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Abstract

Deep Learning based AI systems have shown great

promise in various domains such as vision, audio, au-

tonomous systems (vehicles, drones), etc. Recent research

on neural networks has shown the susceptibility of deep net-

works to adversarial attacks - a technique of adding small

perturbations to the inputs which can fool a deep network

into misclassifying them. Developing defenses against such

adversarial attacks is an active research area, with some

approaches proposing robust models that are immune to

such adversaries, while other techniques attempt to detect

such adversarial inputs. In this paper, we present a novel

statistical approach for adversarial detection in image clas-

sification. Our approach is based on constructing a per-

class feature distribution and detecting adversaries based

on comparison of features of a test image with the feature

distribution of its class. For this purpose, we make use of

various statistical distances such as ED (Energy Distance),

MMD (Maximum Mean Discrepancy) for adversarial de-

tection, and analyze the performance of each metric. We

experimentally show that our approach achieves good ad-

versarial detection performance on MNIST and CIFAR-10

datasets irrespective of the attack method, sample size and

the degree of adversarial perturbation.

1. Introduction

Deep Learning has been instrumental in the past few

years in various domains such as computer vision [11], au-

dio processing [8], natural language processing [3] [4] and

autonomous vehicles [1]. However, it has recently been

shown that these deep networks can be fooled by adding

subtle perturbations to the input resulting in misclassifica-

tion. These perturbed inputs which can still be classified

correctly by humans, are known as adversaries [5] [15].
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Two types of approaches are proposed to handle these

adversarial attacks. The first approach makes a model ro-

bust by training with adversarial examples [9] [17]. It ap-

plies random perturbations to activations or weights, or it

performs feature denoising or by defensive distillation [18]

to make a model robust to adversaries.

Other defence approaches based on adversarial detec-

tion either use auxiliary networks [14] or modify the model

architecture and add a detection module and train on ad-

versaries to detect them [14]. These approaches are often

model centric and are not robust enough for all kinds of at-

tacks. Any network based approach is costly as it involves

re-training and customizing the defences for different at-

tacks is also a costly operation.

Earlier Grosse et. al. [7] proposed a statistical based ap-

proach which detect adversaries based on the assumption

that the original images and the adversarial images belong

to two different distributions. They use raw vectorized orig-

inal images from train set to create a reference distribution

and that form the test set to create a test distribution. They

create another test distribution from the adversarial images.

They compare the two test distributions against the refer-

ence distribution using MMD and ED to calculate distances

and perform a two sample kernel test to detect if the test dis-

tribution belongs to the reference distribution or not. One

disadvantage of their experiments is that since they use raw

images, the dimensionality is high, so they require samples

of higher sizes to approximate the distribution and achieve

higher detection confidence (50-100 for the entire dataset).

They have also reported per class detection confidence also

and they need samples of lower sample size than that for the

whole dataset but still it is as high as 20-50 samples.

In this paper, we propose a novel statistical based adver-

sarial detection approach which is agnostic to attacks. Our

hypothesis is that the distribution of activations (output of

any intermediate layer) of the original data for a particu-

lar class is different from that of the adversarial data mis-

classified into that class. We make use of various statistical

metrics to estimate the distance between distributions of the



original and the adversarial activations. Adversarial sam-

ples will have larger statistical distances from the original

distribution and hence can be detected. The proposed ap-

proach is attack agnostic (does not vary with the type or

degree of attack) and sample efficient (sets with less sample

size achieve good detection performance).

2. Background

A neural network takes an input x and gives an output,

y. The outputs are termed as softmax probabilities where

yi denotes the probability of the input x belonging to the

class i. The softmax probabilities sum up to 1 and lie in the

range of 0 to 1. The output label for a particular input, l(x)
is assigned by the model as l(x) = argmaxi(yi) ∀i ∈ C

where C is the total number of classes. The correct label for

the class is denoted as l∗(x). The input to the second last

layer of the model is termed as pre-logits and that to the last

softmax layer of the model is termed as logits.

