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Abstract

Reasoning about relations among a set of objects is one

of the key aspects of human intelligence, and Relational

Networks (RNs) [24] are one of the classes of architectures

that specializes in such relational reasoning. However, RNs

are limited in their general applicability due to significant

(quadratic) complexity of all-pair comparative operations.

In this paper, we propose Stochastic RN (SRN) that learns to

prune distractors and pick task-related objects that are cru-

cial for relational reasoning, thereby reducing forward and

backward computation costs with minimal sacrifice. We em-

pirically show that our approach is effective in a real-world

visual question-answering task, where vanilla RNs might be

computationally expensive to run due to the sheer number

of candidate objects for each image.

1. Introduction

Relational reasoning exploits relationships among a set

of objects or entities to conduct higher order of inference

and is considered crucial in achieving better compositional-

ity in machine intelligence. [24] is one of the earlier works

to identify the potential of relational reasoning and has pro-

posed Relational Network or Relation Network (RN), a sim-

ple but effective neural network architecture that has been

designed to explicitly carry out binary relational reasoning.

This specialized architectural design has been shown to

be effective notably in visual relational reasoning (VQA)

[24, 21]. However, since RNs take pairwise relationships

among a group of entities, the network complexity is at

least in the order of n2 where n is the number of objects

in question. The quadratic complexity imposes a signifi-

cant challenge in employing RNs in tasks where the num-

ber of objects is substantial, such as dynamic feature maps

extracted from objective detection algorithms (e.g. Faster

R-CNN [23]) on real-world images.

Despite said difficulties, there have been notable efforts

with varying success in applying RNs in a more challenging

setting, i.e. real-world visual question answering (VQA)

[9, 6]. These efforts circumvent the network scalability is-

sue by strictly restricting the number of objects subject to

relational reasoning. For example, in the latest work by

[6], only the top 36 feature maps detected with the bottom-

up mechanism [1] have been utilized for relational reason-

ing, trading off objects or object relationships that poten-

tially hold key evidence to answering corresponding vi-

sual questions. Meanwhile, the latest version of Pythia

[14], the state-of-the-art attention-based model for the VQA

task, leverages feature maps extracted from both pre-trained

and task-specifically fine-tuned Faster R-CNN models to

achieve superior performance in VQA 2.0 [10]. The union

of the object detectors produces 296 feature maps for each

image, supporting the notion that a large candidate pool of

detected objects is crucial for extracting richer and deeper

visual semantics. However, considering that each feature

map is also a 2048-dimensional vector, the sheer number of

pairwise relations and their features remains a challenge for

RNs to be applied directly.

In this preliminary work, we explore the feasibility of

employing stochastic neural network architecture to per-

form relational reasoning discriminatively. Ideally, the pro-

posed model must not only reduce forward pass computa-

tion cost but also reduce computation cost during backprop-

agation, without losing its expressive power. Based on the

intuition that not all objects detected by a general object

detector are useful for conducting visual reasoning, we pro-

pose a variant of RN called Stochastic Relational Network

(SRN), in which the model stochastically learns to select

most relevant objects to be passed onto more costly rela-

tional reasoning operation. The contributions of the paper

are two folds:

1. We introduce Stochastic RN (SRN) as a means to ad-

dress the scalability issue of relational reasoning, es-

pecially in the context of real world visual relational

reasoning.

2. We conduct preliminary experiments to support our

motivation, and we empirically show that suppress-

ing distractors in relation subjects not only alleviates

the inherit scalability issue of RNs but also further im-

proves performances in the VQA task.



2. Relational Network

Deep neural networks have made remarkable progress at

recognizing objects[23, 19], but teaching models to reason

with relations between objects is ongoing research. Rela-

tional Network (RN) is the leading approach in this regard,

achieving super-human performances in some tasks [24].

We represent the core RN module as a function that takes

a query vector q and an array of objects V and returns

an output vector o that encodes the relational information

about the objects queried by q:

o = RN (q,V)

The first step is to fuse each object vector vi with the

query vector to produce a relation subject vector si through

a fusion function fs: si = fs (q,vi) ∀0 ≤ i ≤ k, where k
is the number of objects. Next, each permutation of subject

vector pairs goes through pairwise relation layer fr, produc-

ing relation vectors that embed relational knowledge about

the paired objects. A pooling operator
⊔

(e.g. sum-pooling)

pools k2 relation vectors to produce a single vector that goes

through the final output layer fo:

RN (q,V) = fo

⎛

⎝

⊔

i,j

fr (si, sj)

⎞

⎠ (1)

3. Stochastic Relational Network

A discriminative network (pθ), parametrized by θ, pre-

dicts whether an object is worthy of being subject to rela-

tional reasoning in Equation 1. z ∈ {0, 1}
k

is the discrete

latent variable that indicates whether the object is selected.

