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Abstract

The representational differences between generalizing

networks and intentionally flawed models can be insight-

ful on the dynamics of network training. Do memorizing

networks, e.g. networks that learn random label correspon-

dences, focus on specific patterns in the data to memorize

the labels? Are the features learned by a generalizing net-

work affected by randomization of the model parameters?

In high-risk applications such as medical, legal or finan-

cial domains, highlighting the representational differences

that help generalization may be even more important than

the model performance itself. In this paper, we probe the

activations of intermediate layers with linear classification

and regression. Results show that the bias towards simple

solutions of generalizing networks is maintained even when

statistical irregularities are intentionally introduced.

1. Introduction

In this paper, we investigate the representational differ-

ences between Deep Neural Networks (DNNs) that learn to

generalize and those that do not. Understanding the gen-

eralization properties of DNNs can ensure that their de-

ployment in high-risk daily practices will lead to reliable

decisions [7, 8, 11, 20]. The link between learning and

generalization is still unclear, with over parametrized net-

works being able to achieve the best generalization perfor-

mances and fit pure noise at the same time [5, 29, 30]. To

shed some light about the learning behaviors of generaliz-

ing and non-generalizing models, we analyze the optimiza-

tion bias towards simple solutions even when statistical ir-

regularities are intentionally introduced (e.g. randomiza-

tion of the training labels). Are there patterns in the data

that are learned by both generalizing and memorizing net-

works? This paper proposes to consider the activation of an

intermediate layer l as a geometric space and to look at lin-

ear combinations of the neuronal directions, which we call
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linear probes [2], as clues for the interpretation. Given a

model M trained on the main task (e.g. DNN trained on im-

age classification), an interpreter model Mi (e.g. the linear

probe) is trained on an interpretability task in the activation

space of layer l (hence M l
i ). In addition to the generalizing

networks trained on correct data, two types of intentionally

flawed models are used for the main task model M : i) net-

works with random initialization of the trainable parame-

ters as in [1], which we call random networks; ii) networks

trained on image datasets with different fractions of ran-

domized labels (i.e. closed-set noise) as in [22, 28, 29]. For

a given fraction N of corrupted labels, we refer to such net-

work as N-memorizing network. The interpreter model M l
i

computes linear probes in the activation space of a layer l.

The task of M l
i consists of learning either linear classifier

probes [2], Concept Activation Vectors (CAV) [16] or Re-

gression Concept Vectors (RCVs) [12, 13]. Each technique

gives different insights about the learned representations.

Linear classifier probes measure the linear separability of

the classes at intermediate layers of the DNN. CAVs inter-

pret the DNN internal state in terms of human-friendly con-

cepts. RCVs extend the original definition of CAVs from

linear classification of binary concepts (e.g. presence or ab-

sence of a concept) to the linear regression of continuous-

valued concept measures (e.g. the area of an object). In this

work, we focus on linear classifier probes and RCVs.

1.1. Main contributions

Our main contributions and findings are the following:

• We propose an analysis of intentionally flawed mod-

els, i.e. random and N-memorizing networks by lin-

early probing the internal activation space with linear

classifier probes [2] and RCVs [12, 13].

• We show in Sec. 3 that network training increases the

linear separability of the classes in the activation space.

Moreover, simple concepts become linearly regress-

able after training.

• Experiments in Sec 4 suggest that simple concepts

are learned at early layers to solve the memorization



task. These concepts are then passed on to deep lay-

ers, where the random mapping is learned.

• We show in Sec. 5 that DNNs learn the non-corrupted

data distribution earlier than the strong statistical irreg-

ularities artificially introduced by label corruption.

Differently from previous works on memorizing [5, 21, 22,

30] and randomly initialized networks [1, 24], the internal

activations are interpreted with linear probes. In particular,

our experiments focus on the representational differences

between generalizing and faulty models in terms of sim-

ple concepts such as first (color) and second order (texture)

statistics computed on the image pixels1.

2. Related work

Intensive research focused on the comparison between

generalizing and non-generalizing models [1, 4, 5, 18, 21,

22, 24, 28–30]. Part of these [1, 24, 27] suggested the ex-

istence of an ”architecture prior”, that is the impact that

the architecture with randomly initialized parameters has

on the learned representations, hence on the search space

of the optimization. The analysis of models trained on

noise [5, 18, 21, 22, 29, 30] showed that a sufficiently large

DNN can fit data distributions with strong statistical irreg-

ularities, such as random labels [29]. Research in label

noise modeling achieved some robustness to noise, partic-

ularly with mixup data augmentation [31] and loss correc-

tion [4]. Qualitative differences between learning noise and

natural images, however, showed that DNNs are biased to-

wards learning simple patterns before memorizing the out-

of-distribution samples.

