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Abstract

Deep neural networks (DNNs) have become increasingly

important due to their excellent empirical performance on a

wide range of problems. However, regularization is generally

achieved by indirect means, largely due to the complex set of

functions defined by a network and the difficulty in measuring

function complexity. There exists no method in the literature

for additive regularization based on a norm of the function,

as is classically considered in statistical learning theory. In

this work, we study the tractability of function norms for

deep neural networks with ReLU activations. We provide, to

the best of our knowledge, the first proof in the literature of

the NP-hardness of computing function norms of DNNs of 3

or more layers. We also highlight a fundamental difference

between shallow and deep networks. In the light on these

results, we propose a new regularization strategy based on

approximate function norms, and show its efficiency on a

segmentation task with a DNN.

1. Introduction

In the recent years, computer vision has benefited from

the growth of neural network applications. Most of the recent

results indicate that larger networks provide better perfor-

mance. Many works link this increase to the expressivity

of the function classes encoded by DNNs. [2] and [13] link

expressivity to depth, and define a complexity measures (e.g.

transitions, activation patterns) that grow exponentially with

the number of layers. [12] takes a differential geometry

perspective to show that in certain regimes, the global cur-

vature of the neural network function grows exponentially

with depth but not width, showing a clear advantage of deep

networks over shallow ones.

With the continual increase of the networks size and com-

plexity, it seems natural to look into maximum a posteriori
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estimation of the parameters, or equivalently to regularize

the training with carefully designed additive measure of the

network complexity.

Looking back at classical machine learning algorithms

with regularized risk, it appears that direct regularization has

often been achieved by penalization of a norm of a function.

In the case of linear functions (e.g. Tikhonov regulariza-

tion [19]), penalizing the parameter vector corresponds to

a penalization of a function norm as a straightforward re-

sult of the Riesz representation theorem [15]. In the case of

reproducing kernel Hilbert space (RKHS) regularization (in-

cluding splines [21]), penalizing the parameters corresponds

by construction to a function norm regularization [20, 16].

In the case of deep neural networks, similar approaches

have been applied directly to the parameter vectors, resulting

in an approach referred to as weight decay [8]. In contrast

to the previously mentioned Hilbert space approaches, this

does not directly penalize a measure of function complexity,

such as a norm. Indeed, it is straightforward to see that this is

not even a function of the mapping encoded by the network,

as different weights can result in the same mapping.

In this work, we study the tractability of computing func-

tion norms for neural networks. We prove for the first time

(to the best of our knowledge) that computing any function

norm of a DNN with three or more layers with rectified lin-

ear unit (ReLU) activation functions [6] as a function of its

parameter values is NP-hard. Moreover, we highlight a fun-

damental difference between ReLU networks of 2 layers and

networks of 3 or more layers by constructing a polynomial-

time computable norm for the shallow architectures. This

result motivates the use of approximation strategies to be

able to use function norm related measures for DNN regular-

ization. We empirically test this new regularization strategy

on a segmentation task with a DNN.

2. Function norm based regularization

We consider the supervised training of the weights W

of a deep neural network (DNN) given a training set D =
{(xi, yi)} ∈ (X × Y)n, where X ⊆ R

d is the input space



and Y ⊆ R
s the output space. Let f : X → Ỹ be the

function encoded by the neural network. We aim to min-

imize the risk R(f) =
∫

ℓ(f(x), y) dP (x, y), where P is

the underlying joint distribution of the input-output space.

As this distribution is generally inaccessible, empirical risk

minimization approximates the risk integral by

R̂(f) =
1

n

n
∑

i=1

ℓ(f(xi), yi), (1)

where the elements from the dataset D are supposed to be

i.i.d. samples drawn from P (x, y).
When the number of samples n is large, the empirical

risk (1) is a good approximation of the risk integral. In the

small-sample regime, however, better control of the general-

ization error can be achieved by adding a regularization term

to the objective.

In the statistical learning theory literature, this is most

typically achieved through an additive penalty [20, 10]

argmin
f

R̂(f) + λΩ(f), (2)

where Ω is a measure of function complexity. The regular-

ization biases the objective towards “simpler” candidates in

the model space.

In machine learning, using the norm of the learned map-

ping appears as a natural choice to control its complexity.

This choice limits the hypothesis set to a ball in a certain

topological set depending on the properties of the problem.

In an RKHS, the natural regularizer is a function of the

Hilbert space norm: for the space H induced by a kernel

k, ‖f‖2H = 〈f, f〉H. Several results showed that the use of

such a regularizer results in a control of the generalization

error [5, 21, 1]. In the context of function estimation, for

example using splines, it is customary to use the norm of the

approximation function or its derivative in order to obtain a

regression that generalizes better [22].

However, for neural networks, defining the best prior for

regularization is less obvious. The topology of the function

set represented by a neural network is still fairly unknown,

which complicates the definition of a proper complexity

measure.

