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Abstract

Stochastic variational inference for Bayesian deep neural

networks (DNNs) requires specifying priors and approximate

posterior distributions for neural network weights. Specify-

ing meaningful weight priors is a challenging problem, par-

ticularly for scaling variational inference to deeper architec-

tures involving high dimensional weight space. Based on em-

pirical Bayes approach, we propose Bayesian MOdel Priors

Extracted from Deterministic DNN (MOPED) method to

choose meaningful prior distributions over weight space us-

ing deterministic weights derived from the pretrained DNNs

of equivalent architecture. We empirically evaluate the pro-

posed approach on real-world applications including image

classification, video activity recognition and audio classifica-

tion tasks with varying complex neural network architectures.

The proposed method enables scalable variational inference

with faster training convergence and provides reliable un-

certainty quantification.

1. Introduction

Current deep neural networks (DNNs) make overly con-

fident decisions and do not provide uncertainty estimates,

which is crucial for informed decision-making. Probabilis-

tic Bayesian models provide principled ways to gain in-

sight about data and capture reliable uncertainty estimates.

Bayesian neural networks [20, 6] have allowed bridging

deep learning and probabilistic Bayesian theory to leverage

the strengths of both methodologies. Variational inference

(VI) [12] is an analytical approximation technique to learn

the posterior distribution of weights in Bayesian neural net-

works. VI methods formulate the Bayesian inference prob-

lem as an optimization-based approach which lends itself

to the stochastic gradient descent (SGD) based optimiza-

tion used in training DNN models, referred as stochastic
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variational inference (SVI). Variational inference with gen-

eralizable formulations [9, 3, 21] has renewed interest in

Bayesian neural networks.

Variational inference for Bayesian neural networks in-

volves choosing prior distributions and approximate poste-

rior distributions for neural network weights. Specifying

meaningful weight priors is a challenging problem and is an

active area of research [30, 19, 1, 28]. Also, scaling varia-

tional inference in deeper model architectures involving high

dimensional weight space is an open problem. In [14, 27],

hybrid Bayesian DNN architectures are used for complex

computer vision tasks to achieve scalable variational infer-

ence by balancing complexity of the model, while providing

benefits of Bayesian inference.

Our main contribution is to propose MOPED, a simple

and yet efficient method for initializing weight priors to

enable scalable variational inference in Bayesian DNNs. In-

spired by empirical Bayes [22, 4] methods and transfer learn-

ing [25] approaches, we propose to specify meaningful priors

for Bayesian DNNs based on the deterministic weights of

pretrained DNN models obtained from maximum likelihood

estimates. The empirical results indicate proposed approach

guarantees training convergence for the models along with

better uncertainty estimates without sacrificing the accura-

cies provided by deterministic DNNs.

2. Variational Inference in Bayesian DNNs

Given training dataset D = {x, y} with inputs

x = {x1, ..., xN} and their corresponding outputs y =
{y1, ..., yN}, in parametric Bayesian setting we would like

to infer a distribution over parameters w as a function

y = fw(x) that represents the DNN model. A prior distribu-

tion is assigned over the weights p(w) that captures our prior

belief as to which parameters would have likely generated the

outputs before observing any data. Given the evidence data

p(y|x), prior distribution and model likelihood p(y |x,w),
the goal is to infer the posterior distribution over the weights



p(w|D). Variational inference approximates a complex prob-

ability distribution p(w|D) with a simpler distribution qθ(w),
parameterized by variational parameters θ while minimizing

the Kullback-Leibler (KL) divergence [2, 7]. During the

training phase in Bayesian DNNs, variational inference opti-

mizes the log evidence lower bound (ELBO) (Equation 1)

by performing stochastic sampling of weight parameters

from qθ(w) and p(w) distributions, while minimizing the

KL-divergence between the two distributions.

L :=

∫
qθ(w) log p(y|x,w) dw −KL[qθ(w)||p(w)] (1)

3. MOPED: Efficient priors for Bayesian DNN

The weights derived from pretrained deterministic models

through maximum likelihood estimation can provide the

best indication of prior knowledge about the probability

distributions of weights in Bayesian DNNs before inferring

the posteriors of corresponding weights through stochastic

variational inference. We propose to initialize parameters of

the weight priors in Bayesian DNNs based on the weights

obtained from pretrained DNNs of equivalent neural network

architectures.