On a parallel side, an increasing number of studies has

been addressing the challenging task of understanding what

makes the representations learned by DNNs so successful,

of which extensive surveys can be found in [8, 20]. Post-

hoc interpretability methods are particularly suited to the

analysis of flawed models since they allow to interpret the

representations without the need for retraining or modify-

ing the optimization task. Linear classifier probes [2] and

CAVs [16] showed that the internal activations of a layer

can be interpreted in terms of linear classifiers (of the class

labels in the former and of the binary presence or absence of

a human-friendly concept in the latter). RCVs extended the

interpretability task of CAVs to learning continuous valued

concept measures by linear regression [12,13]. This method

was insightful in the interpretation of DNNs for tasks in the

field of computer vision and in the medical domain [13, 14]

This paper attempts to link the research on randomly ini-

tialized and memorizing networks to the interpretation of

the learned representations with linear models.

1Code for reproducibility at github.com/maragraziani/
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3. Linear probes improve over training

In this paper, the model for the main task M is either a

Multi-Layer Perceptron2 (MLP), a shallow Convolutional

Neural Network3 (shallow-CNN) or an InceptionV3 net-

work [25], trained on different image classification datasets.

The MLP is trained for 1,000 epochs with Stochasitc Gra-

dient Descent (SGD) and learning rate 0.01 as in [5]. The

shallow-CNN also follows the setup in [5] and is trained

for 100 epochs with SGD and learning rate 0.01. Incep-

tionV3 is trained for 1,000 epochs with the Adam optimizer

and standard parameters (learning rate 0.01, β1 0.9 and β2

0.999). Note that all the N-memorizing networks converge

to a full overfit of the training data. The model choices are

based upon relevant research in understanding deep learn-

ing [1, 2, 5, 29].

The MLP is trained on the dataset of handwritten dig-

its MNIST [19], while the shallow-CNN is trained from

scratch on a small subset of ImageNet [10]. The latter,

referred to as ImageNet10, contains fewer well separated

classes to better enhance the differences between general-

izing and flawed networks. Five texture-like classes with

high texture appearance (namely bookshop, butcher, chain-

link fence, cliff dwelling and confectionery) and five object-

like classes (namely acoustic guitar, ambulance, chihuahua,

golden retriever, ladybug) are retained following the distinc-

tion between texture-like and object-like classes proposed

in [3]. As a first analysis, we use linear classifier probes

as the interpreter model Mi to evaluate the linear separabil-

ity of the classes during training. Fig. 1 shows the predictive

performance of the linear classifier probes on the activations

φl of layer l in generalizing and flawed models. Evidently,

training increases the linear separability of the classes in the

learned internal representations.

(a) MNIST (b) ImageNet10

Figure 1: Predictive performance of linear probes against

training epochs on a held-out validation set for (a) MNIST

and (b) ImageNet10; for the three types of networks: ran-

domized, 0.4-memorizing and generalizing. Best on screen.

As a further analysis, InceptionV3 is trained to classify

2fc(4,096)-fc(4,096)-fc(#classes) with relu activations
3conv(200,5,5)-mp(3,3)-conv(200,5,5)-mp(3,3)-gap-fc(384)-fc(192)-

fc(#classes) with bn and relu activations



the Describable Texture Dataset (DTD) [9]. DTD is a col-

lection of 5,640 textural images organized in 47 categories

inspired by human-centric attributes of perceptual proper-

ties of textures. The training images of original sizes rang-

ing between 300× 300 and 640× 640 pixels are randomly

cropped during training to the standard input size of Incep-

tionV3 (299× 299).

We extract concept measures of first and second order

statistics from the image pixels. The colorfulness metric,

based on opponent color spaces, is computed as in [15].

Besides, individual measures of the percentage of a specific

color in the image are computed by applying the color quan-

tization of the HSV (Hue, Saturation, Value) space shown

in Fig. 2a. The HSV colorspace is closer to the human

representation of hue ranges than RGB. For each of the

eight bin quantizations, we define a distinct concept mea-

sure. For example, the blue-ness of the image is computed

as #bluepixels

#pixels
. Images of the DTD dataset sorted for in-

creasing values of blue-ness can be inspected in Fig. 2b.

The same technique is applied to the saturation ranges to

obtain measures of white-ness and black-ness.

(a) HSV quantization (b) Increasing blue-ness

Figure 2: Measuring the presence of individual colors in the

image. (a) Quantization of the HSV color space (b) Exam-

ples of DTD images sorted from low to high blue-ness.

In this experiment, the interpreter model Mi is the RCV

linear probe computed for a concept of interest. We ana-

lyze 11 concepts of color (i.e. the eight hue ranges, white-

ness, black-ness and colorfulness) and six concepts of tex-

ture (i.e. energy, ASM, dissimilarity, homogeneity, contrast

and correlation). Fig. 3 shows the determination coefficient

R2 of the RCV probes against the training epochs. For best

presentation, we select two concepts of color and two con-

cepts of texture and discuss similarity and differences of the

trends with the remaining concepts.The increasing values

of R2 illustrate the learning of the concepts during train-

ing. We observe two main trends in the results. For some

concepts, namely orange (Fig 3a left), dissimilarity (Fig. 3b

left), contrast, correlation, homogeneity, red and colorful-

ness, the R2 of the probes in the 1-memorizing network is

markedly below the R2 in the generalizing network. The

R2 of the RCVs for the concepts green (Fig 3a right), en-

ergy (Fig. 3b right), ASM, cyano, magenta, purple, yellow,

black and blue, however, do not show significant differences

between the two networks. A singular case is observed with

white-ness, which reaches high R2 after only 50 epochs for

both the generalizing and memorizing network. The R2 re-

mains almost constant over training, suggesting that white-

ness is quickly learned at the beginning of training and then

remains easy to regress in both networks.