Nevertheless, if the activation functions are continuous,

any function encoded by a network is in the space of contin-

uous functions. Moreover, supposing the input domain X is

compact, the network function has a finite Lq-norm

‖f‖q =

(∫

‖f(x)‖qq dµ(x)

)
1

q

, (3)

where the inner norm represents the q-norm of the output

space.

In Sec. 4, we will focus on the special case of L2. This

function space has attractive properties, being a Hilbert

space.

However, because of the high dimensionality of neural

network function spaces, the optimization of function norms

is not an easy task. Indeed, the exact computation of any of

these function norms is intractable for networks with ReLU

activations, as we show in the following section.

3. Tractability of function norm computation

In this section, we will study separately the networks of 2

or less layers and the networks of 3 or more layers.

3.1. Shallow networks

Definition 1 Let H be an RKHS associated with the kernel

k over the topological space X . k is characteristic [17] if

the mapping P 	→
∫

X
k(., x)dP (x) from the set of all Borel

probability measures defined on X to H is injective.

For example, the Gaussian kernel over Rd is characteristic.

Proposition 1 Given a 2-layer neural network f mapping

from R
d to R with m hidden units, and a kernel k charac-

teristic over Rd, there exists a function norm ‖f‖ that can

be computed in a quadratic time in m and the cost of eval-

uation of k (assuming we allow a square root operation).

For example, for a Gaussian kernel, the cost of the kernel

evaluation is linear in d and the function norm can be com-

puted in O(m2d) (assuming that we allow square root and

exponential operations).

We define a norm on two layer ReLU networks by defining

an inner product through a RKHS construction based on a

characteristic kernel [17] after normalization of the network

weights. The kernel must be characteristic to guarantee that

the resulting norm is zero iff f = 0. The exact construction

is provided in [14, Appendix F] due to space constraints

here.

3.2. Deep networks

Proposition 2 For f defined by a deep neural network (of

depth greater or equal to 3) with ReLU activation functions,

deciding if any function norm ‖f‖ = 0 from the weights of a

network is NP-hard.

To prove this statement, we construct a network of depth

3 for which the Max-Cut problem [7] can be reduced in

linear time to deciding if the norm of the function is zero.

Definition 2 (Cut) Given a graph G = (V,E), a cut is a

partition of the vertex set V into two disjoint subsets S ⊆ V

and V \ S. The size of the cut is | cut(G,S)| = |{{i, j} ∈
E, i ∈ S, j ∈ V \ S}|.

Problem 1 (Max-cut decision problem) Given a graph G

and an integer k, decide if there is a cut of at least size k in

G. We denote the truth of this statement as Max-Cut(G, k).



Given graph G, we define function f : RV → R as follows:

f(x) =h

⎛

⎝

∑

(i,j)∈E

fij(x)

⎞

⎠

h(z) = max(0, z − k + 1)

fij(x) = g1(xi − xj) + g1(xj − xi)

g1(z) = g0(z − 1)

g0(x) = ε−1[max(0, x+ε)−2max(0, x)+max(0, x−ε)]

where ε = 1
4|V | . Note that g0(z), g1(z) place some non-

zero values in the ε neighborhood of z = 0 and z = 1,

respectively, and zero elsewhere. Furthermore, g0(0) = 1
and g1(1) = 1 (see Figure 1).
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Figure 1: Plot of function g0, and network computing this

function.

Lemma 1 f is continuous by composition of continuous

functions.

Corollary 1 ‖f‖ = 0 ⇐⇒ f(x) = 0 everywhere.

Proposition 3 ‖f‖ �= 0 iff Max-Cut(G, k) = true.

Proof: First, suppose that Max-Cut(G, k) is true. Let S

define a partition with | cut(G,S)| ≥ k. For i ∈ S, set

xi = 1. For j ∈ V \ S set xj = 0. We have

∑

{i,j}∈E

fij(x) =| cut(G,S)| ≥ k. (4)

This implies that f(x) ≥ 1 and thus ‖f‖ > 0 by Corollary 1.

Now suppose that ‖f‖ > 0, then f(x) > 0 for some

x ∈ R
V . Define E′ = {{i, j} ∈ E : fij(x) > 0}, and

let C be the set of connected components of graph (V,E′).
For node i ∈ C ∈ C denote yi = xi − minj∈C xj and

zi = round(yi). Let S = {i ∈ V | zi is even}. We will

show next that | cut(G,S)| ≥ k, thus proving the claim.

Condition f(x) > 0 means that
∑

{i,j}∈E fij(x) > k−1.

Since fij(x) ∈ [0, 1] for each {i, j} ∈ E, there must be at

least k edges in E with fij(x) > 0. Thus, |E′| ≥ k, and so

it suffices to show that E′ ⊆ cut(G,S). By construction,

|yi−yj | = |xi−xj | ∈ (1−ε, 1+ε) ∀(i, j) ∈ E′. (5)

We claim that |yi−zi| ≤
1
4 for each i ∈ V . Indeed, let C ∈ C

be the component containing i. Pick i∗ ∈ argmini∈C xi,

then yi∗ = 0. Let P be a path from i∗ to i in (V,E′),
then yi =

∑

(i′,j′)∈P (yj′ − yi′). Eq. (5) now gives |yi −

round(yi)| ≤ |P | · ε ≤ |V | · ε = 1
4 , as claimed.

