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Abstract

Training convolutional neural networks for image clas-

sification tasks usually causes information loss. Although

most of the time the information is redundant with respect

to the target task, there are still cases where discriminative

information is also discarded. For example, if images that

belong to the same category have multiple correlated fea-

tures, the model may only learn a subset of the features and

ignore the rest. This may not be a problem unless the classi-

fication in the test set highly relies on the ignored features.

We argue that the discard of the correlated discriminative

information is partially caused by the fact that the mini-

mization of the classification loss doesn’t ensure to learn all

discriminative information but only the most discriminative

information given the training set. To address this problem,

we propose an information flow maximization (IFM) loss

as a regularization term to find the discriminative corre-

lated features. With less information loss the classifier can

make predictions based on more informative features. We

validate our method on the shiftedMNIST dataset and show

the effectiveness of IFM loss in learning representative and

discriminative features.

1. Introduction

Usually a classification model is trained with a softmax

loss which is quite successful in many scenarios. This loss

typical helps the model learn discriminative features for the

target task and ignore the irrelevant features. However, if

there are several discriminative features that are correlated

within a category, the model may choose the most discrim-

inative feature (e.g. color and texture) and ignore the rest

(e.g. object structure). The reason is that the most discrim-

inative features are those that make the steepest descend in

loss function. As the training continues, those features will

dominate the final feature representation and the rest dis-

criminative features will be discarded as well as the irrele-

vant features. Similar evidence can also be found in recent

study on ImageNet-trained CNNs. It shows that those mod-

els are biased towards texture rather than object shape [5].

Learning partial discriminative features does not make the

most of the training dataset and thus it reduces the general-

ization capability of the model.

Information theory has been widely used to improve the

representation capability of deep neural networks [2, 4, 6,

11, 12, 14]. In this work, we focus on how to apply mutual

information to find correlated features in image classifica-

tion tasks. According to Data Processing Inequalities (DPI),

the mutual information between the input data and the hid-

den layers are decreasing as the layer goes deeper [13]. The

main idea of information bottleneck (IB) trade off is that

we can try to minimize the mutual information between the

input data and the hidden representation and maximize the

mutual information between the hidden representation and

the label to find the optimal achievable representations of

the input data [13]. In contrast, we find that when discrim-

inative features are correlated, the maximization instead of

minimization of mutual information between hidden repre-

sentations can provide more information to the classifier for

learning discriminative features. We call this strategy infor-

mation flow maximization (IFM) which is achieved by es-

timating and maximizing the mutual information between

convolutional layers simultaneously. IFM is implemented

using a multi-layer fully connected neural network and it

serves as a plug-in in the conventional CNNs in the training

stage. In the test stage, all IFM blocks are removed and thus

there is no extra computation cost.

2. Related work

There are many work concentrating on information max-

imization for deep networks. In [2], Chen et al. introduce

InfoGAN which is a generative adversarial network that

maximizes the mutual information between a small subset

of the latent variables and the observation. In [1], Belg-

hazi et al. present a Mutual Information Neural Estimator

(MINE) that estimates mutual information between high di-

mensional continuous random variables by gradient descent



over neural networks. In [6], Hjelm et al. introduce Deep

InfoMax (DIM) to maximize mutual information between a

representation and the output of a deep neural network en-

coder to improve the representation’s suitability for down-

stream tasks. In [9], Jacobsen et al. propose a flow-based

invertible network architecture and an alternative objective

that extract overall discriminative knowledge in the predic-

tion model.

The difference between our work and [6] is that we are

concentrating on maximizing the mutual information be-

tween adjacent layers so that the information loss between

the input data and their final representation can be reduced

while [6] tries to maximize the mutual information between

the final representation and the output convolutional feature

maps. The work in [9] is closely related to our work, the

main difference is that we apply IFM blocks instead of flow-

based models to reduce the information loss.

3. Method

The pipeline of the proposed method is shown in Fig-

ure 1. The backbone network is a vanilla convolutional

neural network. The IFM blocks are plugged in between

adjacent convolution layers. Note that the IFM blocks are

only used in the training stage. In the test stage, those IFM

blocks are removed so that there is no extra computation

cost.
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Figure 1. The training pipeline of the proposed method. In the

training stage, the model is trained to minimize the classification

loss and maximize the information flow between layers.