We further evaluate the RCVs by computing the Mean

Squared Prediction Error (MSPE) on 376 data points that

were not used in the estimation of the regression coeffi-

cients. The MSPE of random networks, 1-memorizing net-

works and generalizing networks are compared in Table 1.

Network training drastically reduces the MSPE of both 1-

memorizing and generalizing networks, as shown by the

comparison with the random network.

Table 1: MSPE for concepts of texture and color in mixed0

of InceptionV3 trained on DTD. Lower MSPE reveals

higher predictive performance of the RCV.

model cyano energy orange correlation

random 2× 10
5

2× 10
6

7× 10
5

8× 10
5

1-mem. 0.032 0.017 0.29 0.10

gener. 0.070 0.030 0.21 0.08

4. Early layers focus on simple concepts

We define the complexity of a concept according to its

position in the hierarchical structure of visual categories [6].

Simple concepts include low-level visual attributes of color

and texture, while attributes of material, object parts, full

objects and scenes have increasing complexity as they rep-

resent a progression to more abstract concepts. The results

in Table 1 show that texture and color are learned by early

layers of 1-memorizing networks. If we consider the fact

that the main task of 1-memorizing networks is to learn the

random mapping between the data points and the corrupted

labels, we can conclude that learning texture and color is

useful to the task. In other words, these simple concepts

are learned to simplify the clustering of the learned repre-

sentations to match the random labeling scheme. However,

the conjecture proposed by Tishby in [26] claims that DNN

training consists of an initial fitting phase and a subsequent

compression phase. One could further analyze with lin-

ear classifier probes at different network depths whether the

separability of the classes in the activation space happens

before or after these concepts are learned. In the former

scenario, the concepts are likely used to memorize the sam-

ples. In the latter, compression happens after memorization

as suggested in [26]. Future work will address this point.

In the next experiment, we train N-memorizing MLPs

with label corruption ratios ranging from zero to one on

the MNIST dataset. We increase the MLP depth to six

hidden layers and we probe simple concepts of shape for

the MNIST task such as area, eccentricity and perimeter as

in [12]. All concepts are best regressed in the representa-

tion space of the first layer, φ1 (see Fig. 4 showing the RCV



(a) Color: green and orange (b) Texture: dissimilarity and energy

Figure 3: R2 of the regression of concepts of color (1st order statistics of pixel values) and texture (2nd order statistics) at

intermediate layers of InceptionV3 (1-memorizing and generalizing) for DTD images. Best seen on screen.

probe of area. The regression of other concepts presents

comparable behaviors). Increasing the fraction of label cor-

ruption does not affect the learning of the concepts in the

first layer. By probing the layers at different depths, we in-

spect the representational differences introduced by the in-

creasingly enforced memorization. As depth increases, the

R2 is more and more impacted by label corruption. We find

that these results underline the importance of depth in mem-

orizing network, already discussed in [21,23]. In particular,

depth seems to play a fundamental role in the rearranging of

the internal clustering of the data points to match the statis-

tical irregularities introduced by the random labeling. Lin-

ear classifier probes could be used to further confirm this

hypothesis.

Figure 4: R2 of the RCVs of area against label corruption at

each of the 6 hidden layers of the MLP trained on MNIST.

5. True labels are learned before random labels

We monitor the convergence of a 0.5-memorizing Incep-

tionV3, separating the performance on the true and the cor-

rupted labels. We use a single training set up rather than dif-

ferent settings as in [5,29]. We find this approach more rep-

resentative of a real-case scenario where unintended memo-

rization may happen on a fraction of the original dataset. In

Fig. 5, we show that the network learns more easily the true

data distribution than the corrupted one. As we expected,

the underlying distribution of natural images is easier to fit

during training than randomly labeled images. Our results

align with the work in [4], which models the training loss

as a bimodal distribution4. Similar results were obtained on

the CIFAR10 dataset [17].

Figure 5: Accuracy on the true and random labels of Incep-

tionV3 (0.5-memorizing) on DTD.

6. Conclusion

In this paper, we analyzed the differences in the repre-

sentations learned by flawed and generalizing models. The

analysis of the activations of intermediate layers with linear

probes (classifiers, CAVs or RCVs) adds a new viewpoint

to previous works [5,21,29,30] by interpreting model flaws

with human-friendly concepts. Simple concepts are learned

already at early layers, even in fully memorizing networks.

Monitoring the learning curves on portions of data, rather

than on the entire dataset, highlighted the slower conver-

gence of memorization, particularly at early epochs. We

believe that these observations can help to notice the mem-

orization of incorrectly-labeled samples or outliers. This is

particularly relevant in medical applications, where impre-

cise labels may affect the learning of the true underlying

distribution of the data.

4 [4] was not yet published at the time of the experiments.
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