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Abstract

The ability of predicting future frames in video se-

quences, known as video prediction, is an appealing yet

challenging task in computer vision. This task requires an

in-depth representation of video sequences and a deep un-

derstanding of real-word causal rules. Existing approaches

often result in blur predictions and lack the ability of ac-

tion control. To tackle these problems, we propose a frame-

work, called VPGAN, which employs an adversarial infer-

ence model and a cycle-consistency loss function to em-

power the framework to obtain more accurate predictions.

In addition, we incorporate a conformal mapping network

structure into VPGAN to enable action control for gener-

ating desirable future frames. In this way, VPGAN is able

to produce fake videos of an object moving along a specific

direction. Experimental results show that a combination of

VPGAN with some pre-trained image segmentation models

outperforms existing stochastic video prediction methods.

1. Introduction

Acquiring an in-depth understanding of videos has been

a cornerstone problem in computer vision. This problem

has been studied by various researchers from different per-

spectives, among which video prediction has attracted much

attention. Video prediction aims to generate the pixels of

future frames given a sequence of context frames [15, 16].

This task finds many applications ranging from autonomous

driving, robotic planning, to object tracking. In practice,

unlabelled video sequences can be gathered autonomously

from a sensor or recording device. A machine capable of

predicting future events using these video sequences in an

unsupervised manner will have gained extensive and deep

knowledge about its physical environment and surroundings

[2, 14].

However, despite its appealing prospects, accurate video

prediction remains an open problem. The major challenge

is the inherent uncertainty in the dynamics of the world [6].

A typical example is that the future trajectory of a ball hit-

ting the ground is inherently random. Deterministic meth-

ods [16, 17, 20] are unable to handle this inherent uncer-

tainty. Although adversarial based methods could predict

more acute results, they lack the ability to produce specific

’future predictions.’

To tackle these problems, we present in this paper a

new GAN-based framework, named VPGAN, for stochas-

tic video prediction. The main contributions of our work

include the following:

• We introduce a new adversarial inference model de-

signed for stochastic video prediction and incorporate

a novel cycle-consistency loss into the model.

• We incorporate a conformal mapping [1] network

structure into our VPGAN framework to enable action

control for generating desirable future frames.

• We combine pre-trained image segmentation models

[3, 18] with our VPGAN framework to exploit their

effectiveness in image understanding. Having more se-

mantic understanding of the frames in video sequences

would enable VPGAN to generate more accurate pre-

dictions.

The combination of our VPGAN framework with the

pre-trained image segmentation models outperforms exist-

ing stochastic video prediction methods as shown in our ex-

perimental results reported in the paper.

2. Method

The task of stochastic video prediction can be

formalized as learning a multivalued function f :
RN×M×T �→ RN×M from a collection of T context frames

X0, . . . , XT−1, each of which is a matrix of N rows and M

columns of pixels, to some possible future frames {XT }.

It is natural to think that the transformation from frame

Xt−1 to frame Xt is caused by some variation Zt. In [7,



Figure 1. Illustration of our VPGAN learning process. Both Gψ

and Gθ are generators. Discriminator D(X,Z) tries to discrimi-

nate between true pair (X,Z) and fake pair (X ′, Z′).

21, 22], the latent variable Zt is considered as the motion of

objects. However, in practice, Zt contains not only object

motion, but also variations of the physical environment and

surroundings. In fact, due to adding some constraints to the

latent variable, Zt is the accumulation of multiple factors,

i.e., Zt = Z1
t + Z2

t + . . . + Zk
t . Furthermore, because the

variation between frames is small as environmental changes

usually don’t take place in a sudden, we assume the prior

distribution of Zt is a standard Gaussian N(0, I). Based

on this assumption, the video data can be described as a

sequence of pairs (X0, Z0), . . . , (Xt, Zt), 0 ≤ t < T .

2.1. Adversarial Inference

Let X represent the frames and let Z represent the vari-

ations under consideration. Let pdata(X) represent the true

distribution of X . We wish to construct a joint distribu-

tion q(X,Z) such that q(X,Z) is a good approximation of

pdata(X).

