 4.8 1.4 2.3 3.1 3.6

Table 2. Comparison of the average Overlap Score (OS) of 10 seven different trackers on 20 sequences. Top and second best performing

tracker is shown in red and blue colors, respectively.

Categories Bird2 Car24 Bolt FaccOcc1 Girl2 Lemming Suv Tiger1 David2 Dog Board Coupon Skater Subway Toy Couple Box MotorRolling Ironman Biker Average

LCT 0.74 0.74 0.67 0.67 0.75 0.14 0.16 0.61 0.59 0.73 0.67 0.75 0.65 0.70 0.79 0.72 0.66 0.76 0.78 0.72 0.65

RSST 0.83 0.78 0.61 0.80 0.71 0.19 0.33 0.74 0.54 0.68 0.36 0.71 0.67 0.74 0.78 0.70 0.68 0.75 0.75 0.74 0.65

BACF 0.76 0.75 0.74 0.65 0.76 0.23 0.13 0.72 0.16 0.73 0.84 0.78 0.57 0.82 0.74 0.75 0.70 0.69 0.72 0.69 0.64

KCF 0.60 0.48 0.53 0.62 0.78 0.42 0.14 0.61 0.49 0.04 0.36 0.72 0.54 0.67 0.76 0.70 0.62 0.76 0.75 0.71 0.56

MUSTer 0.78 0.87 0.73 0.76 0.79 0.33 0.1 0.79 0.49 0.72 0.74 0.75 0.51 0.76 0.80 0.74 0.64 0.72 0.78 0.74 0.67

Struck 0.74 0.49 0.52 0.61 0.75 0.15 0.15 0.62 0.43 0.63 0.36 0.75 0.63 0.01 0.72 0.69 0.64 0.78 0.79 0.75 0.56

DLT 0.71 0.73 0.69 0.82 0.84 0.17 0.13 0.68 0.61 0.13 0.54 0.04 0.59 0.70 0.73 0.71 0.71 0.74 0.73 0.73 0.58

LRT 0.23 0.31 0.41 0.33 0.34 0.41 0.46 0.40 0.39 0.45 0.34 0.36 0.42 0.49 0.51 0.33 0.42 0.22 0.16 0.29 0.36

DSST 0.65 0.67 0.80 0.67 0.82 0.82 0.79 0.74 0.56 0.65 0.74 0.72 0.62 0.70 0.78 0.81 0.83 0.79 0.80 0.76 0.73

SRDCF 0.71 0.72 0.78 0.72 0.80 0.86 0.75 0.78 0.60 0.68 0.78 0.70 0.65 0.72 0.75 0.75 0.68 0.72 0.77 0.74 0.73

Proposed 0.88 0.89 0.82 0.84 0.91 0.64 0.44 0.79 0.64 0.77 0.87 0.78 0.70 0.77 0.83 0.76 0.72 0.81 0.84 0.80 0.77

periments are carried out on a machine with an Intel core

i7 4.0 GHz CPU with 64 GP RAM. We report the execu-

tion time of the proposed LTT tracker on aforementioned

20 sequences. The proposed tracker is able to track a tar-

get object at 8.85 frames per second where the optimiza-

tion methods convereges within 6 iterations for each frame.

The computational complexity of the proposed tracker is

O(n1n2nlogn+ n1n
2
2n) per-iteration.

For quantitative comparison, we used two well-known

tracking measures including Centre Location Error (CLE)

and Overalp Score (OS) for 20 video sequences. The CLE

is the Euclidean distance while OS is the intersection over

union between the ground truth and the predicted bounding

boxes.

4.1. Qualitative Results

Figure 3 shows the visual results of the proposed tracker

as a bounding boxes on 10 tracking sequences and its vi-

sual comparison with 6 current state-of-the-art trackers on

some specific key frames. These frames present tracking

challenges to the object trackers making it very difficult to

locate the target object. Thus, the visual analysis in these

key frames is important to evaluate the qualitative perfor-

mance of the trackers.

The proposed tracker perfectly handled scenes with

IV (Car4 sequence), BC (Couple sequence), Def (Skiing

sequence), Occ (FaceOcc1 sequence), OPR (BasketBall

seuqence), FM (Boy sequence), OV (Suv sequence), IPR

(Bolt sequence), SV (Ironman sequence), and MB (Motor-

Rolling sequence) challenges as compared to the second

best performing trackers DSST, KCF, and MUSTer. The ex-

cellent performance of LLT tracker suggests that it is able to

mitigate outlier effects by estimating the correlation among

all tensor modes into low-rank objective function. This

brings biggest performance gain for achieving state-of-the-

art tracking performance.