3.1. Mutual information estimation

In oder to be self-contained, in this section we will in-

troduce how to estimate mutual information. Formally, the

mutual information is calculated as

I(X,Z) =
∑

z∈Z

∑

x∈X

p(x, z)log
p(x, z)

p(x)p(z)

= KL(p(x, z)||p(x)p(z)),

(1)

where X and Z are two random variables. p(x, z) is the

joint probability function of X and Z. p(x) and p(z) are

the marginal probability functions of X and Z respectively.

From Equation 1, we can find that maximizing the mutual

information between X and Z is equivalent to maximizing

the Kullback-Leibler divergence between the joint distribu-

tion of p(x, z) and the product of marginal distribution of

p(x) and p(z).
Following [10],the general form of f-divergence can be

approximated by

D(P ||Q) = sup
T∈T

(EP [T (X)]− logEQ[f
∗(T (X))]), (2)

where P is the joint distribution p(x, z) and Q is the product

of marginal distribution p(x)p(z). T is an arbitrary class

of functions T : X �→ R and f∗ is the convex conjugate

function of a generator function f . Since D(P ||Q) can be

approximated by the supremum of the difference between

two expectations, we can choose to maximize

F (ω) = EP [Tω(X)]− logEQ[f
∗(Tω(X))] (3)

instead of maximizing D(P ||Q). Tω is a neural network

parametrized by ω. More specifically, Tω can be repre-

sented in the form Tω(x) = gf (Vω(x)) where gf is spe-

cific to the f-divergence used. Since Kullback-Leibler di-

vergence is not upper bounded, we use Jensen-Shannon di-

vergence as a surrogate to estimate the mutual information.

Thus, we can replace f∗(t) with −log(2 − et) and choose

gf (v) = log(2)− log(1+e−v). Ignoring the constant term,

we obtain

F (ω) ≈ EP [σ(Vω(x))]− logEQ[1− σ(Vω(x))] (4)

where σ(v) = 1

1+e−v and σ(Vω(x)) is represented by net-

work D in Figure 2(b). From Equation 4, we can find that

the maximization of F (ω) will result in the network D out-

putting one for samples from the joint distribution and zero

for samples from the product of the marginal distributions.

3.2. Constructing sample pairs

In Equation 4, we still need to estimate two expectations.

In the first term the samples are sampled from the joint dis-

tribution and in the second term the samples are sampled

from the product of marginal distributions. Since we are

estimating the mutual information between adjacent convo-

lutional layers Hl and Hl+1, we firstly resize Hl+1 to the

size of Hl. The reason we choose up-sampling instead of

down-sampling is that we want to maximize the amount of

information propagated to the next layer. Then sampling

from the joint distribution p(hl, hl+1) could be achieved by

sampling feature vectors at the same spatial location on the

convolutional feature maps. For sampling from the second

distribution, we can firstly randomly sample a feature vector

from Hl and then randomly sample another feature vector

from Hl+1. For each sample pair, the two feature vectors

are concatenated as a single vector. The details are shown



in figure 2. σ(Vω(x)) is represented by network D and the

maximization of Equation 4 will optimize network D to dis-

tinguish the sample pairs from the two distributions.

3.3. Information flow maximization

When stacking convolutional layers, we are potentially

losing information. According to DPI, we have the mutual

information between the input X and the hidden layer Hi

I(X,H1) > I(X,H2) > ... > I(X,Hn). Suppose we

are given a training dataset for classification and the data

representation can be decomposed into three disentangled

features zid0, zid1 and zv where zid0 and zid1 can be used

for classification and zv describes some random variations

that are shared across categories. Ideally, we can use these

three features to perfectly reconstruct the input data. When

we are training a model for the target classification task, the

information about zv will be gradually discarded from the

information flow which is as expected. However, if the clas-

sification task is biased towards one of the id features, say

zid0, we may unexpectedly lose the information of zid1 as

well in the information flow. This is because during model

training if ∂L
∂zid0

is much larger than ∂L
∂zid1

zid0 will get more

strengthened than zid1. Finally, our model will rely only on

zid0 for classification. This behavior undermines the gen-

eralization capability of our model especially when the test

task depends on zid1 for classification.

To reduce the loss of information in the information flow,

we propose to combine classification loss with the informa-

tion flow maximization (IFM) loss, i.e.

