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Abstract

In this paper, we propose a supervised selection based
method to decrease both the computation and the fea-
ture dimension of the original bilinear pooling. Different
from currently existing compressed second-order pooling
methods, the proposed selection method is matrix normal-
ization applicable. Moreover, by extracting the selected
highly semantic feature channels, we proposed the Fisher-
Recurrent-Attention structure and achieved state-of-the-art
fine-grained classification results among the VGG-16 based
models.

1. Introduction

Bilinear pooling was first proposed to address the chal-
lenge of Fine-Grained Visual Classification (FGVC) by Lin
et al. [12]. Based on the bilinear pooling, Lin et al. [11] in-
vestigated matrix square-root normalization to significantly
improve the representation of the bilinear feature. However,
a neglected problem of the above feature encoding method
is its extremely high output feature dimension. The tensor
product makes ¢ CNN output channels to ¢? dimension of
pooled features. A relatively low ¢ = 512 VGG-16[15]
structure produces a 512 x 512 ~ 262k dimension bilin-
ear features. To deal with this problem, Tensor Sketching
was investigated in [5] and similar accuracy was reported
with 8K compact features. However, the linear combina-
tion significantly increases the computational complexity of
bilinear features. To solve the computation dilemma, a low-
rank approximation based method was proposed in [8] and
obtained a similar performance of the original full bilinear
pooling. Given these methods reduced the dimension and
computational complexity by two orders of magnitude, one
vital problem is that the matrix power function cannot prop-
agate through the compact layer. Sub-normalization was
employed in [7] to solve the problem, however, the perfor-
mance is not as good as expected since the categorization
accuracy drops around 1% comparing with that obtained
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Fast Matrix Attention
Computation Normalization Interpretable
CBP X X X
LRBP v X X
MoNet X Vv X
SBP v v v

Table 1. Comparison on the proposed SBP and other compressed
bilinear pooling based methods.

with the baseline structure. It remains a problem to combine
a compressed bilinear structure with matrix power normal-
ization.

In this paper, we propose a novel compressed model,
named Squeezed Bilinear Pooling (SBP), that can linearly
reduce both the feature dimension and computation. With
the same dimension, the proposed method outperforms the
other compressed models (e.g. CBP[5], LRBP[S8]), and is
two orders of magnitude faster. The integration of the ma-
trix square root layer is also investigated to enhance the cat-
egorization performance. Based on the selected discrimi-
native feature channels, we propose the Fisher-Recurrent-
Attention structure to achieve state-of-the-art classification
accuracies on three common FGVC datasets.

2. The squeezed bilinear CNN

The overview of the proposed SBP architecture is shown
in Fig. 1. For each input image I, the convolutional neural
network outputs a feature matrix M = {my, my...,m.},
where m; is the expansion tensor of the i-th channel of
CNN features. Following [12], the co-inner production
is conducted on M to produce ¢ X ¢ second-order maps
M = {m1,ma, ..., m.2}. Then the novel Fisher Selection
Layer (FSL) and Global Average Pooling (GAP) are ap-
plied to generalize the d-dimension squeezed second-order
feature vector, followed by the element-wise square root
regularization, lo-normalization layers and a full connec-
tion classification layer. In the parallel workflow, a matrix
square root layer is applied as a bridge between the full bi-
linear layer and the FSL to further improve the performance
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Figure 1. The proposed network architecture with three SBP based models: 1) the Squeezed Bilinear Pooling with Element-wise Normal-
ization (SBP-EN) for fast computation, 2) the Squeezed Bilinear Pooling with Matrix Normalization (SBP-MN) by inserting the matrix
square root function before the squeezing layer, and 3) the Fisher Recurrent Attention Squeezed Bilinear Pooling (FRA-SBP).

of the proposed SBP. The two flows are named as Squeezed
Bilinear Pooling with element-wise (SBP-EN, illustrated in
Fig. 1.(1)), and matrix normalization (SBP-MN, in Fig.
1.(2)), respectively. We also designed the Fisher Recurrent
Attention SBP (FRA-SBP, shown in Fig. 1.(3)). We will
discuss these structures in detail in the following sections.

Fisher Discriminant Analysis (FDA) discriminates pat-
terns using the low-dimensional projection of high dimen-
sional features with linear transformations. Its main idea
is to maximize the interclass variations and minimize intr-
aclass variations. We follow the similar idea to maximize
the class separation measurement via the feature selection.
Fukunaga [4] proved that the traces of the scatter matrice
could be used to measure the class separation of the fea-
tures. After mapping into and calculating the scatter matri-
ces in the kernel space[17], the traces of the intra and inter-
class scatter matrices in kernel space, i.e., S’w and S’b can be
obtained as:
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where the operators Sum(-) and T'r(-) calculate, respec-
tively, the summation of all elements and the trace of a ma-
trix, and K and K are the n xn and n; X n; sized matrices
defined by:

(K} = k(zg, 21), {KD Yy = k(@D 20). (2)

where ml(-J ) denotes the i-th feature observation in Class Cj.

