
OpenVINO Deep Learning Workbench: Comprehensive Analysis and Tuning of

Neural Networks Inference

Alexander Demidovskij

Intel Corporation

Higher School of Economics

alexander.demidovskij@intel.com

Yury Gorbachev

Intel Corporation

yury.gorbachev@intel.com

Mikhail Fedorov

Intel Corporation

mikhail.fedorov@intel.com

Iliya Slavutin

Intel Corporation

iliya.slavutin@intel.com

Artyom Tugarev

Intel Corporation

artyom.tugarev@intel.com

Marat Fatekhov

Intel Corporation

marat.fatekhov@intel.com

Yaroslav Tarkan

Higher School of Economics

yatarkan@yandex.ru

Abstract

A task of maximizing deep learning neural networks per-

formance is a challenging and actual goal of modern hard-

ware and software development. Regardless the huge va-

riety of optimization techniques and emerging dedicated

hardware platforms, the process of tuning the performance

of the neural network is hard. It requires configuring dozens

of hyper parameters of optimization algorithms, selecting

appropriate metrics, benchmarking the intermediate solu-

tions to choose the best method, platform etc. Moreover,

it is required to setup the hardware for the specific infer-

ence target. This paper introduces a sophisticated software

solution (Deep Learning Workbench) that provides interac-

tive user interface, simplified process of 8-bit quantization,

speeding up convolutional operations using the Winograds

minimal filtering algorithms, measuring accuracy of the re-

sulting model. The proposed software is built over the open

source OpenVINO framework and supports huge range of

modern deep learning models.

1. Introduction

The OpenVINO Toolkit [7] provides the developers and

data scientists with various tools for accelerating their com-

puter vision solutions. However, there is also a num-

ber of improvements that can dramatically optimize neural

model inference on various Intel hardware: CPU, Integrated

Graphics, Intel Neural Compute Stick. In addition to that,

measuring performance, exploring model bottlenecks, tun-

ing the model and measuring accuracy are exhaustive tasks

that requires deep knowledge in the intersection of engi-

neering and Data Science domains. In order to keep the

primary focus on the performance and not on the infrastruc-

ture configuration aspects the OpenVINO Deep Learning

Workbench (Deep Learning Workbench) was created. Deep

Learning Workbench is also designed to be an umbrella over

the range of tools in the OpenVINO Deep Learning Devel-

opment Toolkit (DLDT) [6] with the intention to simplify

their usage and streamline the workflow of taking the pre-

trained neural model till the deployment to the target plat-

form and user facing application. The key problem is that

the neural model taken as is after training can be not opti-

mally executed on the Intel hardware and should be tuned

and optimized first.

This paper is organized as follows. Section 2 gives a

short overview of existing software solutions. Section 3

contains information on the exposed metrics that are used

to compare performance of neural models. Then, Section 4

considers visualization aspects of neural models. Two key

optimization techniques that empower the Deep Learning

Workbench are highlighted in Section 5. Section 6 contains

key implementation aspects of the system. Finally, conclu-

sions and directions of further research are given in Section

7.

2. Related Work

Due to the huge development of the field, there are nu-

merous works devoted to understanding of the neural net-

works mechanics. One of the most popular topics is visu-



alization of activations distributions and high level features

[11], [12], [18]. Such an approach lets the scientist perceive

how the network learns to adopt its weights for the given

input. It is important to note that such visualizations are ex-

tremely helpful in case of supervised learning in a computer

vision field.

On the other hand, there are multiple contributions to

different ways of representing the topology structure so that

a scientist or an engineer could identify key features of a

topology: examine residual connections, input shape propa-

gation, dimensionality reduction etc. Usually those tools are

organized as Web applications: Tensorboard [8], Netscope

[5], Netron [4], programming libraries: ANNVisualizer [1]

or desktop applications: Net2Vis [9]. Network graph visu-

alization provides access to layers attributes, however, does

not explain network dynamics.