L = Lclf −

L∑

l=1

Fl(ω), (5)

where Lclf is the classification loss (e.g. the softmax loss)

and L is the number of layers that used to calculate the in-

formation flow.

Although some task-irrelevant information may also be

involved in the final representation, the training process will

let the discriminative information dominate the representa-

tion. Thus the classifier can make predictions based on more

informative features.

4. Experiments

4.1. Dataset

The dataset we used in evaluation is the shiftedMNIST

dataset introduced in [9]. It is a modified version of MNIST

dataset. Ten texture images are randomly selected from

a texture dataset [3] and applied on the digit as its back-

ground. We spare one-fifth of the original MNIST training

set to construct the validation set. In the training set, each

digit is associated with a fixed type of texture. For example,

for digit 1, its background patch is sampled from texture 1.

Upsample

Hl Hl+1

(a)

hl(i,j) hl+1
(i,j) hl(i,j) hl+1(m,n)

D D

01
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Figure 2. Constructing sample pairs from the joint distribution and

the product of marginal distributions. Hl and Hl+1 are two adja-

cent convolutional feature maps. We up-sample Hl+1 to the size

of Hl in (a). In (b), we feed sample pairs from both distributions to

network D. The superscript indicates the spatial location on feature

maps.

For digit 2, its background patch is sampled from texture

2, etc. However, in the validation set and test set, the digit

is associated with a random texture. In other words, the

texture id and the digit id are the same for given a training

image while they are not necessarily the same for a given

validation or test image. Some examples from the shift-

edMNIST dataset are shown in Figure 3.

(a)

(b)

Figure 3. Some training examples (a) and test samples (b) from the

shiftedMNIST dataset.

4.2. Implementation details

The details of the classification network and the network

D are shown in Table 1 and Table 2. The learning rate is

0.01. Mutual information is estimated for (conv1, conv2),

(conv2, conv3) and (conv3, conv4). The size of the input

image is 32×32. Both the classification network and the

network D are trained in an end-to-end way simultaneously.



Layer Network details

conv1 Conv(32,3,3)-BN-leakyReLU

- Maxpool(2,2)

conv2 Conv(64,3,3)-BN-leakyReLU

- Maxpool(2,2)

conv3 Conv(128,3,3)-BN-leakyReLU

- Maxpool(2,2)

conv4 Conv(128,3,3)-BN-leakyReLU

- Maxpool(2,2)

f FC(128×2×2, 10)

Table 1. Details of the classification network. “Conv(c,3,3)” indi-

cates that there are c convolution kernels with size 3 × 3. “Max-

pool(2,2) ” means max-pooling with stride 2 and the pooling win-

dow size is 2 × 2. “BN ” indicates batch normalization [8]. All

leakyReLUs share the same ratio of 0.2 in the negative region. “FC

” is the fully connected layer.

Layer Network details

fc1 FC(N , 256)-BN-leakyReLU

fc2 FC(256, 128)-BN-leakyReLU

fc3 FC(128, 64)-BN-leakyReLU

fc4 FC(64, 1)-sigmoid

Table 2. Details of the network D. N indicates the input dimension

of the concatenated feature vector.

4.3. Evaluation protocol

For the shiftedMNIST dataset, one may argue that only

the digit feature should be considered as the correct feature

for label prediction in the training set. However, as stated in

[7], the digit feature can be viewed as a kind of human prior.

For our model, it does not have such a prior so that both the

digit feature and the texture feature may be viewed as dis-

criminative features. It leaves to the optimization dynamics

to choose which feature as the final predictor. Note that the

digit label and texture label are identical for a given train-

ing image. In the training stage, we select one model with

best validation accuracy for digit classification and another

model with best validation accuracy for texture classifica-

tion to observe how the optimization dynamics influences

the knowledge learning process. Note that the optimal test

classification accuracy should be around 55% since the clas-

sification model is not aware of whether the test task is a

digit classification task or a texture classification task. So

we expect it to learn both features equivalently.

4.4. Results

The classification results are shown in Table 3. In this

section, we train a baseline model without IFM blocks.

