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Abstract

The information bottleneck (IB) has been suggested
as a fundamental principle governing performance in
deep neural nets (DNNs). This idea sparked research
on the information plane dynamics during training with
the cross-entropy loss, and on using the IB of some
“bottleneck” layer as a loss function. However, the
claim that reaching the maximal value of the IB La-
grangian in each layer leads to optimal performance,
was in fact never directly confirmed. In this paper, we
propose a direct way of validating this hypothesis, using
layer-by-layer training with the IB loss. In accordance
with the original theory, we train each DNN layer ex-
plicitly with the IB objective (and without any classifi-
cation loss), and freeze it before moving on to train the
next layer. While mutual information (MI) is gener-
ally hard to estimate in high dimensions, we show that
in the case of MI between DNN layers, this can be done
quite accurately using a modification of the recently pro-
posed mutual information neural estimator [4]. Inter-
estingly, we find that layer-by-layer training with the IB
loss leads to accuracy which is on-par with end-to-end
training with the cross entropy loss. This is, thus, the
first direct experimental illustration of the link between
the IB value in each layer, and a net’s performance.

1. Introduction

Deep neural nets (DNN) have shown unparalleled
success in many fields, yet the theoretical understand-
ing of these models is lagging behind. Among the
various attempts to understand their inner-workings,
Tishby and Zaslavsky [15] suggested a link to the Infor-
mation Bottleneck (IB) principle of Tishby et al. [14].
Their theory claims that optimal performance is at-
tained if each layer simultaneously attempts to maxi-
mize its mutual information (MI) with the target space,
while minimizing its MI with the input space. The logic
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is that the DNN layers should successively compress the
latent representation so as to allow for good generaliza-
tion, while retaining only the information essential for
target prediction. Specifically, it was suggested that
each DNN layer should maximize the IB Lagrangian

LIB = I(Y ;Li)− βI(X;Li), (1)

where I denotes MI, X and Y are the input and target
random variables, Li is the latent representation at the
ith hidden layer, and β is a trade-off parameter.

Various papers studied this principle or used it for
regularization in DNN training1. In particular, some
works studied the dynamics of each of the terms in (1)
during training with the popular cross-entropy (CE)
loss [13, 12]. While the IB functional seems to steadily
increase along training iterations, such experimental
results are highly dependent on the method used to es-
timate the MI [12], and thus do not serve as a direct
validation of the original claim of [15]. Several works
used the IB objective (1) as a loss function for training,
but only on a single “bottleneck” layer [2, 4, 8] and not
on each layer separately as in the original theory. Also,
due to practical difficulties in estimating the MI be-
tween DNN layers, most works focus on stochastic nets
trained in an end-to-end fashion [1, 2, 4, 8]. There-
fore, the fundamental claim that optimal performance
is achieved when every layer approaches the maximal
value of the IB objective, has not been explicitly con-
firmed to date. Our goal in this paper is to experi-
mentally validate this hypothesis, in particular for the
more popular deterministic DNNs.

It should be emphasized that we are not interested
in analyzing the information plane dynamics of deep
nets trained with the CE loss, as in [13, 12]. We are
rather interested in a much more fundamental question,
which is independent of how a net is trained: Does a
deep architecture achieve optimal performance when
the IB value in each of its layers is maximal? Our way

1An inclusive survey of related work appears in the supple-
mentary material.



to directly validate this hypothesis of Tishby and Za-
slavsky [15], is to train a DNN while guaranteeing that
each layer optimizes the IB functional in (1). Starting
from the first hidden layer, we train each layer indepen-
dently and freeze it before moving on to the next layer.
Surprisingly, while layer-by-layer training is obviously
sub-optimal in general, we find that when done with
the IB functional, the performance is not only com-
parable but also often better than end-to-end training
with the CE loss. This is thus the first explicit confir-
mation of the merit of the IB objective applied to each
layer independently, as hypothesized in [15].

