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Abstract

Stochastic variational inference for Bayesian deep neural
networks (DNNs) requires specifying priors and approximate
posterior distributions for neural network weights. Specify-
ing meaningful weight priors is a challenging problem, par-
ticularly for scaling variational inference to deeper architec-
tures involving high dimensional weight space. Based on em-
pirical Bayes approach, we propose Bayesian MOdel Priors
Extracted from Deterministic DNN (MOPED) method to
choose meaningful prior distributions over weight space us-
ing deterministic weights derived from the pretrained DNNs
of equivalent architecture. We empirically evaluate the pro-
posed approach on real-world applications including image
classification, video activity recognition and audio classifica-
tion tasks with varying complex neural network architectures.
The proposed method enables scalable variational inference
with faster training convergence and provides reliable un-
certainty quantification.

1. Introduction

Current deep neural networks (DNNs) make overly con-
fident decisions and do not provide uncertainty estimates,
which is crucial for informed decision-making. Probabilis-
tic Bayesian models provide principled ways to gain in-
sight about data and capture reliable uncertainty estimates.
Bayesian neural networks [20, 6] have allowed bridging
deep learning and probabilistic Bayesian theory to leverage
the strengths of both methodologies. Variational inference
(VI) [12] is an analytical approximation technique to learn
the posterior distribution of weights in Bayesian neural net-
works. VI methods formulate the Bayesian inference prob-
lem as an optimization-based approach which lends itself
to the stochastic gradient descent (SGD) based optimiza-
tion used in training DNN models, referred as stochastic
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variational inference (SVI). Variational inference with gen-
eralizable formulations [9, 3, 21] has renewed interest in
Bayesian neural networks.

Variational inference for Bayesian neural networks in-
volves choosing prior distributions and approximate poste-
rior distributions for neural network weights. Specifying
meaningful weight priors is a challenging problem and is an
active area of research [30, 19, 1, 28]. Also, scaling varia-
tional inference in deeper model architectures involving high
dimensional weight space is an open problem. In [14, 27],
hybrid Bayesian DNN architectures are used for complex
computer vision tasks to achieve scalable variational infer-
ence by balancing complexity of the model, while providing
benefits of Bayesian inference.

Our main contribution is to propose MOPED, a simple
and yet efficient method for initializing weight priors to
enable scalable variational inference in Bayesian DNNs. In-
spired by empirical Bayes [22, 4] methods and transfer learn-
ing [25] approaches, we propose to specify meaningful priors
for Bayesian DNNs based on the deterministic weights of
pretrained DNN models obtained from maximum likelihood
estimates. The empirical results indicate proposed approach
guarantees training convergence for the models along with
better uncertainty estimates without sacrificing the accura-
cies provided by deterministic DNNs.

2. Variational Inference in Bayesian DNNs

Given training dataset D = {x,y} with inputs
x = {z1,...,2n} and their corresponding outputs y =
{y1, ..., yn }, in parametric Bayesian setting we would like
to infer a distribution over parameters w as a function
y = fuw(x) that represents the DNN model. A prior distribu-
tion is assigned over the weights p(w) that captures our prior
belief as to which parameters would have likely generated the
outputs before observing any data. Given the evidence data
p(y|z), prior distribution and model likelihood p(y | z, w),
the goal is to infer the posterior distribution over the weights



p(w|D). Variational inference approximates a complex prob-
ability distribution p(w|D) with a simpler distribution g (w),
parameterized by variational parameters € while minimizing
the Kullback-Leibler (KL) divergence [2, 7]. During the
training phase in Bayesian DNNGs, variational inference opti-
mizes the log evidence lower bound (ELBO) (Equation 1)
by performing stochastic sampling of weight parameters
from gg(w) and p(w) distributions, while minimizing the
KL-divergence between the two distributions.

L= / go(w) log p(y|, w) dw — K L[go(w)||p(w)] (1)

3. MOPED: Efficient priors for Bayesian DNN

The weights derived from pretrained deterministic models
through maximum likelihood estimation can provide the
best indication of prior knowledge about the probability
distributions of weights in Bayesian DNNs before inferring
the posteriors of corresponding weights through stochastic
variational inference. We propose to initialize parameters of
the weight priors in Bayesian DNNs based on the weights
obtained from pretrained DNNs of equivalent neural network
architectures.