Objects suppressed by the discriminative network will be

dropped out from the pool of object vectors, forming a new

object matrix V′ ∈ R
k′

×do where k′ =
∑

i zi ≤ k:

V′ =

⎡

⎣

vi

. . . zi = 1
vk

⎤

⎦ (2)

The goal of the discriminative network is to select the

most probable set of objects that maximizes the following

expectation.

Epθ(z) [g (z)] (3)

Where g is a function that evaluates the value of a par-

ticular combination of object indicators. For classification

problems, g is set to be the log-likelihood of target labels,

i.e. log p (y|x, z), which is a natural by-product of categor-

ical cross-entropy loss during training. For subsequent sec-

tions, we assume g to be the log-likelihood parameterized

by φ, the parameters in the main model excluding those of

the discriminative network. φ might be omitted for clarity.

Gradients of Equation 3 respect to θ cannot be estimated

directly, as g is not continuous: object selection operation

described in Equation 2 is not differentiable. We must turn

to stochastic gradient estimators to allow the network to be

trainable using gradient descent methods.

3.1. Score-function Gradient Estimator

The score-function gradient estimator [29], also known

as the likelihood ratio (LR) estimator, is an unbiased

stochastic gradient estimator that uses the log derivative

trick (i.e. ▽θpθ (z) = pθ (z)▽θ log pθ (z)) to derive the

following equation:

▽θEpθ(z) [f (z)] = Epθ(z) [f (z)▽θ log pθ (z)]

By using the identity, the partial derivative of Equation 3

can be estimated using Monte Carlo simulations:

Epθ(z) [g (z)▽θ log pθ (z)] ≈
1

M

M
∑

i

g (z̃)▽θ log pθ (z̃)

(4)

Where z̃ is sampled from multidimensional Bernoulli

distribution with parameters pθ (z1) , . . . , pθ (zk). In prac-

tice, for each mini-batch, the model is first trained respect

to φ using the classification error (i.e. ▽φgφ (z)), then we

perform backpropagation respect to θ using the gradient es-

timated in Equation 4 with φ being fixed.

3.2. Variance Reduction

Various methods to reduce the variance of the score-

function gradient estimator [20] have been proposed over

the years, but in this work we use exponential moving aver-

age of g as the baseline for its simplicity and effectiveness:

Epθ(z) [(g (z)− b)▽θ log pθ (z)]

Baseline b is re-calculated at each mini-batch step by up-

dating it with a new reward: b′ = λb · b + (1 − λb) · g (z),
where λb is the baseline decay rate. We also employ entropy

regularization to encourage exploration [30].

3.3. Comparison to "Hard" Attention

In contrast to the more ubiquitous ”soft” attention mech-

anism [3, 28], stochastic attention models attention mech-

anism as a discrete action of choosing a particular object

rather than the normalized weighted sum of the candidates

[30]. The probability of choosing an object is modeled by a

multinoulli parameterized by the attention distribution. [30]

uses variational lower bound to analytically derive the par-

tial derivative equation of the log-likelihood:



L = log p (y) = log
∑

z

p (z) p (y|z)

≥
∑

z

p (z) log p (y|z) = Lz

▽Lz =
∑

z

p (z) (▽ log p (y|z) + log p (y|z)▽ log p (z))

≈
1

M

M
∑

i

(▽ log p (y|z̃) + log p (y|z̃)▽ log p (z̃))

(5)

where z̃ is sampled from p (z). The equation for Monte

Carlo approximation (Equation 5) is not new, as the first

term corresponds to the classification error and the second

term corresponds to the gradient estimator (Equation 4) in

our approach. It shows that the same gradient equation

can be derived from two perspectives (variational bayes and

stochastic gradient estimation).

The key difference between stochastic attention and the

selection mechanism in our approach is that the distribu-

tion of z is categorical in stochastic attention (i.e.
∑

i zi =
1), whereas it follows a multidimensional Bernoulli (i.e
∑

i zi ≥ 0) in our approach.

4. Related Work

Relational Reasoning and RNs. Earlier works [4] have

identified the importance of relational reasoning in machine

intelligence. Since then, RNs’ specialty in various relational

reasoning tasks has inspired the emergence of variations of

the architecture. One of the shortcomings of RNs is that

they can only capture binary relationships, inherently lim-

ited by the model structure. Some works [21, 6] address the

issue by proposing stacking RNs one another either recur-

sively or separately, which allows RNs to capture higher or-

der of relationships. On the other hand, there are efforts [25]

to generalize relations into predicates, which brings models

closer to how humans process knowledge.

Attention Mechanisms. Since the advent of attention

mechanism [3] in the machine translation task, many do-

mains have adopted the mechanism for various other tasks,

such as image captioning [30], visual question-answering

[15], language understanding [28, 18], and speech recogni-

tion [8], etc. The ”soft” variant of attention, in which object

features are summed up by normalized attention weights, is

ubiquitous due to the ease of integration into existing mod-

els, but the stochastic variant is rarer despite empirical ev-

idence that supports its relative superiority. Some recent

works have further explored employing binarized hard at-

tention in the domain of object detection [13] and sequence

modeling [26], but none has explored the idea in the context

of object selection for relational reasoning.