Figure 1 illustrates our VPGAN learning process dur-

ing training. VPGAN employs two generators: pψ =

Gψ(X,Z) and qθ = Gθ(X,Z). Let Xt−n:t−1 denote

the frames Xt−n, . . . , Xt−1 and let Zt−n:t−1 denote the

variations Zt−n, . . . , Zt−1. Intuitively, past variations

should have a ‘momentum impact’ on the present variation.

Thus, we generate the variation at time t, Zt, conditioned

on the past frames Xt−n, . . . , Xt−1 and past variations

Zt−n, . . . , Zt−1, i.e., Zt ∼ pψ(Z|Xt−n:t−1, Zt−n:t−1).
Variations Zt−n:t−1 are contained in the frames Xt−n:t−1

but putting them explicitly through the input would help pψ
focus more on the ‘momentum impact.’ The generator pψ
in this case could be viewed as an encoder that encodes

the past variations Zt−n, . . . , Zt−1 into the latent variable

space.

On the other hand, we generate the fake frame at time

t, X ′

t, conditioned on variation Z ′

t sampled from a prior,

qprior(Z), and a single past frame Xt−1, i.e., X ′

t ∼
qθ(X|Z ′

t, Xt−1). Here, conditioning on one single past

frame is reasonable as Z represents the changes between

frames, and conditioning on less information would enforce

Z to learn the ‘true’ variation efficiently. Thus, the genera-

tor qθ serves as a decoder in our framework, which decodes

the variation Z ′

t and generates new frame X ′

t.

When the training is completed, the two joint distribu-

tions q(X,Z) and p(X,Z) match with each other.

Denote pψ(Z|Xt−n:t−1, Zt−n:t−1) by

Gψ(Xt−n:t−1, Zt−n:t−1) and qθ(X|Z ′

t, Xt−1) by

Gθ(Z
′

t, Xt−1). The adversarial loss function used in

the training is calculated as:

Ladv = EXt∼pdata(X)[

logD(Xt, Gψ(Xt−n:t−1, Zt−n:t−1))]

+ EZ′

t∼qprior(Z)[

1− logD(Gθ(Z
′

t, Xt−1), Z
′

t)] (1)

To generate or predict the next frame Xt based on the

past frames Xt−n:t−1, the past frames Xt−n:t−1 and past

encoded vectors Zt−n:t−1 are sent to the encoder pψ , which

generates the next encoded vector (variation) Zt. Then the

decoder qθ takes Xt−1 and Zt together, and predicts the

next frame Xt. Depending on different variations (latent

variables) Zt, qθ can predict multiple possible next (future)

frames {XT }.

During training and inference, we calculate pψ and qθ as

follows:

pψ(Z|Xt−n:t−1, Zt−n:t−1) ∼ N(µψ(X,Z), σψ(X,Z)I)
(2)

qθ(X|Zt, Xt−1) ∼ N(µθ(X,Z), σθ(X,Z)I) (3)

Based on the assumption that the prior distribution of Z is a

standard Gaussian, we have

qprior(Z) ∼ N(0, I) (4)

The sampling procedure used in calculating pψ and qθ
can be computed by the re-parameterization trick [11].

Specifically, instead of sampling directly from the Gaussian

function with the complicated parameters, we treat the sam-

pling procedure as a deterministic transformation of some

noise such that the transformation’s distribution is com-

putable. Thus, we calculate Zt as:

Zt = µψ(X,Z) + σψ(X,Z)⊙ ξ, ξ ∼ N(0, I) (5)

where ⊙ denotes the Hadamard product (element-wise

product).

2.2. Cycle Consistency

Cycle consistency is based on the idea of using transitiv-

ity as a way to regularize structured data. Here we propose

a new cycle consistency loss function for video prediction.

