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Abstract

Training convolutional neural networks for image clas-
sification tasks usually causes information loss. Although
most of the time the information is redundant with respect
to the target task, there are still cases where discriminative
information is also discarded. For example, if images that
belong to the same category have multiple correlated fea-
tures, the model may only learn a subset of the features and
ignore the rest. This may not be a problem unless the classi-
fication in the test set highly relies on the ignored features.
We argue that the discard of the correlated discriminative
information is partially caused by the fact that the mini-
mization of the classification loss doesn’t ensure to learn all
discriminative information but only the most discriminative
information given the training set. To address this problem,
we propose an information flow maximization (IFM) loss
as a regularization term to find the discriminative corre-
lated features. With less information loss the classifier can
make predictions based on more informative features. We
validate our method on the shiftedMNIST dataset and show
the effectiveness of IFM loss in learning representative and
discriminative features.

1. Introduction

Usually a classification model is trained with a softmax
loss which is quite successful in many scenarios. This loss
typical helps the model learn discriminative features for the
target task and ignore the irrelevant features. However, if
there are several discriminative features that are correlated
within a category, the model may choose the most discrim-
inative feature (e.g. color and texture) and ignore the rest
(e.g. object structure). The reason is that the most discrim-
inative features are those that make the steepest descend in
loss function. As the training continues, those features will
dominate the final feature representation and the rest dis-
criminative features will be discarded as well as the irrele-
vant features. Similar evidence can also be found in recent

study on ImageNet-trained CNNs. It shows that those mod-
els are biased towards texture rather than object shape [5].
Learning partial discriminative features does not make the
most of the training dataset and thus it reduces the general-
ization capability of the model.

Information theory has been widely used to improve the
representation capability of deep neural networks [2, 4, 6,
11, 12, 14]. In this work, we focus on how to apply mutual
information to find correlated features in image classifica-
tion tasks. According to Data Processing Inequalities (DPI),
the mutual information between the input data and the hid-
den layers are decreasing as the layer goes deeper [13]. The
main idea of information bottleneck (IB) trade off is that
we can try to minimize the mutual information between the
input data and the hidden representation and maximize the
mutual information between the hidden representation and
the label to find the optimal achievable representations of
the input data [13]. In contrast, we find that when discrim-
inative features are correlated, the maximization instead of
minimization of mutual information between hidden repre-
sentations can provide more information to the classifier for
learning discriminative features. We call this strategy infor-
mation flow maximization (IFM) which is achieved by es-
timating and maximizing the mutual information between
convolutional layers simultaneously. IFM is implemented
using a multi-layer fully connected neural network and it
serves as a plug-in in the conventional CNNss in the training
stage. In the test stage, all IFM blocks are removed and thus
there is no extra computation cost.

2. Related work

There are many work concentrating on information max-
imization for deep networks. In [2], Chen ef al. introduce
InfoGAN which is a generative adversarial network that
maximizes the mutual information between a small subset
of the latent variables and the observation. In [1], Belg-
hazi et al. present a Mutual Information Neural Estimator
(MINE) that estimates mutual information between high di-
mensional continuous random variables by gradient descent



over neural networks. In [6], Hjelm et al. introduce Deep
InfoMax (DIM) to maximize mutual information between a
representation and the output of a deep neural network en-
coder to improve the representation’s suitability for down-
stream tasks. In [9], Jacobsen et al. propose a flow-based
invertible network architecture and an alternative objective
that extract overall discriminative knowledge in the predic-
tion model.

The difference between our work and [6] is that we are
concentrating on maximizing the mutual information be-
tween adjacent layers so that the information loss between
the input data and their final representation can be reduced
while [6] tries to maximize the mutual information between
the final representation and the output convolutional feature
maps. The work in [9] is closely related to our work, the
main difference is that we apply IFM blocks instead of flow-
based models to reduce the information loss.

3. Method

The pipeline of the proposed method is shown in Fig-
ure 1. The backbone network is a vanilla convolutional
neural network. The IFM blocks are plugged in between
adjacent convolution layers. Note that the IFM blocks are
only used in the training stage. In the test stage, those IFM
blocks are removed so that there is no extra computation

cost.
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Figure 1. The training pipeline of the proposed method. In the
training stage, the model is trained to minimize the classification
loss and maximize the information flow between layers.
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3.1. Mutual information estimation

In oder to be self-contained, in this section we will in-
troduce how to estimate mutual information. Formally, the
mutual information is calculated as

p(z, z)
lehaex plp(z)
= KL(p(x, 2)||p(x)p(2)),
where X and Z are two random variables. p(z, z) is the

joint probability function of X and Z. p(x) and p(z) are
the marginal probability functions of X and Z respectively.

From Equation 1, we can find that maximizing the mutual
information between X and Z is equivalent to maximizing
the Kullback-Leibler divergence between the joint distribu-
tion of p(z, z) and the product of marginal distribution of
p(z) and p(z).

