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Abstract

In this paper, we propose a supervised selection based

method to decrease both the computation and the fea-

ture dimension of the original bilinear pooling. Different

from currently existing compressed second-order pooling

methods, the proposed selection method is matrix normal-

ization applicable. Moreover, by extracting the selected

highly semantic feature channels, we proposed the Fisher-

Recurrent-Attention structure and achieved state-of-the-art

fine-grained classification results among the VGG-16 based

models.

1. Introduction

Bilinear pooling was first proposed to address the chal-

lenge of Fine-Grained Visual Classification (FGVC) by Lin

et al. [12]. Based on the bilinear pooling, Lin et al. [11] in-

vestigated matrix square-root normalization to significantly

improve the representation of the bilinear feature. However,

a neglected problem of the above feature encoding method

is its extremely high output feature dimension. The tensor

product makes c CNN output channels to c2 dimension of

pooled features. A relatively low c = 512 VGG-16[15]

structure produces a 512 × 512 ≈ 262k dimension bilin-

ear features. To deal with this problem, Tensor Sketching

was investigated in [5] and similar accuracy was reported

with 8K compact features. However, the linear combina-

tion significantly increases the computational complexity of

bilinear features. To solve the computation dilemma, a low-

rank approximation based method was proposed in [8] and

obtained a similar performance of the original full bilinear

pooling. Given these methods reduced the dimension and

computational complexity by two orders of magnitude, one

vital problem is that the matrix power function cannot prop-

agate through the compact layer. Sub-normalization was

employed in [7] to solve the problem, however, the perfor-

mance is not as good as expected since the categorization

accuracy drops around 1% comparing with that obtained
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Fast

Computation

Matrix

Normalization

Attention

Interpretable

CBP × × ×
LRBP

√ × ×
MoNet × √ ×

SBP
√ √ √

Table 1. Comparison on the proposed SBP and other compressed

bilinear pooling based methods.

with the baseline structure. It remains a problem to combine

a compressed bilinear structure with matrix power normal-

ization.

In this paper, we propose a novel compressed model,

named Squeezed Bilinear Pooling (SBP), that can linearly

reduce both the feature dimension and computation. With

the same dimension, the proposed method outperforms the

other compressed models (e.g. CBP[5], LRBP[8]), and is

two orders of magnitude faster. The integration of the ma-

trix square root layer is also investigated to enhance the cat-

egorization performance. Based on the selected discrimi-

native feature channels, we propose the Fisher-Recurrent-

Attention structure to achieve state-of-the-art classification

accuracies on three common FGVC datasets.

2. The squeezed bilinear CNN

The overview of the proposed SBP architecture is shown

in Fig. 1. For each input image I , the convolutional neural

network outputs a feature matrix M = {m1,m2 . . . ,mc},

where mi is the expansion tensor of the i-th channel of

CNN features. Following [12], the co-inner production

is conducted on M to produce c × c second-order maps

M̂ = {m̂1, m̂2, . . . , m̂c2}. Then the novel Fisher Selection

Layer (FSL) and Global Average Pooling (GAP) are ap-

plied to generalize the d-dimension squeezed second-order

feature vector, followed by the element-wise square root

regularization, l2-normalization layers and a full connec-

tion classification layer. In the parallel workflow, a matrix

square root layer is applied as a bridge between the full bi-

linear layer and the FSL to further improve the performance



Figure 1. The proposed network architecture with three SBP based models: 1) the Squeezed Bilinear Pooling with Element-wise Normal-

ization (SBP-EN) for fast computation, 2) the Squeezed Bilinear Pooling with Matrix Normalization (SBP-MN) by inserting the matrix

square root function before the squeezing layer, and 3) the Fisher Recurrent Attention Squeezed Bilinear Pooling (FRA-SBP).

of the proposed SBP. The two flows are named as Squeezed

Bilinear Pooling with element-wise (SBP-EN, illustrated in

Fig. 1.(1)), and matrix normalization (SBP-MN, in Fig.