We illustrate our proposed approach on mean-field vari-
ational inference. For mean-field variational inference in
Bayesian DNNG, each weight is independently sampled from
the Gaussian distribution w = N (w, o), where W is mean
and variance 0 = log(1l + exp(p)). In order to ensure
non-negative variance, o is expressed in terms of softplus
function with unconstrained parameter p. Here we propose
to choose the w mean of weight priors from the deterministic
weights of pretrained DNN of equivalent architecture.

w=wa; p~N(p,Ap)

w ~ N(wg, log(1 + €))
where, w, represents weights obtained from deterministic
DNN model, and (p, Ap) are hyper parameters (mean and
variance of Gaussian perturbation for p).

For Bayesian DNNs of complex architectures involving
very high dimensional weight space, choice of p can be
sensitive as values of the weights can vary by large margin
with each other. So, we propose to initialize the weight priors
with wy and p given in Equation 3:

@)

W=wg; p= log(e‘”“’d| -1)
w o~ N(wg, 6| wgl))

where, J is initial perturbation factor for the weight in terms
of percentage of the pretrained deterministic weight values.

3)

4. Experiments

We demonstrate the benefits of MOPED method for vari-
ational inference with extensive empirical experiments. We

showcase the proposed MOPED method helps Bayesian
DNN architectures to achieve better model performance,
faster training convergence and reliable uncertainty esti-
mates. We evaluate proposed method on real-world ap-
plications including image and audio classification, and
video activity recognition. We consider multiple architec-
tures with varying complexity to show the scalability of
method in training deep Bayesian models. Our experiments
include: a) LeNet architecture for MNIST [17] digit clas-
sification, b) Simple convolutional neural network (SCNN)
consisting of two convolutional layers followed by two
dense layers for image classification on Fashion-MNIST
(F-MNIST) [31] datasets, b) ResNet-20 and ResNet-56 ar-
chitectures for the image classification on CIFAR-10 [15]
dataset, ¢) VGGish[11] for audio classification on Urban-
Sound8K [24] dataset and d) ResNet-101 C3D [10] for video
activity classification on UCF-101[26] dataset.

We implemented above Bayesian DNN models
and trained them using Tensorflow and Tensorflow-
Probability [5] frameworks. The variational layers are
modeled using Flipout [29], an efficient method that
decorrelates the gradients within a mini-batch by implicitly
sampling pseudo-independent weight perturbations for each
input. The model weights obtained from the trained DNN
models are used in MOPED method to initialize Gaussian
priors over weights (Equation 2 and 3 ), as described in
Section 3.

During inference phase, predictive distributions are ob-
tained by performing multiple stochastic forward passes over
the network while sampling from posterior distribution of
the weights (40 Monte Carlo samples in our experiments).
We evaluate the model uncertainty using Bayesian active
learning by disagreement (BALD) [13], which quantifies
mutual information between parameter posterior distribution
and predictive distribution. Following [18], quantitative com-
parison of uncertainty estimates are made by calculating area
under the curve (AUC) of precision-recall (auPR) values by
retaining different percentages (0.5 to 1.0) of most certain
test samples (i.e. ignoring most uncertain predictions based
on model uncertainty estimates).

4.1. Weight priors with MOPED

In Table 1, classification accuracies for architectures with
increasing complexity are presented. Bayesian DNNs with
priors initialized with MOPED method achieves similar or
better predictive accuracies as compared to equivalent DNN
models. Bayesian DNNs with random initialization of Gaus-
sian priors has difficulty in converging to optimal solution
for the complex architectures (ResNet-101 C3D and VG-
Gish) with hundreds of millions of trainable parameters. It is
evident from these results that MOPED method guarantees
the training convergence even for the complex models when
trained DNN model of equivalent architecture is available.