Strictly speaking, direct use of the IB functional for
deterministic nets with continuous inputs is meaning-
less, as the term I(X;Li) in (1) is always infinite [12, 3].
This problem is mitigated if one resorts to stochastic
DNNs via the introduction of noise after each layer,
which ensures that I(X;Li) is finite [12, 3], as done in
[2, 4, 8, 1, 5]. However, we are interested in determinis-
tic DNNs, and thus take a different route. Specifically,
we introduce noise only for quantifying the MI between
the input X and hidden layer Li (as also suggested in
[12]), but not into the DNN itself. Namely, we focus
on minimizing the noise-regularized version of (1),

LReg
IB = I(Y ;Li)− βI(X;Li + ε), (2)

where ε is Gaussian noise. As we show, the second
term here can be interpreted as a weight decay penalty,
which aligns with common practice in DNN training.

A key difficulty in using the MI as a loss function for
training DNNs, is to obtain an accurate estimate of the
MI, which is differentiable w.r.t. the net’s parameters.
To this end, we use an auxiliary net, similarly to the
suggestion by Belghazi et al. [4], and in contrast to ap-
plying a variational lower-bound as in [2, 8]. However,
as opposed to the original mutual information neural
estimator (MINE) of [4], which fails to accurately esti-
mate I(X;Li + ε) in our setting (see Sec. 3), we tailor
the architecture of the auxiliary net specifically for our
case in which Li is a known deterministic function of
X. This modification results in significantly more ac-
curate estimates, as we show in Section 3.

2. Relation to weight decay

To understand the effect of replacing the penalty
I(X;Li) by I(X;Li + ε), we can write

I(X;Li(X)+ε) = h(Li(X)+ε)−h(Li(X)+ε|X), (3)

where h denotes differential entropy, and we wrote
Li(X) to emphasize that the latent representation is
a deterministic function of the input X. First, no-
tice that at zero noise level the second term in (3) be-
comes minus infinity (since pLi(X)|X becomes a delta

function), which highlights again the inadequacy of the
penalty I(X;Li) for deterministic DNNs. Second, this
term can be further simplified (for Gaussian noise) as

h(Li(X) + ε|X) = 1
2 log (|2πeΣε|) , (4)

where Σε is the noise covariance matrix. Equation (4)
is independent of the DNN parameters. This shows
that the MI penalty I(X;Li(X)+ε) is in fact a penalty
only on the entropy h(Li(X)+ ε) of the representation
Li, which is a typical measure of compactness.

To develop further intuition, it is instructive to ex-
amine the simple case in which both the input X and
the additive noise ε are (independent) Gaussian vectors
and the transformation is linear, i.e. Li(X) = WX+b.
In this setting, simple calculation shows that

I(X;Li + ε) =
1

2
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)

+ c, (5)

where ΣX is the input covariance matrix, and c is a
term which is independent of W and b. The expres-
sion in (5) attains its minimum when W = 0, in which
case X and Li become independent. This highlights
the fact that this term, in essence, induces a type of
weight decay regularization. Clearly, the same intu-
ition is also valid for non-linear settings, since weight
decay (at the extreme) drives X and Li to become in-
dependent and thus to have zero MI. Yet the precise
form of the penalty is generally different between the
MI regularizer and hand-crafted ones. Specifically, no-
tice that the penalty in (5) is dependent on the input
statistics (through the covariance matrix ΣX), as op-
posed to the popular ℓ2 weight decay.