1.(2)), respectively. We also designed the Fisher Recurrent

Attention SBP (FRA-SBP, shown in Fig. 1.(3)). We will

discuss these structures in detail in the following sections.

Fisher Discriminant Analysis (FDA) discriminates pat-

terns using the low-dimensional projection of high dimen-

sional features with linear transformations. Its main idea

is to maximize the interclass variations and minimize intr-

aclass variations. We follow the similar idea to maximize

the class separation measurement via the feature selection.

Fukunaga [4] proved that the traces of the scatter matrice

could be used to measure the class separation of the fea-

tures. After mapping into and calculating the scatter matri-

ces in the kernel space[17], the traces of the intra and inter-

class scatter matrices in kernel space, i.e., S̃w and S̃b can be

obtained as:

Tr(S̃w) =
1

n
Tr(K)− 1

n

g∑

i=1

1

ni
Sum(K(i)),

T r(S̃b) =
1

n

g∑

i=1

1

ni
Sum(K(i))− 1

n2
Sum(K).

(1)

where the operators Sum(·) and Tr(·) calculate, respec-

tively, the summation of all elements and the trace of a ma-

trix, and K and K(i) are the n×n and ni×ni sized matrices

defined by:

{K}kl = k(xk, xl), {K(i)}uv = k(x(i)
u , x(i)

v ). (2)

where x
(j)
i denotes the i-th feature observation in Class Cj .

The feature selector is denoted by α = [α1, ..., αp]
T ∈

{0, 1}p with αk = 1 indicating that the k-th feature is se-

lected or 0 not-selected. Then the selected feature set from

the original feature vector x is given by x(α) = x⊙α. With

the feature selector, the traces of the scatter matrices are

noted by Tr(S̃w)(α), Tr(S̃b)(α). To maximize the class

separation, the optimization objective function can be for-

mulated as:

argmax
α∈{0,1}p

{Tr(S̃b)(α)− λTr(S̃w)(α)}. (3)

The general Fisher selector formulation is a combina-

torial optimization problem for many kernels, and it is far

from feasible in our bilinear features whose p is up to over

262K. The polynomial kernel provides efficient and global

optimization for (FS) for large p [16]:

k(x1, x2)(α) = 〈x1 ⊙ α, x2 ⊙ α〉 =
p∑

i=1

x1ix2iαi (4)

Substitute (4) and the scatter matrix expression (1) into

the object function (3) and normalize, we can get the Fisher

discriminative score:

θj =
1

n

g∑

i=1

1

ni

ni∑

u,v=1

x
(i)
ujx

(i)
vj

− λ

n

n∑

i=1

x2
ij +

(λ− 1)

n2

n∑

u,v=1

xujxvj

(5)



Considering the preset d object dimension of com-

pressed image feature, the Fisher optimization objective

function can be depicted as follows:

argmax
α∈{0,1}p

p∑

j=1

(θj − β)αj , s.t.‖α‖0 = d. (6)

This is the globally optimal solution, and the computa-

tional complexity for the calculation of α with n training

samples and p feature dimensions is O(n2p).

2.1. Squeezed bilinear

With the full bilinear feature M = XTX ∈ Rc2 , the

Fisher selector α, and the objective projection dimension d,

the projection function for the Fisher selection layer can be

represented as:

Rc2 ψ−→ Rd, ψ(M) = M ◦ α, (7)

where the operator (a ◦ b) requires the same size of the ten-

sors a and b, aiming at extracting the a values of position

that is not 0 in b, to form a new d dimensional feature tensor

(‖a‖0 = d). The computational complexity is O(hwd) for

a d dimensional squeezed bilinear feature with CNN feature

maps of size h× w × c.

The backpropagation is the converse process of the for-

warding (7). The operator ◦ is not differentiable but is an

element-wise first-order linear combination, hence it can be

solved by the combination of element-wise derivatives. For

each αi �= 0, ρ(i) is the projected index of i by the selection

function ψ (if projected), the backpropagation function can

thus be depicted as:

∂L

∂Miαi
=

∂L

∂ψ(M)ρ(i)
. (8)

For selected elements, αi = 1, we can directly pass the

back gradient to the corresponding channels of CNN feature

maps.