Alongside with the learning properties and model struc-

ture visualization there are several software solutions that

allow to investigate the dataflow of a model during the train-

ing and inference process [17]. Tensorboard is one of the

most proficient tools in the field and it allows to track hard-

ware metrics: computational load, power, peak memory

consumption etc.

In one of the recent research the interesting idea was

proposed as a concept of NTP [10] that is formulated as

a tool providing benchmarking of neural models across

frameworks and hardware. However, to the best of our

knowledge, there is no publicly available piece of software

as well as any details on supported workflows are absent.

Other tools are either focused on a kernel level benchmark-

ing (DeepBench [2]) or are limited to specific workloads

(MLPerf [3]). That implies that they do not provide other

important functionality like model visualization and accu-

racy measurements.

However, the fundamental gap in such tools is absence of

the option to benchmark the neural model during the infer-

ence, apply one of the available optimizations options and

analyze the speedup or a slowdown. Inference efficiency

is the most important aspect after the training is done. Ev-

ery enterprise level workload puts a strong requirement for

a neural model to deliver optimal throughput and latency.

This gap is addressed by the software solution that is pro-

posed in the current paper.

3. Neural Model Metrics

The preliminary survey of experts in the field of Deep

Learning revealed the huge need in collecting, visualiz-

ing and aggregating both topology-level and primitive-level

benchmarking metrics. The proposed software solution ad-

dressed that demand and exposes the metrics described be-

low. The important fact is that the inference on different

hardware as well inference of an original model and its de-

rived tuned models can be compared among each other on

each of the following metrics and create a room for an appli-

cation engineer to either select the particular configuration

for the deployment or continue exploring the optimization

options.

3.1. Theoretical analysis

GFLOP GFLOP metric stands for quantity of Floating

Point Operations measured in billions of operations. This

information is required for a reasearcher to understand if

the given model can be computed on the target hardware.

GIOP GIOP metric stands for quantity of Integer Opera-

tions and is similar to the aforemnetioned GFLOP metric.

For OpenVINO framework models integer operations ap-

pear in the quantized model. An application engineer en-

sures what ratio of the operations is moved to the 8-bit inte-

ger mode and can compare it to the GFLOP of the original

model.

Number of parameters This metric reflects number of

weights in the model.

Minimum and maximum memory consumption This

metric depends on the precision of the model weights and

reflects the theoretical range of memory amount required

for the inference.

3.2. Inference analysis

Configuration of the benchmarking part of the software

solution is one of its core parts and provides a user with a

set of settings: batch and inference streams (Fig. 4).

Throughput Throughput of the model is measured in

FPS (frames per second) by dividing the number of images

that were processed by the total execution time. This metric

is highly used in the intense applications where are lots of

images being processed simultaneously.

Latency Latency of the model is measured in millisec-

onds and represent time spent for processing of a single im-

age (single forward inference of a network).

Per-layer statistics Apart from the high level benchmark

metrics such as Latency and Throughput, statistics is col-

lected for each layer, so that it is possible to compare per-

formance of a particular layer on different hardware, inspect

the selected kernel and computational precision, also there

is the execution order of the primitive.



4. Neural Model Visualization

There is also a growing demand in representing the

model graph as a whole to inspect its building blocks be-

fore and during the inference phase. Inside the OpenVINO

framework there are two main stages of the neural net-

work acceleration: hardware-agnostic general purpose op-

timizations of a model with Model Optimizer component

and hardware-specific optimizations performed during the

inference. The latter optimizations are often hidden from

the application engineer although they could bring insights

on further optimizations of the model.

Inside the Deep Learning Workbench the rendering en-

gine is Netron [4] that allows to visualize both the original

model structure (Fig. 2) and the runtime one (Fig. 3). It is

represented as a Directed Graph in a vertical layout with ar-

rows representing directed data flow between layers. Each

layer has a code color that makes them easily distinguish-

able on the large graph.