3. Accurate MI estimation

Given a DNN, to estimate the two MI terms in (2),
we rely on the recently proposed MI neural estimator
(MINE) of Belghazi et al. [4]. This method uses the
fact that MI can be written in terms of the Kullback-
Leibler divergence as I(U ;V ) = KL(PU,V ||PU ⊗ PV ),
and exploits the dual representation of Donsker and
Varadhan [6]

I(U ;V ) = sup
D

[

E
(S,T )∼PU,V

[D(S, T )]

− log

(

E
(S,T )∼PU⊗PV

[eD(S,T )]

)]

, (6)

where the supremum is over all functions D : U ×V →
R for which the second expectation is finite. To ap-
proximate this value, the expectations are replaced by
sample means over a training set, and the optimiza-
tion is performed over a smaller family of functions -



Figure 1: Estimating the (noise-regularized) MI be-
tween the input and last layer of a DNN using a stan-
dard MINE [4] and our AA-MINE (Sec. 3). For zero
noise level (σ2 = 0), the MI is theoretically infinite,
which is captured by our AA-MINE but not by the
standard MINE. When increasing the regularization,
our AA-MINE is stable and estimates decreasing val-
ues of MI, as expected. Here the DNN is a 3-layer MLP
with random weights.

those implementable by a deep net of predefined ar-
chitecture. Notice that to optimize (6), D must learn
to discriminate between (i) pairs (u, v) drawn from the
joint distribution PU,V , and (ii) pairs (u, v) drawn in-
dependently from the marginal distributions PU ,PV .
This is similar to the principle underlying adversarial
training [7].

In our setting, we estimate the term I(Y ;Li) in (2)
with a MINE, as described above. However, estimating
the term I(X;Li + ε) in (2) is typically far more de-
manding, due to the higher dimensionality ofX and the
continuous nature of both arguments. Experimentally,
we observed inconsistent and non-convergent behaviors
for this estimate. In particular, as illustrated in Fig. 1,
the estimate does not grow indefinitely as the noise
variance is taken to 0, despite the fact that the true MI
becomes infinite in this case (see Sec. 2). To improve
the estimation accuracy, we exploit the strong prior
knowledge we have in our setting, which is that the
latent representation Li is a known deterministic func-
tion of the input X. Specifically, Li = Fi(X), where
Fi is the function implemented by the first i layers of
the net. This implies that D is actually trying to dis-
criminate between (i) pairs (x1, Fi(x1)+ ε) where x1 is
drawn from PX , and (ii) pairs (x1, Fi(x2) + ε) where
x1, x2 are independently drawn from PX . Intuitively,
the easiest way to achieve this is by applying the func-

Figure 2: To measure the MI between the features at
layer i and the target labels Y , we use the MINE es-
timator of [4]. To measure the MI between a noisy
version of the features at layer i and the input X, we
use our AA-MINE, which contains an internal copy of
layers 1, . . . , i (see zoom-in on the bottom).

tion Fi on the first argument, and checking whether
the result is close to the second argument, up to noise.

To assist the MINE in doing so, we implement a
copy of the sub-net Fi within the discriminator D, al-
lowing it to pass its first input through this sub-net
(see Fig. 2). We coin this MI estimator the architec-
ture aware MINE (AA-MINE). See the supplementary
material for a detailed training algorithm of the AA-
MINE. Notice that for the limit case of zero noise level,
the discriminator need only check whether the two in-
puts are identical, which can be perfectly accomplished
with a very simple architecture. This drives the opti-
mization of the objective in (6) to infinity (see Fig. 1),
which aligns with the theory.

4. IB based layer-by-layer training

The stage is now set for training a DNN layer-by-
layer with the IB functional. Starting with the first
hidden layer, our goal is to train each layer indepen-
dently until convergence, freeze its weights, and then
move on to the next layer. As our MI estimators are
based on DNNs, we can achieve this goal by training
them simultaneously with the layer of interest. Specifi-
cally, we write (2) using (6) and, as in adversarial train-



ing and in the original MINE work [7, 4], update the
ith layer by alternating between updating the discrim-
inators Dx, Dy (see Fig. 2) and updating the layer’s
parameters.