The implementation of the matrix power normalization

M ′ = M1/2 requires a positive definite forward input

feature matrix, and a symmetric backward gradient matrix

[11]. The SBP-MN structure satisfies the first requirement

(Fig.1), while the second requirement can be met by a ma-

trix diagonalization. Suppose δ(i) is the diagonal position

of index i in the bilinear feature matrix M , we can describe

the improved backpropagation function for matrix power

normalization as follows:

∂L

∂M ′
iαi

=
∂L

∂M ′
ρ(i)αi

=
1

2
(

∂L

∂ψ(M ′)ρ(i)
+

∂L

∂ψ(M ′)ρ(δ(i))
).

(9)

Noticing that the Squeezed Bilinear Pooling selects the

most discriminative second order features, it can be used

to localize the object region and suppress the irrelevant

background activation. As illustrated in Fig. 1. (3), the

d selected second order feature maps {m1,m2, ...,md} ∈
ψ(M) are element-to-element summed to produce the av-

erage activated map ma. The ma is then linearly resized

to input image size, and its values are normalized into the

range of (0, 1), called the normalized attention map mn. A

threshold ε is applied to mn to segment the attention acti-

vation map ms. Following the spirit of [21], we randomly

select an second order map mk ∈ ψ(M), and erase the ac-

tivated region of mk from ms to obtain the attention erased

map me = (mk == 0) ·ms.

After the random erasion, we crop the TRUE region of

me from the input image I to create the attention image Ia.

It is recurrently inputted into the SB-CNN and outputs the d

dimensional attention feature fa. The two stages of features

f and fa are cascaded and, after sgnsqrt and l2 normaliza-

tion layer, classified with a fully connected layer.

3. Experiment

In this section, we detail our experiments from two as-

pects. (1) In Section 3.1, we investigate the impact of the

selected dimension and compare with the compact bilinear

pooling. (2) In Section 3.2, we conduct an overall compari-

son of our proposed squeezed models against other methods

on a variety of fine-grained datasets.

When evaluating our model on the VGG-16[15] struc-

ture (D-net in [12]), we used the convolutional layers of

VGG-16 as the local feature extractor and retained the out-

put of the Conv5 3+ReLU layer for the second-order en-

coding, as conducted in [12]. We resized the input images

to 512× 512 and randomly cropped them to 448× 448 for

training in all the second-order models. For Fisher Selective

Layer, the λ was assigned a value of -0.5 and for attention

cropping in FRA-SBP, the value of ε was assigned to 0.005.

3.1. Configuration and comparison with compact
bilinear

To investigate the potential impact of the selected dimen-

sion on the squeezed bilinear pooling, we conducted exper-

iments with the selected dimension in the range of 100 to

15,000 on the CUB-200-2011 dataset. As summarized in

Fig. 2, with the increasing of projected dimension, the top-

1 errors of both the CBP[5] and the SBP come down to a

similar level of the full bilinear. With a lower dimension,

the SBP’s performance is more promising than the Tensor

Sketch. SBP outperforms CBP by around 1.5% when the

dimension ranges from 1K to 5K, and the gap widens as the

dimension decreases. With 500 projected dimensions, sig-

nificant disparity can be observed between the two methods

(4.6% without and 2.6% with fine-tuning). In extremely

low dimension cases, e.g. 100, SBP produces acceptable

accuracy loss (22.7%) comparing with CBP (42.8%). This



Figure 2. Classification error rate on the Cub dataset. Comparisons

are made on the proposed SBP without matrix normalization and

Compact Bilinear Polling (CBP) with Tensor Sketch. Horizontal

lines are the baseline performance of Fully Bilinear Pooling (FBP).

ft and woft stands for with and without global fine-tuning of CNN,

respectively.

makes sense for a vast area of applications, for example,

large scale fine-grained image retrieval [19] often needs

quick, high representative but low dimensional image fea-

tures.