With the same generator in (3), we generate the frame at

time t − 1, Xt−1, conditioned on the opposite of Zt and

Xt. That is, we generate X̄t−1 conditioned on −Zt and Xt

where X̄t−1 is approximately equal to Xt−1 as expressed in

(6):



Xt−1 ≈ X̄t−1 ∼ qθ(X| − Zt, Xt) (6)

This is reminiscent of the cycle consistency loss used for

image-to-image translation in [23]. However, our cycle con-

sistency loss function is different from that in [23] because

our loss function is mainly designed for video prediction

rather than image translation. Since the prior Zt follows a

standard Gaussian distribution (cf. (4)), it is natural to con-

sider the opposite variation to be the negative of Zt. We

generate the current frame Xt conditioned on the previous

frame Xt−1 and variation Zt. On the other hand, with the

same generator, we generate the previous frame Xt−1 con-

ditioned on the current frame Xt and the negative of Zt.

Mathematically, denote qθ(X|Zt, Xt−1) by

Gθ(Zt, Xt−1) and qθ(X| − Zt, Xt) by Gθ(−Zt, Xt).
Our cycle consistency loss is calculated as

L1
cycle = EXt,Xt−1∼pdata(X){

‖ Xt −Gθ(Zt, Gθ(−Zt, Xt)) ‖1

+ ‖ Xt−1 −Gθ(−Zt, Gθ(Zt, Xt−1)) ‖1}(7)

Here, we utilize L1 loss as the reconstruction loss. The

loss function Lcycle in (7) only considers one-step cycle

consistency. We can generalize the formula in (7) to take

into account cycle consistency of multiple steps (more pre-

cisely, k steps) for video prediction. We first define a single-

multi loss as follows:

lkcycle = EXt,Xt−k∼pdata(X){‖ Xt −Gθ(Zt,

Gθ(Zt−1, . . . , Gθ(−Zt, Xt))) ‖1

+ ‖ Xt−k −Gθ(−Zt,

Gθ(−Zt−1, . . . , Gθ(Zt, Xt−k))) ‖1} (8)

Our multi k step cycle-consistent loss is generalized as

summing up all single-multi losses:

Lk
cycle =

k∑

1

ai · l
i
cycle (9)

It could be very time consuming to calculate Lk
cycle for

k ≥ 2 since the procedure includes iterative calculation of

generator Gθ. For instance, l2cycle would require 8 times of

calculation, and L2
cycle would require 12 times of calcula-

tion.

Combining the multi-cycle loss and multi-reconstruction

loss, our overall loss, denoted as Lloss, is calculated as fol-

lows,

Lloss = αLadv + βLk
cycle + λLk

recon (10)

The perceptual loss [10] is widely used in evaluating the

reconstruction quality of images; it could be the distance

on the K-th feature map, for some K, of some convolu-

tional neural networks, such as VGG16 [19], ResNet [9]

pre-trained on ImageNet [5]. In our paper, we applied sim-

ple ResNet [9] to our model.

Note that, although the multi-step cycle loss enforcing

long-dependency consistency likely enables more accurate

action learning and predictions, its training and inference

time would be approximately k times larger than that for

the 1-step cycle loss; furthermore it may suffer from gra-

dient loss. Therefore, in our VPGAN framework, we only

utilize the one-step cycle consistency loss given in (7). The

evaluation of different k values on Lk
cycle will be in a future

paper.

2.3. Action Control

In the previous subsection, we use Zt and −Zt to repre-

sent the opposite variations in the video space H. Specifi-

cally, for a movement dataset, Zt should be able to learn the

moving direction of an object, and then −Zt should mainly

represent the object’s moving in the opposite direction. That

is, from the encoding space (i.e., latent variable space) Z to

the video space H, we preserve what we call a ‘symme-

try’ property, meaning that if Z1, Z2 are symmetric in the

encoding space Z , then the corresponding generated move-

ments should be symmetric in the video space H.

In addition, we wish to manipulate the latent vari-

able space Z so as to generate desirable moving direc-

tions, through preserving ‘orthogonality,’ or more precisely,

through preserving angles between the encoding space Z
and the moving directions of an object. This orthogonality

property can be preserved by first enforcing the latent vari-

able space Z to be R2. Although the moving direction of

an object in a video sequence is in R2, the latent variable

Z ∈ R2 may not simply represent the moving direction of

the object.