Following [10],the general form of f-divergence can be
approximated by

D(Pl|Q) (Ep[T(X)] = logEq[f*(T(X))]), ()

= sup

TeT
where P is the joint distribution p(x, z) and @ is the product
of marginal distribution p(z)p(z). T is an arbitrary class
of functions 7" : X +— R and f* is the convex conjugate
function of a generator function f. Since D(P||Q) can be
approximated by the supremum of the difference between
two expectations, we can choose to maximize

F(w) = Ep[T,(X)] = logEQ[f*(Tu(X))]  (3)

instead of maximizing D(P||Q). T, is a neural network
parametrized by w. More specifically, 7, can be repre-
sented in the form T, (x) = g¢(V,(x)) where g is spe-
cific to the f-divergence used. Since Kullback-Leibler di-
vergence is not upper bounded, we use Jensen-Shannon di-
vergence as a surrogate to estimate the mutual information.
Thus, we can replace f*(t) with —log(2 — e') and choose
g¢(v) = log(2) —log(1+e~"). Ignoring the constant term,
we obtain

F(w) = Eplo(Vu(z))] —logEq[l —o(Vu(z))] (4

where o(v) = H-% and o(V,,(x)) is represented by net-
work D in Figure 2(b). From Equation 4, we can find that
the maximization of F'(w) will result in the network D out-
putting one for samples from the joint distribution and zero
for samples from the product of the marginal distributions.

3.2. Constructing sample pairs

In Equation 4, we still need to estimate two expectations.
In the first term the samples are sampled from the joint dis-
tribution and in the second term the samples are sampled
from the product of marginal distributions. Since we are
estimating the mutual information between adjacent convo-
lutional layers H; and H; 1, we firstly resize H;; to the
size of H;. The reason we choose up-sampling instead of
down-sampling is that we want to maximize the amount of
information propagated to the next layer. Then sampling
from the joint distribution p(h;, hi11) could be achieved by
sampling feature vectors at the same spatial location on the
convolutional feature maps. For sampling from the second
distribution, we can firstly randomly sample a feature vector
from H; and then randomly sample another feature vector
from H;;. For each sample pair, the two feature vectors
are concatenated as a single vector. The details are shown



in figure 2. o(V,(x)) is represented by network D and the
maximization of Equation 4 will optimize network D to dis-
tinguish the sample pairs from the two distributions.

3.3. Information flow maximization

When stacking convolutional layers, we are potentially
losing information. According to DPI, we have the mutual
information between the input X and the hidden layer H;
I(X,Hy) > I(X,Hy) > ... > I(X,H,). Suppose we
are given a training dataset for classification and the data
representation can be decomposed into three disentangled
features z;49, ziq1 and z, where z;40 and z;41 can be used
for classification and z, describes some random variations
that are shared across categories. Ideally, we can use these
three features to perfectly reconstruct the input data. When
we are training a model for the target classification task, the
information about z, will be gradually discarded from the
information flow which is as expected. However, if the clas-
sification task is biased towards one of the id features, say
Zido, we may unexpectedly lose the information of z;4; as
well in the information flow. This is because during model
training if 5 9L_ is much larger than 57— z;40 will get more
strengthened%han Ziq1. Finally, our model will rely only on
zido for classification. This behavior undermines the gen-
eralization capability of our model especially when the test
task depends on z;4; for classification.

To reduce the loss of information in the information flow,
we propose to combine classification loss with the informa-
tion flow maximization (IFM) loss, i.e.

L
L=Las—Y Fw), (5)

where L is the classification loss (e.g. the softmax loss)
and L is the number of layers that used to calculate the in-
formation flow.

Although some task-irrelevant information may also be
involved in the final representation, the training process will
let the discriminative information dominate the representa-
tion. Thus the classifier can make predictions based on more
informative features.

4. Experiments
4.1. Dataset

The dataset we used in evaluation is the shiftedMNIST
dataset introduced in [9]. Itis a modified version of MNIST
dataset. Ten texture images are randomly selected from
a texture dataset [3] and applied on the digit as its back-
ground. We spare one-fifth of the original MNIST training
set to construct the validation set. In the training set, each
digit is associated with a fixed type of texture. For example,
for digit 1, its background patch is sampled from texture 1.
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Figure 2. Constructing sample pairs from the joint distribution and
the product of marginal distributions. H; and H;1; are two adja-
cent convolutional feature maps. We up-sample H; 1 to the size
of Hj in (a). In (b), we feed sample pairs from both distributions to
network D. The superscript indicates the spatial location on feature
maps.

For digit 2, its background patch is sampled from texture
2, etc. However, in the validation set and test set, the digit
is associated with a random texture. In other words, the
texture id and the digit id are the same for given a training
image while they are not necessarily the same for a given
validation or test image. Some examples from the shift-
edMNIST dataset are shown in Figure 3.