Model Baselinedigit achieves best digit validation accuracy

and the model Baselinetexture achieves best texture valida-

tion accuracy. The test accuracies are shown in the first two

Model acc (digit) acc (texture)

Baselinedigit 12.44% 95.07%

Baselinetexture 12.05% 96.44%

iCE fi-RevNet [9] 40.01% -

Oursdigit 54.54 % 40.41%

Ourstexture 31.78 % 69.00%

Table 3. Test classification accuracy from the baseline model, iCE

fi-RevNet and ours.

rows in Table 3. For both models, the prediction accuracies

on the digit are slightly above 10% which is quite similar

to random guess. It means that both models ignore the digit

structure as the discriminative feature. The prediction ac-

curacies on texture are above 95% which means the final

representations are dominated by the texture features. The

results of the baseline models demonstrate that if the model

is trained in the vanilla way it only learns partial discrim-

inative features and ignores other correlated features. In

this experiments, the baseline models are sensitive to tex-

ture features which is in accordance with the observations

in [5].

The benefit of applying IFM is shown in the bottom two

rows. It can be found that the classification accuracies of

digit are much higher than that of the baseline model. It

indicates that our models indeed learn the digit structure as

the discriminative feature. The reason for the test digit ac-

curacy of Ourstexture being much lower than the texture

accuracy is that digit structure features are more difficult

to learn than texture features. When the texture features

are well learned (with high texture validation accuracy), the

learning of digit features may only reach its halfway. Then

IFM loss prevents texture features from dominating the fi-

nal representation and provides more structure information.

Thus test texture accuracy decreases and digit accuracy in-

creases. Oursdigit also outperforms the model in [9] which

is a flow based model with no information loss. It implies

that our IFM can be potentially viewed as an alternative way

to flow-based models to reduce information loss in deep net-

works.

5. Conclusion

In this work, we propose to maximize the information

flow in convolutional neural networks as a kind of regular-

ization term. The benefit of this regularization is that we

can find correlated features that are difficult to be disen-

tangled. Thus, the learned representations are more infor-

mative and generalizable than that learned in conventional

training without this information regularization term. Our

future work will focus on how to apply the proposed infor-

mation flow maximization on natural image classification

tasks.
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L. Zdeborová, et al. Entropy and mutual information in mod-

els of deep neural networks. In Advances in Neural Informa-

tion Processing Systems, pages 1821–1831, 2018.

[5] R. Geirhos, P. Rubisch, C. Michaelis, M. Bethge, F. A. Wich-

mann, and W. Brendel. Imagenet-trained cnns are biased to-

wards texture; increasing shape bias improves accuracy and

robustness. arXiv preprint arXiv:1811.12231, 2018.

[6] R. D. Hjelm, A. Fedorov, S. Lavoie-Marchildon, K. Grewal,

A. Trischler, and Y. Bengio. Learning deep representations

by mutual information estimation and maximization. arXiv

preprint arXiv:1808.06670, 2018.

[7] A. Ilyas, S. Santurkar, D. Tsipras, L. Engstrom, B. Tran, and

A. Madry. Adversarial examples are not bugs, they are fea-

tures. arXiv preprint arXiv:1905.02175, 2019.

[8] S. Ioffe and C. Szegedy. Batch normalization: Accelerating

deep network training by reducing internal covariate shift.

In Proceedings of the 32Nd International Conference on In-

ternational Conference on Machine Learning - Volume 37,

ICML’15, pages 448–456, 2015.

[9] J.-H. Jacobsen, J. Behrmann, R. Zemel, and M. Bethge. Ex-

cessive invariance causes adversarial vulnerability. arXiv

preprint arXiv:1811.00401, 2018.

[10] S. Nowozin, B. Cseke, and R. Tomioka. f-gan: Training

generative neural samplers using variational divergence min-

imization. In Advances in neural information processing sys-

tems, pages 271–279, 2016.

[11] R. Shwartz-Ziv and N. Tishby. Opening the black box

of deep neural networks via information. arXiv preprint

arXiv:1703.00810, 2017.

[12] N. Tishby, F. C. Pereira, and W. Bialek. The information

bottleneck method. arXiv preprint physics/0004057, 2000.

[13] N. Tishby and N. Zaslavsky. Deep learning and the informa-

tion bottleneck principle. In 2015 IEEE Information Theory

Workshop (ITW), pages 1–5. IEEE, 2015.

[14] S. Zhao, J. Song, and S. Ermon. Infovae: Informa-

tion maximizing variational autoencoders. arXiv preprint

arXiv:1706.02262, 2017.