Adversarial generation involves perturbing an input x by

a small amount to x′ such that the output label of the per-

turbed input is not same as the output label of the original

input, i.e. l∗(x) �= l∗(x′) where abs(x − x′) < ǫ where

ǫ is the amount of perturbation and abs represents absolute

difference. In the next section we will discuss the various

adversarial attacks used in our work.

2.1. Adversarial Attacks

Fast Gradient Sign Method (FGSM): Goodfellow et.

al. (2015) [5] proposed this attack where the perturbation

∆x is based on the gradient of the loss function with re-

spect to the input such that the loss function of the network

C(x, y) is maximized. The perturbation is obtained by

∆x = ǫ.sign(∇xC(x, y)) (1)

where ǫ is the L∞ norm bound. It is chosen to be small so

that ∆x is undetectable. The sign refers to the direction in

which the input feature has to be changed.

Carlini-Wagner (CW-l2): Carlini Wagner et. al. [2]

proposed an attack using an optimization framework that

perturbs the input by inducing very small changes at each

iteration to maximize a predefined loss. It generates attack

for three different loss metrices, L0, L2 and L∞. We have

used Carlini Wagner L2 attack in this paper.

Madry et. al. Attack: Madry et. al. [13] proposed

a robust optimization based attack to generate adversaries

with varying degrees of perturbation, ǫ. They came up with

stronger attacks than FGSM using PGD (Projected Gradient

Descent).

In the next section, we give a brief description of the

various statistical metrics used in this paper.

2.2. Statistical Metrics

Maximum Mean Discrepancy (MMD): Gretton et. al.

[6] introduced a kernel based test to compute the distance

between probability distributions of two sample sets. The

kernel for probability distribution function is chosen such

that the difference of the means of the two distributions is

maximum.

MMDb[F,X1, X2] = supf∈F (
1

n
Σn

i=1
f(x1i)

−
1

m
Σm

i=1
f(x2i))

(2)

X1 and X2 refer to the two sample sets and f is the kernel

function chosen from F where F represents the super-set

of all kernel functions possible. f is chosen to be the kernel

which maximizes the difference between the means of the

two probability distributions. x1i and x2i denote the proba-

bility values of the samples belonging to X1 and X2 respec-

tively for each class i and m and n denotes the number of

samples.

Energy Distance (ED): Szekely et. al. [19] proposed an

energy based approach to compute distances between two

distributions. Let us assume F and G to be two cumulative

distribution functions. X , X ′ and Y , Y ′ are independent

vectors chosen from F and G respectively which belong to

real numbers set Rd. The energy distance between the two

distributions F and G is the square root of:

D2(F,G) = 2E||X − Y || − E||X −X ′||

−E||Y − Y ′||
(3)

where E denotes expectation, ||.|| denotes the norm. ED

calculates the distance between two distributions by con-

sidering norm distances between samples of different dis-

tributions and that of same distribution.

3. Methodology

Our method is based on the hypothesis that the original

image activations sample and the adversarial image activa-

tions sample belong to two different distributions. We per-

formed a statistical distance based analysis to differentiate

between the original and adversarial activations distribution

for each class.

Fig.1 shows a brief overview of the methodology we are

following. The model is trained on the data(x, gt) where x

is the input image and gt is the ground truth label. We store

the output labels and extract the activations (hidden layer

activations) from the model. The activations for each class

are generally clustered together and each cluster represent

different classes as shown in the figure. As observed from

the figure, the partition lines are the decision boundaries.

When this model is attacked by adversarial samples, the
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Figure 1. Illustration of our hypothesis: The activations are ex-

tracted from the network for both the original and the adversarial

samples. These are shown in a representative plot demarcated by

the decision boundaries in the above figure. Adversarial samples

which are misclassified are indicated with filled markers. It can

be observed that while the activations of original samples belong-

ing to a class cluster together, the adversaries remain as outliers

indicating that they do not fit in the distribution.

adversarial sample activations lie far away from the orig-

inal class activations distribution and are misclassified as

another class.