3.2. Experiments with different datasets

We compared the proposed squeezed bilinear pool-

ing against other approaches for the categorization of the

following FGVC datasets: CUB-200-2011[18], FGVC-

Aircrafts[13], and Stanford Cars[9]. The experimental re-

sults are summarized in Table 2. Note that for fairness,

we only compare the results reported with the backbone of

VGG-16. From Table 2, we can see that the fast version of

the proposed SBP, SBP-EN obtained the best accuracy with

planes and cars dataset, and achieved 84.6% in CUB-200-

2011, only 0.4% lower than the recent proposed MoNet[7].

However, the computation of our SBP is only 24% of that

required for the Tensor Sketching in MoNet. Comparing

with CBP[5] and LRBP[8] with the same dimension, the

accuracy of the proposed SBP-EN is around 0.5% higher

on average for the 3 datasets.

In the other aspect, the matrix square root is not di-

rectly applicable to CBP[5] and LRBP[8], hence, the com-

parison of the compressed structures with matrix normal-

ization is held between the SBP-MN and Tensor Sketch-

ing MoNet with and without the first-order information.

SBP-MN without the first-order information outperforms

MoNet TS[7] by 0.4% to 1.0% in the three fine-grained

datasets. When comparing with MoNet 2 TS[7], the classi-

Method Dim. Mul. Cub Air Car

BCNN[6] 262K 205M 84.0 86.9 90.6

iBCNN[11] 262K 205M 85.8 88.5 92.0

G2DeNet[20] 263K 206M 87.1 89.0 92.5

MoNet[7] 263K 206M 86.4 89.3 91.8

CBP TS[5] 8.2K 105M 84.0 87.2 90.2

LRBP[8] 10K 48M 84.2 87.3 90.9

SMSO[22] 2K — 85.0 — —

MoNet 2U TS[7] 10K 105M 85.0 86.1 89.5

SBP-EN 10K 7.8M 84.6 87.8 90.9

MoNet 2 TS[7] 10K 105M 85.7 86.7 90.3

MoNet TS[7] 10K 105M 85.7 88.1 90.8

SBP-MN 10K 205M 86.1 89.2 91.6

FRA-SBP 20K — 86.8 90.4 93.2

KP[1] 14.3K 420M 86.2 86.9 92.4

BoostCNN[14] — — 86.2 88.5 92.1

PC[3] — — 85.6 85.8 92.5

iSQRT-COV[10] — — 87.2 90.0 92.5

MA-CNN[23] — — 86.5 89.9 92.8

Table 2. Comparison of the classification performance on various

FGVC datasets. From top to bottom, the four blocks respectively

list fully bilinear based methods, compressed bilinear methods,

compressed structures with matrix normalization, and other state-

of-the-art methods. Dim. and Mul. stand for feature dimension

and multiplies required for pooling, respectively.

fication accuracy of the proposed SBP-MN is 0.4% to 2.4%

higher. To the best of our knowledge, the performance

of our SBP-MN model is state-of-the-art among all com-

pressed bilinear models with these datasets.

The accuracy of the proposed FRA-SBP is 0.4%

lower than the state-of-the-art fine-grained model, iSQRT-

COV[10] on CUB-200-2011 dataset, but around 0.5%

higher in the other two datasets. Note that iSQRT-COV

needs to pre-train on ImageNet[2], while the FRA-SBP

model achieved the overall better accuracy with a trans-

ferred model. Comparing with other duplicate or recurrent

models, e.g. BoostCNN[14], KP[1] and MA-CNN[23], the

accuracy of the FRA-SBP is 0.2% to 3.5% higher for the

three datasets.

4. Conclusion

We presented a novel Squeezed Bilinear Pooling (SBP)

network to solve the problem of extremely high feature di-

mension of bilinear pooling, and obtained the state-of-the-

art results using VGG as backbone. Our model outperforms

other compressed bilinear models in terms of classification

accuracy and computation complexity. This is a promis-

ing step for the second-order pooling towards the replace-

ment of global average pooling in other deep structures, e.g.

ResNet, Inception, and DenseNet.
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