The feature selector is denoted by o = [avq, ..., ap]T €
{0,1}? with o, = 1 indicating that the k-th feature is se-
lected or 0 not-selected. Then the selected feature set from
the original feature vector x is given by z(«) = z® . With
the feature selector, the traces of the scatter matrices are
noted by Tr(S,)(c), Tr(Sy)(c). To maximize the class
separation, the optimization objective function can be for-
mulated as:

arg max{Tr(Sy)(c) — XT'r(Sy)(a)}. 3)
ae{0,1}»

The general Fisher selector formulation is a combina-
torial optimization problem for many kernels, and it is far
from feasible in our bilinear features whose p is up to over
262K. The polynomial kernel provides efficient and global
optimization for (FS) for large p [16]:

p
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Substitute (4) and the scatter matrix expression (1) into
the object function (3) and normalize, we can get the Fisher
discriminative score:



Considering the preset d object dimension of com-
pressed image feature, the Fisher optimization objective
function can be depicted as follows:

P
argmaxZ(ﬂj — By, s.t.||allo = d. (6)
ae{0,1}r J=1

This is the globally optimal solution, and the computa-
tional complexity for the calculation of o with n training
samples and p feature dimensions is O(n?p).

2.1. Squeezed bilinear

With the full bilinear feature M = XTX ¢ RCQ, the
Fisher selector «, and the objective projection dimension d,
the projection function for the Fisher selection layer can be
represented as:

R Y5 R4 (M) = Mo, %)

where the operator (a o b) requires the same size of the ten-
sors a and b, aiming at extracting the a values of position
that is not O in b, to form a new d dimensional feature tensor
(lallo = d). The computational complexity is O(hwd) for
a d dimensional squeezed bilinear feature with CNN feature
maps of size h X w X c.

The backpropagation is the converse process of the for-
warding (7). The operator o is not differentiable but is an
element-wise first-order linear combination, hence it can be
solved by the combination of element-wise derivatives. For
each «; # 0, p(i) is the projected index of 4 by the selection
function % (if projected), the backpropagation function can
thus be depicted as:
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For selected elements, o; = 1, we can directly pass the
back gradient to the corresponding channels of CNN feature

maps.
The implementation of the matrix power normalization
M’ = M?"/? requires a positive definite forward input

feature matrix, and a symmetric backward gradient matrix
[11]. The SBP-MN structure satisfies the first requirement
(Fig.1), while the second requirement can be met by a ma-
trix diagonalization. Suppose 6(¢) is the diagonal position
of index 7 in the bilinear feature matrix M, we can describe
the improved backpropagation function for matrix power
normalization as follows:
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Noticing that the Squeezed Bilinear Pooling selects the
most discriminative second order features, it can be used

OY(M') y(5(3) )

to localize the object region and suppress the irrelevant
background activation. As illustrated in Fig. 1. (3), the
d selected second order feature maps {my,ma,...,mq} €
(M) are element-to-element summed to produce the av-
erage activated map m,. The m, is then linearly resized
to input image size, and its values are normalized into the
range of (0, 1), called the normalized attention map m,,. A
threshold ¢ is applied to m,, to segment the attention acti-
vation map m;. Following the spirit of [21], we randomly
select an second order map my, € (M), and erase the ac-
tivated region of my from mg to obtain the attention erased
map m, = (my, == 0) - my.

After the random erasion, we crop the TRUE region of
m, from the input image [ to create the attention image I,,.
It is recurrently inputted into the SB-CNN and outputs the d
dimensional attention feature f,,. The two stages of features
f and f, are cascaded and, after sgnsqrt and /s normaliza-
tion layer, classified with a fully connected layer.

3. Experiment

In this section, we detail our experiments from two as-
pects. (1) In Section 3.1, we investigate the impact of the
selected dimension and compare with the compact bilinear
pooling. (2) In Section 3.2, we conduct an overall compari-
son of our proposed squeezed models against other methods
on a variety of fine-grained datasets.

When evaluating our model on the VGG-16[15] struc-
ture (D-net in [12]), we used the convolutional layers of
VGG-16 as the local feature extractor and retained the out-
put of the Conv5_3+ReLU layer for the second-order en-
coding, as conducted in [12]. We resized the input images
to 512 x 512 and randomly cropped them to 448 x 448 for
training in all the second-order models. For Fisher Selective
Layer, the A was assigned a value of -0.5 and for attention
cropping in FRA-SBP, the value of € was assigned to 0.005.