5. Neural Model Optimizations

8-bit quantization A lot of investigation was made in the

field of deep learning with the idea of using low precision

computations during inference in order to boost deep learn-

ing pipelines and gather higher performance. For example,

one of the popular approaches is to shrink the precision of

activations and weights values from 32-bit floating point

precision to smaller ones, for example, to 11-bit floating

point or 8-bit integer precision [16], [13], [15].

8-bit computations offer better performance compared to

the results of inference in higher precision (for example,

32-bit floating point precision), because they allow to load

more data into a single processor instruction. Usually the

cost for significant boost is a reduced accuracy. However, it

is proved that the drop in accuracy can be negligible and de-

pends on task requirements, so that the application engineer

can set up the maximum accuracy drop that is acceptable.

From the usability perspective, there is a single parame-

ter that represents the maximum accuracy drop value. How-

ever, quantizing the model requires access to the dataset,

proper configuration of images pre-processing and bench-

marking toolset that brings huge problems to an application

engineer.

Faster Convolutions with Winograds minimal filtering

algorithms There is a known approach to accelerate con-

volutional layers with the Winograd’s minimal filtering al-

gorithms [14]. This optimization requires quite a powerful

hardware with AVX512 instructions. Using the Winograd’s

algorithms for convolution execution can provide increased

performance compared to common implementation. How-

ever, it can be difficult to understand which algorithm would

be faster due to dependency on convolution layer param-

eters and hardware configuration. In particular, several

heuristic approaches are used that take into account the per-

formance of each particular convolution layer and analyze

changes in the execution graph that can lead to performance

overhead.

6. Application Design

The proposed tool is designed as a Web application that

is wrapped in a Docker image and available for use on

premise 1. The application can be launched either on Win-

dows, Linux or macOS OSes. Inside the Docker image

there is an OpenVINO package with all the required tooling.

For accuracy measurement the Open Model Zoo Accuracy

Checker is used, Deep Learning Deployment Toolkit Cal-

ibration tool performs neural networks quantization while

the Benchmark application collects inference metrics and

aggregated reports on the target hardware. A typical user

workflow consists of following steps:

1. conversion of a framework-specific model to the Open-

VINO IR format;

2. import of a model: either uploading of the OpenVINO

IR model or selecting one from the OpenVINO Open

Model Zoo;

3. import of a dataset: uploading of the archive with im-

ages in a layout of ImageNet or Pascal VOC datasets;

4. selecting the target hardware available for inference

on the given machine: CPU, GPU or the Intel Neural

Compute Stick and executing inference;

5. analyzing the theoretical information about the model:

GFLOP, memory consumption etc.

6. performing various experiments to find a configuration

that provides the highest throughput with the minimal

latency value

7. performing quantization of the neural model to 8-bit

within the accepted accuracy drop

8. comparing performance of the quantized model with

the original one

9. comparing performance of original, quantized models

on different hardware

10. selecting the best configuration and apply them in the

customer application

From the design perspective the software solution can

be considered as a SaaS (Software-as-a-Service) and when

1https://hub.docker.com/r/openvino/workbench



Figure 1. Example of inference comparison. There are two set of

points representing different configurations of the benchmarking

engine that can be compared.

Figure 2. Example of network representation after the training.

needed can be adopted to the this scenario with slight mod-

ifications. To this moment the expected use case is running

this tool on the local host of the server where all the mea-

surements are conducted.

7. Conclusion

In this paper a novel software solution is described that

allows to holistically analyse the model performance on

various hardware and not only compare it across the dif-

ferent targets but also to estimate the effect of tuning the

model. Availability of the theoretical analysis, quick vi-

sualization techniques, accuracy measurement, rich set of

benchmarking settings help an application engineer identify

performance bottlenecks and optimize the model inference

accordingly.