We illustrate our proposed approach on mean-field vari-

ational inference. For mean-field variational inference in

Bayesian DNNs, each weight is independently sampled from

the Gaussian distribution w = N (w, σ), where w is mean

and variance σ = log(1 + exp(ρ)). In order to ensure

non-negative variance, σ is expressed in terms of softplus

function with unconstrained parameter ρ. Here we propose

to choose the w mean of weight priors from the deterministic

weights of pretrained DNN of equivalent architecture.

w = wd; ρ ∼ N (ρ,∆ρ)

w ∼ N (wd, log(1 + eρ))
(2)

where, wd represents weights obtained from deterministic

DNN model, and (ρ, ∆ρ) are hyper parameters (mean and

variance of Gaussian perturbation for ρ).

For Bayesian DNNs of complex architectures involving

very high dimensional weight space, choice of ρ can be

sensitive as values of the weights can vary by large margin

with each other. So, we propose to initialize the weight priors

with wd and ρ given in Equation 3:

w = wd ; ρ = log(eδ|wd| − 1)

w ∼ N (wd, δ | wd |))
(3)

where, δ is initial perturbation factor for the weight in terms

of percentage of the pretrained deterministic weight values.

4. Experiments

We demonstrate the benefits of MOPED method for vari-

ational inference with extensive empirical experiments. We

showcase the proposed MOPED method helps Bayesian

DNN architectures to achieve better model performance,

faster training convergence and reliable uncertainty esti-

mates. We evaluate proposed method on real-world ap-

plications including image and audio classification, and

video activity recognition. We consider multiple architec-

tures with varying complexity to show the scalability of

method in training deep Bayesian models. Our experiments

include: a) LeNet architecture for MNIST [17] digit clas-

sification, b) Simple convolutional neural network (SCNN)

consisting of two convolutional layers followed by two

dense layers for image classification on Fashion-MNIST

(F-MNIST) [31] datasets, b) ResNet-20 and ResNet-56 ar-

chitectures for the image classification on CIFAR-10 [15]

dataset, c) VGGish[11] for audio classification on Urban-

Sound8K [24] dataset and d) ResNet-101 C3D [10] for video

activity classification on UCF-101[26] dataset.

We implemented above Bayesian DNN models

and trained them using Tensorflow and Tensorflow-

Probability [5] frameworks. The variational layers are

modeled using Flipout [29], an efficient method that

decorrelates the gradients within a mini-batch by implicitly

sampling pseudo-independent weight perturbations for each

input. The model weights obtained from the trained DNN

models are used in MOPED method to initialize Gaussian

priors over weights (Equation 2 and 3 ), as described in

Section 3.

During inference phase, predictive distributions are ob-

tained by performing multiple stochastic forward passes over

the network while sampling from posterior distribution of

the weights (40 Monte Carlo samples in our experiments).

We evaluate the model uncertainty using Bayesian active

learning by disagreement (BALD) [13], which quantifies

mutual information between parameter posterior distribution

and predictive distribution. Following [18], quantitative com-

parison of uncertainty estimates are made by calculating area

under the curve (AUC) of precision-recall (auPR) values by

retaining different percentages (0.5 to 1.0) of most certain

test samples (i.e. ignoring most uncertain predictions based

on model uncertainty estimates).

4.1. Weight priors with MOPED

In Table 1, classification accuracies for architectures with

increasing complexity are presented. Bayesian DNNs with

priors initialized with MOPED method achieves similar or

better predictive accuracies as compared to equivalent DNN

models. Bayesian DNNs with random initialization of Gaus-

sian priors has difficulty in converging to optimal solution

for the complex architectures (ResNet-101 C3D and VG-

Gish) with hundreds of millions of trainable parameters. It is

evident from these results that MOPED method guarantees

the training convergence even for the complex models when

trained DNN model of equivalent architecture is available.



Bayesian DNN Validation Accuracy

Complexity Bayesian DNN

Dataset Modality Architecture (# parameters) DNN
Random

priors
MOPED

MNIST Images LeNeT 442,218 0.994 0.993 0.995

F-MNIST Images SCNN 442,218 0.921 0.906 0.923

CIFAR-10 Images
Resnet-20 546,314 0.911 0.878 0.916

Resnet-56 1,714,250 0.926 0.896 0.927

UrbanSound8K Audio VGGish 144,274,890 0.817 0.143 0.819

UCF-101 Video ResNet-101 C3D 170,838,181 0.851 0.029 0.867

Table 1: Comparison of the accuracies for architectures with different complexities and input modalities. MOPED method obtain reliable

uncertainty estimates from Bayesian DNNs while achieving similar or better accuracy as deterministic DNNs.