Once training is complete, it is convenient to seek
an invertible transformation that brings the output Ŷ
closest to (the one-hot representation) Y . To achieve
this, we freeze the DNN parameters, and post-train one
additional fully-connected linear layer using a cross en-
tropy loss. This determines the best linear transforma-
tion to bring Ŷ closest to Y , without changing the MI
between them (an invertible transformation does not
change MI). This does not expand the net’s capacity,
since we do not use a nonlinear activation between the
last layer of the net and the post-trained linear layer,
so they can be combined into a single linear layer.

With this scheme, we trained a three-layered MLP
on the MNIST dataset [10]. The resulting classification
accuracies are reported in Table 1. Both when using
100% of the training set and when using only 1% of the
training set, the performance of this training scheme is
comparable to the baseline of training with the cross-
entropy loss, and even slightly better. Also, notice that
the penalty I(X;Li + ε) is essential for generalization,
especially when using only 1% of the training set, and
without it, there is a drop in test accuracy. This is thus
the first experiment to directly validate the effective-
ness of the IB principle for DNNs.

We also test the IB principle with a deep conv-net
on the CIFAR-10 dataset [9] (see Table 1). Training
with the full IB functional leads to better accuracy
compared to the cross-entropy baseline, and again, the
regularization term which promotes a compressed la-
tent representation proves advantageous. An analysis
of the information plane dynamics during training and
all training details appear in the supplementary mate-
rial.

Figure 3 shows the t-SNE embeddings [11] of the
latent representations Li of our MNIST net. Recall
that the regularization term I(X;Li + ε) enforces re-
duced entropy of the latent representation Li (see Sec-
tion 2). For large β values, the representation becomes
quantized, which is a form of compression and indeed
reduces the differential entropy by decreasing the effec-
tive support of the representation2.

2Differential entropy, in contrast to (discrete) entropy, de-
pends not only on the number of clusters but also on their
sizes. For example, the entropy of a single Gaussian cluster
is 1

2
log(|2πeΣ|), which can be arbitrarily large. The entropy of

a continuous distribution becomes smaller as its (effective) sup-
port becomes smaller, eventually tending to minus infinity for a
distribution that is supported on a finite discrete set of points.

Data Set (%) Training method Test acc. (%)

Cross-Entropy 85.78
MNIST 1% L = I(Y ;Li) 85.12

L = I(Y ;Li)− βI(X;Li + ε) 86.57

Cross-Entropy 97.73
MNIST 100% L = I(Y ;Li) 97.77

L = I(Y ;Li)− βI(X;Li + ε) 98.09

Cross-Entropy 58.23
CIFAR-10 100% L = I(Y ;Li) 60.59

L = I(Y ;Li)− βI(X;Li + ε) 61.75

Table 1: Test-set accuracy on the MNIST and CIFAR-
10 datasets for layer-by-layer training with the IB func-
tional (2). Pushing each layer towards the optimal IB
curve results in comparable performance to the cross-
entropy objective baseline. Notice that maximizing the
MI with the output I(Y ;Li) alone leads to inferior gen-
eralization, showing the importance of the regulariza-
tion term I(X;Li + ε).

Figure 3: Visualizing the effect of training using the IB
principle with t-SNE embeddings. Here we show the
embedding of the first layer with a trade-off coefficient
of (a) β = 102, and (b) β = 10−3. Increasing β leads
to a sort of discretization of the latent representation,
which indeed acts as a form of compression.

5. Conclusion

Our experiments demonstrate that training DNNs
with the IB functional leads to competitive prediction
performance. This provides strong and direct empirical
evidence for the validity of the IB theory of deep learn-
ing. Our training scheme was made possible by two
key changes to prior attempts. First, we used a noise-
regularized version of the IB functional, which removes
the theoretical difficulty of the MI between layers being
infinite, while still being consistent with the intuition
of a complexity penalty. Second, we derived an MI
estimation scheme tailored for MI estimation between
deterministic DNN layers, which is capable of accurate
estimation in a scenario which is generally intractable.
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