The current state of the tool is limited to the support of

only two types of datasets: ImageNet and VOC. Also, there

is more data that can be captured and analyzed as well as

there is a huge need in extending the list of supported tar-

Figure 3. Example of network representation during the inference

process.

Figure 4. Benchmarking settings panel.

gets.

OpenVINO Deep Learning Workbench should be con-

sidered as a robust solution that is designed to cover the

end-to-end flow starting at obtaining the trained model and

finishing at helping the users deploy the model in the cus-

tom application.

References

[1] ANNVisualizer: model visualizer, 2019.

https://github.com/Prodicode/ann-visualizer.

[2] DeepBench: model benchmarking tool, 2019.

https://github.com/baidu-research/DeepBench.

[3] MLPerf: model benchmarking tool, 2019.

https://mlperf.org/.

[4] Netron: model visualizer, 2019.

https://lutzroeder.github.io/netron/.

[5] Netscope: Caffe model visualizer, 2019.

https://ethereon.github.io/netscope/quickstart.html.

[6] OpenVINO Deep Learning Deployment Toolkit, 2019.

https://github.com/opencv/dldt.



[7] OpenVINO toolkit, 2019. https://software.intel.com/en-

us/openvino-toolkit.

[8] Martı́n Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen,

Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghe-

mawat, Geoffrey Irving, Michael Isard, et al. Tensorflow: A

system for large-scale machine learning. In 12th {USENIX}
Symposium on Operating Systems Design and Implementa-

tion ({OSDI} 16), pages 265–283, 2016.

[9] Alex Bäuerle and Timo Ropinski. Net2vis: Transforming

deep convolutional networks into publication-ready visual-

izations. arXiv preprint arXiv:1902.04394, 2019.

[10] Raghavendra Bhat, Pravin Chandran, Juby Jose, Viswanath

Dibbur, and Prakash Sirra Ajith. Ntp: A neural network

topology profiler. arXiv preprint arXiv:1905.09063, 2019.

[11] Dumitru Erhan, Yoshua Bengio, Aaron Courville, and Pascal

Vincent. Visualizing higher-layer features of a deep network.

University of Montreal, 1341(3):1, 2009.

[12] Fred Matthew Hohman, Minsuk Kahng, Robert Pienta, and

Duen Horng Chau. Visual analytics in deep learning: An

interrogative survey for the next frontiers. IEEE transactions

on visualization and computer graphics, 2018.

[13] Kyuyeon Hwang and Wonyong Sung. Fixed-point feedfor-

ward deep neural network design using weights+ 1, 0, and-

1. In 2014 IEEE Workshop on Signal Processing Systems

(SiPS), pages 1–6. IEEE, 2014.

[14] Andrew Lavin and Scott Gray. Fast algorithms for convo-

lutional neural networks. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition, pages

4013–4021, 2016.

[15] Naveen Mellempudi, Abhisek Kundu, Dipankar Das, Dhee-

vatsa Mudigere, and Bharat Kaul. Mixed low-precision deep

learning inference using dynamic fixed point. arXiv preprint

arXiv:1701.08978, 2017.

[16] Vincent Vanhoucke, Andrew Senior, and Mark Z. Mao. Im-

proving the speed of neural networks on cpus. In Deep

Learning and Unsupervised Feature Learning Workshop,

NIPS 2011, 2011.

[17] Kanit Wongsuphasawat, Daniel Smilkov, James Wexler,

Jimbo Wilson, Dandelion Mane, Doug Fritz, Dilip Krish-

nan, Fernanda B Viégas, and Martin Wattenberg. Visual-

izing dataflow graphs of deep learning models in tensorflow.

IEEE transactions on visualization and computer graphics,

24(1):1–12, 2017.

[18] Jason Yosinski, Jeff Clune, Anh Nguyen, Thomas Fuchs, and

Hod Lipson. Understanding neural networks through deep

visualization. arXiv preprint arXiv:1506.06579, 2015.