PEER G S5 6

5 2
RS )5 | FEIE
@zsxw@ 7. &9

@Wlllﬁlﬁr
!ﬂ@ Gl=L

N

Figure 3. Some training examples (a) and test samples (b) from the
shiftedMNIST dataset.

4.2. Implementation details

The details of the classification network and the network
D are shown in Table 1 and Table 2. The learning rate is
0.01. Mutual information is estimated for (convl, conv2),
(conv2, conv3) and (conv3, conv4). The size of the input
image is 32x32. Both the classification network and the
network D are trained in an end-to-end way simultaneously.



Layer | Network details

convl | Conv(32,3,3)-BN-leakyReLU
- Maxpool(2,2)

conv2 | Conv(64,3,3)-BN-leakyReLU
- Maxpool(2,2)

conv3 | Conv(128,3,3)-BN-leakyReL.U
- Maxpool(2,2)

conv4 | Conv(128,3,3)-BN-leakyRe.U
- Maxpool(2,2)
f FC(128x2x2, 10)

Table 1. Details of the classification network. “Conv(c,3,3)” indi-
cates that there are ¢ convolution kernels with size 3 x 3. “Max-
pool(2,2) ”” means max-pooling with stride 2 and the pooling win-
dow size is 2 x 2. “BN ” indicates batch normalization [8]. All
leakyReLUs share the same ratio of 0.2 in the negative region. “FC
” is the fully connected layer.

Layer | Network details

fcl FC(IV, 256)-BN-leakyReLLU
fc2 | FC(256, 128)-BN-leakyReLU
fc3 FC(128, 64)-BN-leakyReLU
fc4 FC(64, 1)-sigmoid

Table 2. Details of the network D. N indicates the input dimension
of the concatenated feature vector.

4.3. Evaluation protocol

For the shiftedMNIST dataset, one may argue that only
the digit feature should be considered as the correct feature
for label prediction in the training set. However, as stated in
[71, the digit feature can be viewed as a kind of human prior.
For our model, it does not have such a prior so that both the
digit feature and the texture feature may be viewed as dis-
criminative features. It leaves to the optimization dynamics
to choose which feature as the final predictor. Note that the
digit label and texture label are identical for a given train-
ing image. In the training stage, we select one model with
best validation accuracy for digit classification and another
model with best validation accuracy for texture classifica-
tion to observe how the optimization dynamics influences
the knowledge learning process. Note that the optimal test
classification accuracy should be around 55% since the clas-
sification model is not aware of whether the test task is a
digit classification task or a texture classification task. So
we expect it to learn both features equivalently.

4.4. Results

The classification results are shown in Table 3. In this
section, we train a baseline model without IFM blocks.
Model Baselineg;q;: achieves best digit validation accuracy
and the model Baseline;. .- achieves best texture valida-
tion accuracy. The test accuracies are shown in the first two

Model acc (digit) acc (texture)
Baseline;4;¢ 12.44% 95.07%
Baseline;cytyure 12.05% 96.44%
iCE fi-RevNet [9] 40.01% -
Oursg;git 54.54 % 40.41%
Oursesture 31.78 % 69.00%

Table 3. Test classification accuracy from the baseline model, iCE
fi-RevNet and ours.

rows in Table 3. For both models, the prediction accuracies
on the digit are slightly above 10% which is quite similar
to random guess. It means that both models ignore the digit
structure as the discriminative feature. The prediction ac-
curacies on texture are above 95% which means the final
representations are dominated by the texture features. The
results of the baseline models demonstrate that if the model
is trained in the vanilla way it only learns partial discrim-
inative features and ignores other correlated features. In
this experiments, the baseline models are sensitive to tex-
ture features which is in accordance with the observations
in [5].

The benefit of applying IFM is shown in the bottom two
rows. It can be found that the classification accuracies of
digit are much higher than that of the baseline model. It
indicates that our models indeed learn the digit structure as
the discriminative feature. The reason for the test digit ac-
curacy of OurS;ey¢ure being much lower than the texture
accuracy is that digit structure features are more difficult
to learn than texture features. When the texture features
are well learned (with high texture validation accuracy), the
learning of digit features may only reach its halfway. Then
IFM loss prevents texture features from dominating the fi-
nal representation and provides more structure information.
Thus test texture accuracy decreases and digit accuracy in-
creases. Oursg; g+ also outperforms the model in [9] which
is a flow based model with no information loss. It implies
that our IFM can be potentially viewed as an alternative way
to flow-based models to reduce information loss in deep net-
works.

5. Conclusion

In this work, we propose to maximize the information
flow in convolutional neural networks as a kind of regular-
ization term. The benefit of this regularization is that we
can find correlated features that are difficult to be disen-
tangled. Thus, the learned representations are more infor-
mative and generalizable than that learned in conventional
training without this information regularization term. Our
future work will focus on how to apply the proposed infor-
mation flow maximization on natural image classification
tasks.
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