Bayesian DNN Validation Accuracy
Complexity Bayesian DNN

Dataset Modality Architecture (# parameters) DNN R;Ei?:n MOPED
MNIST Images LeNeT 442,218 0.994 0.993 0.995
F-MNIST Images SCNN 442,218 0.921 0.906 0.923
CIFAR-10 Images Resnet-20 546,314 0911 0.878 0.916
Resnet-56 1,714,250 0.926 0.896 0.927
UrbanSound8K Audio VGGish 144,274,890 0.817 0.143 0.819
UCF-101 Video ResNet-101 C3D 170,838,181 0.851 0.029 0.867

Table 1: Comparison of the accuracies for architectures with different complexities and input modalities. MOPED method obtain reliable

uncertainty estimates from Bayesian DNNs while achieving similar or better accuracy as deterministic DNNs.
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Figure 1: Comparison of MOPED and random initialization of priors for Bayesian ResNet-20 and ResNet-56 architectures. (a) training

convergence, (b) AuPR for different percentage of retained data based on model uncertainty and (c) precision-recall plots.
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Figure 2: Accuracy vs Confidence curves: Networks trained on
MNIST and tested on both MNIST and the NotMNIST (out-of-
distribution) test sets.

In Figure 1, comparison of MOPED and random ini-
tialization of priors is shown for Bayesian ResNet-20 and
ResNet-56 architectures trained on CIFAR-10 dataset. The

auPR plots [18] capture the precision-recall AUC values for
different percentage of most certain predictions based on the
model uncertainty estimates. Figure 1 (a) shows the faster
convergence of MOPED method, while achieving the better
accuracy values. Figure 1 (b) shows that MOPED method
provides higher auPR values than the random initialization
and also that auPR increases as most uncertain predictions
are ignored based on the model uncertainty, indicating the
method enables superior performance and reliable uncer-
tainty estimates. In Figure 1 (c), the precision-recall plots
show MOPED method provides better precision-recall val-
ues compared to random initialization of priors. We show the
results for different selection of p (details are in Section 3)
values. In Figure 3, we show auPR plots with different §
values as mentioned in Equation 3.

4.2. Robustness to out-of-distribution data

In order to evaluate robustness of our method (SVI
MOPED) and usefulness of statistical inference for deci-
sion making, we compare state-of-the-art probabilistic deep
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Figure 3: Precision-recall AUC (auPR) plots with different ¢ scale
factors for initializing variance values in MOPED method.

learning methods for prediction accuracy as a function of
model confidence. Following the experiments in [16], we
trained our model on MNIST training set and tested it on
a mix of examples from MNIST and NotMNIST! (out-of-
distribution) test set. The accuracy as a function of confi-
dence plots should increase monotonically, as higher accu-
racy is expected for more confident results. A robust model
should provide low confidence for out-of-distribution sam-
ples while providing high confidence for correct prediction
from in-distribution samples. The proposed variational in-
ference method with MOPED priors provides more robust
results as compared to the MC Dropout [7] and deep model
ensembles [16] approaches (shown in Figure 2).

We evaluate the uncertainty estimates obtained from
MOPED method to detect out-of-distribution data. Out-
of-distribution samples are data points which fall far off
from the training data distribution. We evaluate two sets of
out-of-distribution detection experiments. In the first set, we
use CIFAR-10 as the in-distribution samples trained using
ResNet-56 Bayesian DNN model. TinyImageNet [23] and
SVHN [8] datasets are used as out-of-distribution samples

Ihttp://yaroslavvb.blogspot.co.uk/2011/09/notmnist-dataset.html
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Figure 4: Density histograms obtained from in- and out-of-
distribution samples.

which were not seen during the training phase. The den-
sity histograms (area under the histogram is normalized to
one) for uncertainty estimates obtained from the Bayesian
DNN models are plotted in Figure 4. The density histograms
in Figure 4 (a) & (b) indicate higher uncertainty estimates
for the out-of-distribution samples and lower uncertainty
values for the in-distribution samples. A similar trend is
observed in the second set using Fashion-MNIST( [31])) as
in-distribution and MNIST as the out-of-distribution data.
These results confirm the uncertainty estimates obtained
from proposed MOPED method are reliable and can identify
out-of-distribution data.

5. Conclusions

We proposed a simple and efficient method to choose
weight priors for variational inference in Bayesian DNN.
We demonstrated with thorough empirical experiments that
MOPED enables scalable variational inference for Bayesian
DNNs while achieving faster training convergence, and pro-
vides reliable uncertainty quantification without compromis-
ing on the accuracy provided by the deterministic DNNs. We
showed the uncertainty estimates obtained from the proposed
method are reliable to identify out-of-distribution data.
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