The triangles (refer Fig. 1) refer to Class 3 original ac-

tivations distribution where the samples belonging to that

are clustered together. The adversarial samples to this class,

like the class 4 sample (triangle inside diamond space) or

the class 1 sample (triangle inside the circle space) lie fur-

ther away from the original distribution.

4. Experiments

We perform experiments to validate our hypothesis on

MNIST (Modified National Institute of Standards and Tech-

nology) [12] and CIFAR-10 (Canadian Institute For Ad-

vanced Research) [10]datasets.

4.1. Network Setup

The table below shows the model architecture used for

MNIST (refer Table 1). We use the default convolution neu-

ral network present in the cleverhans repositiory [16].

ID Layer Type Kernel # O/p Stride

Size Channels

1 Conv,Relu 8 32 2

2 Conv,Relu 6 64 2

3 Conv, Relu 3 128 1

4 Conv, Relu 2 128 1

5 Dense 256

7 Dense 128

Table 1. Model architecture for MNIST

The neural network is trained for 220 epochs with 0.001

learning rate and batch size 128 using Adam optimizer.

We used the same network as above for CIFAR-10 but

increased the number of channels in each convolution lay-

ers by 4 times. This neural network is trained on the training

dataset for 400 epochs, with learning rate 0.001, Adam op-

timizer and batch size 128. After the training is over, we

calculate the accuracy of the model on the test set.

We discard the misclassified samples from the test data

after accuracy evaluation as these might lead to false adver-

saries in adversarial set.

4.2. Adversarial Attack Generation and Activations
Extraction

We attack our model using three adversarial attack gener-

ation techniques FGSM, Madry and Carlini Wagner. FGSM

and Madry attack are generated for 5 varying degrees of

perturbations (epsilons), 0.01, 0.05, 0.1, 0.2 and 0.3. We

generate adversaries on the correctly classified samples of

test data only.

Here we describe the method for activations extraction

and distribution generation. We store the original labels

(ground truth labels for original sample) and extract logits

and pre-logits from the trained model. We store the adver-

sarial labels (predicted labels for adversarial sample) and

extract logits and pre-logits from the model. Here we have

considered logits as the activations for original and adver-

sarial samples. The original activations are partitioned into

a baseline holdout set and rest of the original activations in

another set. The baseline holdout set is of fixed size having

100 samples or half the number of total original samples

present for that class. The rest represents the rest of the

original activations set. So we have three activations set

now, baseline holdout set, rest of the original activations

set and the adversarial activations set. The baseline holdout

set is our reference set. The other 2 sets are our test sets.

Each set is a 2-D matix made up of 1-D activation vectors

corresponding to each image. We apply softmax over the

activation vector for a sample and perform this for all sam-

ples present in all the three sets. A fixed size set of randomly

sampled samples is picked from adversarial activations set

and rest of the original activations set. This is our test sam-

ple size which tells us if that number of samples is enough

to distinguish between original and adversarial samples.

4.3. Statistical Distances Computation and AUC
Scores Generation

We calculate statistical metrics for rest of the original

activations set w.r.t the reference set and for the adversar-

ial activations distribution w.r.t the reference set. We repeat

the above operation 100 times, each time randomly sam-

pling our test sets for a particular sample size. We compute

AUC score for a particular class for a particular sample size

and degree of perturbation. The AUC scores indicate how

well the original and adversarial samples can be separated.

These scores are tallied for varying sample sizes, degrees of

perturbation and different classes.