3.1. Configuration and comparison with compact
bilinear

To investigate the potential impact of the selected dimen-
sion on the squeezed bilinear pooling, we conducted exper-
iments with the selected dimension in the range of 100 to
15,000 on the CUB-200-2011 dataset. As summarized in
Fig. 2, with the increasing of projected dimension, the top-
1 errors of both the CBP[5] and the SBP come down to a
similar level of the full bilinear. With a lower dimension,
the SBP’s performance is more promising than the Tensor
Sketch. SBP outperforms CBP by around 1.5% when the
dimension ranges from 1K to 5K, and the gap widens as the
dimension decreases. With 500 projected dimensions, sig-
nificant disparity can be observed between the two methods
(4.6% without and 2.6% with fine-tuning). In extremely
low dimension cases, e.g. 100, SBP produces acceptable
accuracy loss (22.7%) comparing with CBP (42.8%). This
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Figure 2. Classification error rate on the Cub dataset. Comparisons
are made on the proposed SBP without matrix normalization and
Compact Bilinear Polling (CBP) with Tensor Sketch. Horizontal
lines are the baseline performance of Fully Bilinear Pooling (FBP).
ft and woft stands for with and without global fine-tuning of CNN,
respectively.

makes sense for a vast area of applications, for example,
large scale fine-grained image retrieval [19] often needs
quick, high representative but low dimensional image fea-
tures.

3.2. Experiments with different datasets

We compared the proposed squeezed bilinear pool-
ing against other approaches for the categorization of the
following FGVC datasets: CUB-200-2011[18], FGVC-
Aircrafts[13], and Stanford Cars[9]. The experimental re-
sults are summarized in Table 2. Note that for fairness,
we only compare the results reported with the backbone of
VGG-16. From Table 2, we can see that the fast version of
the proposed SBP, SBP-EN obtained the best accuracy with
planes and cars dataset, and achieved 84.6% in CUB-200-
2011, only 0.4% lower than the recent proposed MoNet[7].
However, the computation of our SBP is only 24% of that
required for the Tensor Sketching in MoNet. Comparing
with CBP[5] and LRBP[8] with the same dimension, the
accuracy of the proposed SBP-EN is around 0.5% higher
on average for the 3 datasets.

In the other aspect, the matrix square root is not di-
rectly applicable to CBP[5] and LRBP[8], hence, the com-
parison of the compressed structures with matrix normal-
ization is held between the SBP-MN and Tensor Sketch-
ing MoNet with and without the first-order information.
SBP-MN without the first-order information outperforms
MoNet_TS[7] by 0.4% to 1.0% in the three fine-grained
datasets. When comparing with MoNet_2_TS[7], the classi-

Method \ Dim. \ Mul. \ Cub Air Car

BCNNI6] 262K | 205M | 84.0 86.9 90.6
iBCNN[11] 262K | 205M | 85.8 88.5 92.0
G2DeNet[20] 263K | 206M | 87.1 89.0 925

MoNet[7] 263K | 206M | 86.4 89.3 91.8
CBP_TS[5] 82K | 105M | 84.0 87.2 90.2
LRBP[8] 10K | 48M | 842 873 909
SMSOI[22] 2K — 850 — —

MoNet_ 2U_TS[7] | 10K | 105M | 85.0 86.1 89.5
SBP-EN 10K | 7.8M | 84.6 87.8 90.9

MoNet_2_TS[7] 10K | 105M | 85.7 86.7 90.3
MoNet_TS[7] 10K | 105M | 85.7 88.1 90.8

SBP-MN 10K | 205M | 86.1 89.2 91.6
FRA-SBP 20K — 86.8 90.4 93.2
KP[1] 143K | 420M | 86.2 869 924
BoostCNN[14] — — 86.2 885 92.1
PC[3] — — 85.6 858 925
iSQRT-COV[10] — — 87.2 90.0 925
MA-CNNJ[23] — — 86.5 89.9 928

Table 2. Comparison of the classification performance on various
FGVC datasets. From top to bottom, the four blocks respectively
list fully bilinear based methods, compressed bilinear methods,
compressed structures with matrix normalization, and other state-
of-the-art methods. Dim. and Mul. stand for feature dimension
and multiplies required for pooling, respectively.

fication accuracy of the proposed SBP-MN is 0.4% to 2.4%
higher. To the best of our knowledge, the performance
of our SBP-MN model is state-of-the-art among all com-
pressed bilinear models with these datasets.

The accuracy of the proposed FRA-SBP is 0.4%
lower than the state-of-the-art fine-grained model, iSQRT-
COV[10] on CUB-200-2011 dataset, but around 0.5%
higher in the other two datasets. Note that iSQRT-COV
needs to pre-train on ImageNet[2], while the FRA-SBP
model achieved the overall better accuracy with a trans-
ferred model. Comparing with other duplicate or recurrent
models, e.g. BoostCNN[14], KP[1] and MA-CNNJ[23], the
accuracy of the FRA-SBP is 0.2% to 3.5% higher for the
three datasets.

4. Conclusion

We presented a novel Squeezed Bilinear Pooling (SBP)
network to solve the problem of extremely high feature di-
mension of bilinear pooling, and obtained the state-of-the-
art results using VGG as backbone. Our model outperforms
other compressed bilinear models in terms of classification
accuracy and computation complexity. This is a promis-
ing step for the second-order pooling towards the replace-
ment of global average pooling in other deep structures, e.g.
ResNet, Inception, and DenseNet.
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