Now consider edge {i, j} ∈ E′. Conditions |yi−zi| ≤
1
4 ,

|yj−zj | ≤
1
4 and |yj−yi| ∈ ( 12 ,

3
2 ) imply that |zi−zj | = 1,

and therefore {i, j} ∈ cut(G,S).
�

Corollary 2 For a neural network with ReLU activations

and three or more layers, deciding whether the function

has non-zero norm is NP-hard by polynomial-time reduction

from the max-cut decision problem.

That hardness of a three layer network implies hardness

of deeper networks is straightforward as we may implement

the identity function by

x = max(0, x)−max(0,−x). (6)

Theorem 1 (Riesz representation theorem [3]) For H a

Hilbert space an L : H 	→ R or C a bounded linear func-

tional, there exists a unique vector h0 ∈ H such that:

∀h ∈ H, L(h) = 〈h, h0〉, (7)

and we have ‖L‖ = ‖h0‖.

Proposition 1 and Proposition 2, in combination with

the Riesz representation theorem for linear functions (The-

orem 1), shows dichotomy in the complexity of norm com-

putation of (deep) neural networks: for two layer networks,

we have polynomial time [14] computation, while for net-

works of depth 3 or higher with ReLU activations, norm

computation is NP-hard (Corollary 2).

4. Regularization with approximate norm

In the previous section, we have shown that the exact

computation of any function norm for a DNN with ReLU

activations is intractable, motivating the need of a stochastic

approximation. Assuming the measure µ in the definition of

the Lq-norm is a probability measure Q, the function norm

can be written as ‖f‖2,Q = Ez∼Q

[

‖f(z)‖22
]1/2

. Moreover,

assuming we have access to i.i.d samples zj ∼ Q, this

weighted L2-function norm can be approximated by

(

1

m

m
∑

i=1

‖f(zi)‖
2
2

)
1

2

. (8)

For samples outside the training set, empirical estimates

of the squared weighted L2-function norm are U -statistics

of order 1, and have an asymptotic Gaussian distribution to

which finite sample estimates converge quickly as O(m−1/2)
[9]. In the next experiments, we show the efficiency of such

a regularization strategy in a semantic image segmentation

task with DNNs.



(a) ground truth (b) weight decay (c) weight decay + function norm

Figure 2: ENet outputs, after training on 500 samples of Cityscapes, without (b) and with (c) weighted function norm

regularization (standard Cityscape color palette – black regions are unlabelled and not discounted in the evaluation.

Figure 3: Evolution of the validation accuracy of ENet dur-

ing training with the network’s original regularization set-

tings, and with added weighted function norm regulariza-

tion.

Regularized training of ENet: We consider the training

of ENet [11], a network architecture designed for fast image

segmentation, on the Cityscapes dataset [4]. As regulariza-

tion plays a more significant role in the low-data regime,

we consider a fixed random subset of n = 500 images of

the training set of Cityscapes as an alternative to the full

2975 training images. We compare training ENet similarly

to the author’s original optimization settings, in a two-stage

training of the encoder and the encoder + decoder part of

the architecture, using weighted cross-entropy loss. We use

Adam with a base learning rate of 2.5 · 10−4 with a polyno-

mially decaying learning rate schedule and 90000 batches of

size 10 for both training stages. We found the validation per-

formance of the model trained under these settings with all

images to be 60.77% mean IoU; this performance is reduced

to 47.15% when training only on the subset.

We use our proposed approximate function norm regu-

larization using unlabeled samples taken from the 20000
images of the “coarse” training set of Cityscapes, disjoint

from the training set. Figure 3 shows the evolution of the

validation accuracy during training. We see that the added

regularization leads to a higher performance on the valida-

tion set. Figure 2 shows a segmentation output with higher

performance after adding the regularization.

Results: In our experiments, we were not able to observe

an improvement over the baseline in the same setting with a

state-of-the-art semi-supervised method, mean-teacher [18].

We therefore believe the observed effect to be attributed

to the effect of the regularization. The impact of semi-

supervision in the regime of such high resolution images for

segmentation is however largely unknown and it is possible

that a more thorough exploration of unsupervised methods

would lead to a better usage of the unlabeled data.

5. Discussion and Conclusions

While function norms played a central role in regulariza-

tion for classical machine learning algorithms, regularized

training of neural networks has focused mainly on indirect

control of complexity. We have shown here for the first time

that norm computation in a low fixed depth neural network

with ReLU activations is NP-hard, elucidating some of the

challenges of working with DNN function classes. This

result constitutes a fundamental difference with shallower

networks, for which we can construct a polynomial time

norm based on the weights. This result motivates the use of

stochastic approximations to weighted norm, which is read-

ily compatible with stochastic gradient descent optimization

strategies. We empirically validated the expected effect of

the employed regularizer with experiments on the training

of ENet on Cityscapes.
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