Sample Sizes
FGSM MADRY CARLINI WAGNER

ED MMD ED MMD ED MMD

1 98.7 (± 0.4) 33.6 (± 11.88) 99.5 (± 0.2) 30.2 (± 10.87) 100 (± 0) 33.1 (± 12.5)

5 99.6 (± 0.04) 42.8 (± 0.33) 99.7 (± 0.02) 42.1 (± 0.42) 99.9 (± 0) 41.9 (± 0.37)

10 99.7 (± 0.03) 43.8 (± 0.3) 99.8 (± 0.01) 43.2 (± 0.32) 99.9 (± 0) 43 (± 0.32)

20 99.8 (± 0.01) 45.5 (± 0.19) 99.8 (± 0) 44.7 (± 0.19) 99.9 (± 0) 44.9 (± 0.24)
Table 2. AUC scores (%) for MNIST dataset

Sample Sizes
FGSM MADRY CARLINI WAGNER

ED MMD ED MMD ED MMD

1 75.9 (± 2.66) 42.1 (± 7.74) 88.4 (± 2.68) 34.9 (± 10.42) 94.2 (± 2.08) 35.7 (± 13.82)

5 83.1 (± 0.4) 50.1 (± 0.02) 91.9 (± 0.13) 45.9 (± 0.13) 94.5 (± 0.22) 49.1 (± 0.07)

10 84.6 (± 0.42) 50.1 (± 0.01) 92.3 (± 0.11) 46.3 (± 0.12) 94.8 (± 0.19) 49.3 (± 0.05)

20 87.4 (± 0.3) 50.1 (± 0) 92.9 (± 0.09) 46.9 (± 0.12) 95.4 (± 0.11) 49.5 (± 0.02)
Table 3. AUC scores (%) for CIFAR-10 dataset

5. Results and Discussion

We present our results on MNIST and CIFAR-10 with

three different kinds of attack FGSM, Carlini Wagner and

Madry using two statistical distances, MMD and ED. We

compute the mean and standard deviation of AUC scores

across all the classes and all the epsilons (degrees of per-

turbation), 0.01, 0.05, 0.1, 0.2, 0.3. To maintain the brevity

of the paper we are showing results corresponding to test

sample sizes 1,5,10 and 20.

5.1. MNIST

We trained our model on MNIST and it gave a test accu-

racy of 99.44%. The AUC scores for ED were better than

that for MMD for our FGSM experimental setup. We ob-

served similar trends for Madry and Carlini Wagner attacks

using MMD and ED (see Table 2).

5.2. CIFAR-10

Our model trained on CIFAR-10 gave a test accuracy of

71.8% which isn’t high enough but surprisingly AUC scores

were ranging from 0.75 to 0.87 for FGSM attack using ED.

MMD didn’t perform that well. We observed similar trends

for Madry and Carlini Wagner attack on CIFAR (see Table

3).

5.3. Discussion

We obtained the following insights by analysing our re-

sults 1) The AUC scores obtained using ED were better than

that of MMD for our model across all the three attacks and

two datasets. 2) The AUC scores increase proportionally

with increase in sample size of the test set (works well for

test sample of size 1 also) as expected. 3) The AUC scores

vary negligibly with change in the degree of attack.

Hence our model is attack agnostic, which means it

doesn’t vary with the kind of attack and degree of perturba-

tion. Our model is sample efficient because we experimen-

tally demonstrated that even if the size of our test sample

set is one, we are able to achieve good detection.

Since the statistical distance,especially ED performs so

well in separating the original and adversarial distributions,

it proves our hypothesis that the adversaries don’t belong to

the same distribution as the natural image distribution and

hence can be separated by such statistical distance metrics.

The results also prove that the learnt features extracted from

the model which are low-dimensional, provides a good ap-

proximation of the data. Hence we don’t need samples of

large sizes to get high detection performance.

6. Conclusion

We experimentally demonstrated that the original and

adversarial sample do not belong to the same distribution.

We also experimentally validated our approach to be attack

agnostic and sample efficient. We could expand this work

to include more statistical distance metrics and also can ex-

tend to use pre-logits. More research will surely contribute

to coming up with better statistical models for detecting ad-

versaries.
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