In addition to it, the following components are also ben-

eficial in enhancing tracking performance. First, incorpo-

rating 3-D tensor structure into the low-rank representation

is robust to object Def and partial Occ. Second, encod-

ing t-SVD based nuclear norm constraints is important for

handling drastic appearance changes and obtaining reliable

tracking results. Finally, estimating target appearance sub-

space from mixture of subspaces makes low-rank learning

very robust against rapid illumination variations and target

drifting.

4.2. Qualitative Results

Tables 1 and 2 show the qualitative performance of the

proposed tracker with 10 current state-of-the-art trackers

in terms of average CLE and OS on 20 videos. These

sequences present 11 complex tracking attributes as men-

tioned above. On the average, the proposed LTT tracker

have performed better than the compared trackers in terms

of both precision and success measures. For instance, LTT

is 3%, 4% and 4%, 4% better than the second best perform-

ing trackers SRDCF and DSST in terms of precision and

success measure.



In Tables 1 and 2, four videos including car24, Box, Mo-

torRolling, and Ironman, presented IV tracking attribute.

In terms of average CLE (Table 1), the proposed LTT

tracker outperformed MUSTer and RSST trackers on two

sequences with an average CLE of 1.2 and 1.4, respectively.

While, in terms of average OS (Table 2), the proposed LTT

tracker achieved the best performance than MUSTer and

DSST trackers on three sequences with an average OS of

0.89, 0. 81, and 0.80, respectively.

The sequences Biker, Box, Bird2, FaceOcc1, Lemming,

Suv, and Girl2, respectively, underwent Occ tracking at-

tribute. The proposed LTT tracker achieved the best per-

formance in terms of average CLE (Table 1) of 3.1, 1.0,

0.9, 4.8, 31.1, and 1.2, respectively, on six sequences than

the second best trackers RSST, DLT, BACF, and MUSTer.

On the other hand, the proposed tracker obtained signifi-

cant improvements of 0.88, 0.84, 0.80, and 0.91, respec-

tively, on 4 sequences than the compared trackers in term

of average OS (Table 2). In case of SV tracking challenge

(sequences Biker, Box, Couple, and Dog, respectively), the

proposed LTT tracker achieved the best performance of 3.1,

2.7, and 3.2, respectively, in terms of average CLE than all

of the compared trackers as shown in Table 1. In contrast,

the LTT tracker could only obtained the best performance

of 0.80 and 0.77, respectively, on two sequences in terms of

average OS than the second best performing trackers in Ta-

ble 2. For BC tracking attribute (sequences Couple, Board,

and Coupon, respectively), the proposed LTT tracker ob-

tained the best performance of 3.6, 0.5, and 2.7, respec-

tively, in terms of average CLE than all of the compared

trackers in Table 1. While, the LTT tracker achieved notice-

able improvements of 0.87 and 0.78, respectively, on two

BC sequences in terms of average OS in Table 2. For FM

tracking attribute (sequences Ironman, Tiger1, and Toy, re-

spectively), the proposed LTT tracker obtained the best per-

formance of 0.2 and 1.2, respectively, on two sequences in

terms of average CLE as shown in Table 1. In terms of av-

erage OS (Table 2), the LTT tracker achieved a comparative

performance of 0.84, 0.83, and 0.79, respectively, on all FM

sequences than compared trackers. The sequences David2,

Suv, Tiger1, and Toy respectively, presented IPR challenge,

where the proposed LTT tracker obtained an average CLE

(Table 1) of 2.7, 31.1, 1.2, and 0.2, respectively, which is

significantly better than other top performing trackers such

as DLT, BACF, DSST, and SRDCF, respectively. In terms

of average OS (Table 2), LTT obtained noticeable perfor-

mance of 0.64, 0.79, and 0.83, respectively, on three IPR

sequences than compared trackers.

Similarly, the proposed tracker also obtained compara-

tive performance in terms of average CLE and OS on the re-

maining tracking attributes of OPR, MB, OV, Def, and LR,

respectively. The best performance gained by the propsoed

tracker is because of the inclusion of correlation among all

the tensor modes of the input particles using nuclear norm

regularization.

5. Conclusion

In this paper, a new framework is proposed for visual

object racking with complex scenarios. The proposed al-

gorithms have shown improved performance on many chal-

lenging sequences thanks to the new tensor nuclear norm

constraints on the low-rank tensor objective function. The

newly formulated tensor algebra and its nuclear norm reg-

ularization estimated over the frontal slices of input ten-

sor models robust and holistic enforcement of the spatial

appearance consistency in the low-rank target representa-

tion. The proposed objective function is solved efficiently

in a batch manner using linearized ADMM optimization

technique. The experimental evaluations on 20 sequences

demonstrated the excellent performance and the superiority

of the proposed algorithms in the presence of a wide variety

of challenging scenarios when compared with 10 current

state-of-the-art trackers using publicly available dataset. In

the future, we aim to develop saliency-fused optimization

algorithm to maintain the re-detection procedure in order to

increase the robustness of the tracker to handle more chal-

lenging scenarios.
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