Thus, the angles between any two vectors in the latent

variable space R2 may not be preserved in the decoding

process. To overcome this problem, we add a network to

our framework to preserve such angles. This network acts

as a mapping, denoted τ , which maps a latent variable from

the latent variable space Z to the moving direction space

D. The moving direction v(Xt−1, Xt) of an object between

frames Xt−1 and Xt can be computed by running an opti-

cal flow algorithm [4]. Thus, our modified model consists

of two decoders: one from the latent variable space Z (i.e.,

R2) to the video space H as discussed in the previous sub-

sections, and the other decoder, τ , from the latent variable

space Z to the moving direction space D. Figure 2 illus-

trates this modified model.

The moving direction loss, denoted Lmoving , is calcu-

lated as:

Lmoving = |
< τ(Z), v(Xt−1, Xt) >

|τ(Z)|· |v(Xt−1, Xt)|
− 1| (11)



Figure 2. Illustration of our modified model for action control.

where < · > represents the inner product of two vectors.

Such a loss function penalizes the angle difference between

two vectors. Our overall training loss is updated to take into

account the moving direction loss, and is calculated as:

Lloss = αLadv + βLk
cycle + λLk

recon + µLmoving (12)

The Adam optimizer [12] is employed to optimize Lloss.

Based on a mathematical concept known as ‘conformal

mapping’ [1], we introduce and add the network, τ , to our

model. A mapping f is conformal iff it is homomorphic

and its derivative is nowhere zero. In our VPGAN frame-

work, the mapping τ is implemented using a 3-layer affine

transform. It is very easy to prove that such an affine trans-

form enforces τ to be conformal, therefore it preserves an-

gles between any two vectors through ′0′. In this way, if

we know a latent variable Z moving toward a specific di-

rection, we can control the generated moving direction by

manipulating the latent variable Z (through rotating with

some angle since the angle is preserved between the latent

variable space Z and the moving direction space D). Under

this circumstance, we actually do not need to know details

concerning Z such as velocity, momentum and other infor-

mation.

The advantages of our proposed action control algorithm

are the following:

• It suffices to enforce a conformal mapping τ from the

latent variable space Z to the moving direction space

D (see Figure 2). It is not necessary to handle the latent

variables Z1
t , . . . , Z

n
t individually.

• Even when the latent variables accumulate many dif-

ferent factors, such as environmental changes, momen-

tum information and so on, our action control algo-

rithm is still able to generate objects moving in the de-

sired direction.

3. Results

A series of experiments were conducted to evaluate

the performance of our VPGAN framework on different

datasets, including BAIR [8] and KTH Action Dataset [13].

Figure 3. Performance results of our approach on BAIR and KTH

datasets compaired with SVG-LP, SV2P and deterministic models.

The BAIR robot pushing dataset [8] involves a series of

videos generated by a Sawyer robotic arm pushing a variety

of objects. All of the videos have relatively similar sur-

roundings (table settings) with a static background. Each

video consists of actions taken by the robotic arm corre-

sponding to the commanded gripper pose. The resolution

of the videos is of 64 × 64, therefore, our input dimension

is 64× 64× 3. We conditioned on 10 frames to produce 30

frames.

The KTH action dataset [13] contains various types of

videos collected in real-world cameras including a human

subject doing one of six activities (walking, jogging, run-

ning, boxing, hand waving, and hand clapping). For the

first three activities, the human enters and leaves the frame

multiple times, leaving the frame empty with a mostly static

background for multiple frames at a time.

Figure 3 shows performance results of our VPGAN

model combined with pre-trained image segmentation mod-

els [3, 18] in comparison with existing SVG-LP [6], SV2P

[2] and deterministic [16] methods. It can be seen from

Figure 3 that our approach performs better than the related

methods.

4. Conclusion

We presented a new approach for video prediction with

action control. This approach consists of a new adversarial

inference model, a novel cycle-consistency loss function,

and a conformal mapping network structure for enabling

action control. Our experimental results demonstrated good

performance of the proposed approach and its superiority

over existing methods.
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