(a) Training convergence curves (b) AuPR curves (c) Precision-recall

Figure 1: Comparison of MOPED and random initialization of priors for Bayesian ResNet-20 and ResNet-56 architectures. (a) training

convergence, (b) AuPR for different percentage of retained data based on model uncertainty and (c) precision-recall plots.

Figure 2: Accuracy vs Confidence curves: Networks trained on

MNIST and tested on both MNIST and the NotMNIST (out-of-

distribution) test sets.

In Figure 1, comparison of MOPED and random ini-

tialization of priors is shown for Bayesian ResNet-20 and

ResNet-56 architectures trained on CIFAR-10 dataset. The

auPR plots [18] capture the precision-recall AUC values for

different percentage of most certain predictions based on the

model uncertainty estimates. Figure 1 (a) shows the faster

convergence of MOPED method, while achieving the better

accuracy values. Figure 1 (b) shows that MOPED method

provides higher auPR values than the random initialization

and also that auPR increases as most uncertain predictions

are ignored based on the model uncertainty, indicating the

method enables superior performance and reliable uncer-

tainty estimates. In Figure 1 (c), the precision-recall plots

show MOPED method provides better precision-recall val-

ues compared to random initialization of priors. We show the

results for different selection of ρ (details are in Section 3)

values. In Figure 3, we show auPR plots with different δ

values as mentioned in Equation 3.

4.2. Robustness to out-of-distribution data

In order to evaluate robustness of our method (SVI

MOPED) and usefulness of statistical inference for deci-

sion making, we compare state-of-the-art probabilistic deep



(a) Bayesian ResNet-20 (CIFAR-10)

(b) Bayesian ResNet-101 C3D (UCF-101)

Figure 3: Precision-recall AUC (auPR) plots with different δ scale

factors for initializing variance values in MOPED method.

learning methods for prediction accuracy as a function of

model confidence. Following the experiments in [16], we

trained our model on MNIST training set and tested it on

a mix of examples from MNIST and NotMNIST1 (out-of-

distribution) test set. The accuracy as a function of confi-

dence plots should increase monotonically, as higher accu-

racy is expected for more confident results. A robust model

should provide low confidence for out-of-distribution sam-

ples while providing high confidence for correct prediction

from in-distribution samples. The proposed variational in-

ference method with MOPED priors provides more robust

results as compared to the MC Dropout [7] and deep model

ensembles [16] approaches (shown in Figure 2).

We evaluate the uncertainty estimates obtained from

MOPED method to detect out-of-distribution data. Out-

of-distribution samples are data points which fall far off

from the training data distribution. We evaluate two sets of

out-of-distribution detection experiments. In the first set, we

use CIFAR-10 as the in-distribution samples trained using

ResNet-56 Bayesian DNN model. TinyImageNet [23] and

SVHN [8] datasets are used as out-of-distribution samples

1http://yaroslavvb.blogspot.co.uk/2011/09/notmnist-dataset.html

(a) Model uncertainty (Bayesian ResNet-56)

(b) Model uncertainty (Bayesian SCNN)

Figure 4: Density histograms obtained from in- and out-of-

distribution samples.

which were not seen during the training phase. The den-

sity histograms (area under the histogram is normalized to

one) for uncertainty estimates obtained from the Bayesian

DNN models are plotted in Figure 4. The density histograms

in Figure 4 (a) & (b) indicate higher uncertainty estimates

for the out-of-distribution samples and lower uncertainty

values for the in-distribution samples. A similar trend is

observed in the second set using Fashion-MNIST( [31])) as

in-distribution and MNIST as the out-of-distribution data.

These results confirm the uncertainty estimates obtained

from proposed MOPED method are reliable and can identify

out-of-distribution data.

5. Conclusions

We proposed a simple and efficient method to choose

weight priors for variational inference in Bayesian DNN.

We demonstrated with thorough empirical experiments that

MOPED enables scalable variational inference for Bayesian

DNNs while achieving faster training convergence, and pro-

vides reliable uncertainty quantification without compromis-

ing on the accuracy provided by the deterministic DNNs. We

showed the uncertainty estimates obtained from the proposed

method are reliable to identify out-of-distribution data.
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