Stochastic Networks. Incorporating discrete latent vari-

ables is a rising paradigm in deep learning, as there is

biology-inspired motivation behind signal binarization [5].

Generally speaking, humans tend to discretize and catego-

rize knowledge and expand new knowledge upon it, hence it

is natural for recent deep learning researches to explore the

idea. Discrete latent variables have been explored in various

tasks [30, 13, 27], and the fundamentals have been visited

by [5, 12, 17]

Visual Intelligence. Recently, the breakthrough of deep

learning technology based on the convolutional neural net-

work has made remarkable progress in many fields, such

as image classification [11] and image segmentation [7].

Breakthroughs in object detection algorithms have con-

tributed significantly to the advance of downstream tasks

[23, 19, 1]. VQA is one of the beneficiaries of such ad-

vancements.

5. Experiments

To examine the effectiveness of our model in selecting

objects meaningful for pair-wise relation reasoning, we de-

sign and conduct experiments on the visual question an-

swering dataset.

5.1. Experimental Settings

Visual question answering is a recent task that requires

the machine to identify an open-ended answer to a natural

language question limited to subjects in a given image. The

task encompasses both aspects of computer vision and nat-

ural language processing and requires joint comprehension

of image and text [2]. Many datasets have been proposed to

test and evaluate visual question answering, one of which

is VQA 2.0 [10]. The VQA dataset is a popular real-world

dataset for studying the visual reasoning problem mainly

for its scale and large coverage of question and scene types.

In the VQA dataset, question-answer pairs are anno-

tated by not one but a set of candidate answers aggre-

gated from the responses of ten crowd workers. In or-

der to accurately evaluate model performances, the authors

of VQA suggest evaluating models by the number of re-

sponders voted for the predicted answer, capping out at 3:

Accuracy = min (Nvotes/3, 1).

5.2. Implementation Details

In practice, we impose minimum and maximum bounds

on the number of objects that can be selected by the discrim-

inative network in SRN. The minimum bound ensures that

there is at least certain number of objects selected, prevent-

ing errors arising from empty samples (i.e.
∑

i z̃i = 0),

while the maximum bound restricts the model from tak-

ing too many computational resources. The values are set



test-dev

Methods All Yes/no Number Other

Pythia v0.1 [14] 46.85 65.26 33.88 33.97

Vanilla RN 47.19 64.72 34.56 34.98

SRN (Ours) 47.18 65.03 34.62 34.62

Table 1. Pilot results on VQA 2.0 (Accuracy %). The mini-batch

size has been limited to 8, the maximum number for vanilla RN

to be trainable on our machine configuration without running out

of memory. RN-enhanced models outperform the previous state-

of-the-art. Our approach (SRN) takes less computation resources

with minimal loss in overall performance.

to 10% and 60% of the total number of objects respec-

tively. We found that mean-pooling performs better than

sum-pooling in Equation 1. All layers in RNs are two-layer

feed-forward networks with 512 as hidden dimensions and a

dropout rate of 0.1. We implement baselines and our model

on Pythia v0.1 [14], which is a modularized visual reason-

ing framework based on Python and PyTorch. Our code and

model will be made public1.

We use Adam [16] optimizer with the scheduled learning

rate employed in Pythia. Only the top-3000 answer candi-

dates were used. We use BiLSTM of hidden size 512 to

encode questions and initialize with pretrained GloVe word

embeddings [22]. For attentional RNs, we set the number of

objects to be titrated by the attention mechanism to 12. For

SRNs, the baseline decay factor λb is set to 0.9, the weight

for stochastic gradient estiamtor λθ to 1.0, and the weight

of entropy regularization λh to 0.1. All hyperparameters

have been determined through grid-based hyperparameter

search. Experiments are run on 4x Tesla P100 GPUs.

5.3. Experimental Results

We conduct various experiments on the VQA task to ver-

ify our hypothesis and compare different variants of RNs.

We confine our interest to single models.

Pilot Experiments. Before carrying out full experi-

ments on VQA 2.0, we investigate how our approach would

fare against vanilla RN in a controlled experimental setting.

Since vanilla RN cannot be run on our machine configura-

tion (4 x 16GB P100 GPUs) without running out of mem-

ory resources, we reduce the mini-batch size to the maximal

level where vanilla RN can be run without errors, which was

8. This reduction in mini-batch size has a significant impact

on the absolute performance of the models; however, we are

mostly interested in the change in relative performances of

RN variants ceteris paribus. The results are shown in Table

5.1. The results show that incorporating explicit relational

reasoning in the model allows the model to answer visual

questions more accurately. The results also show that our

approach has similar performance levels with, or even better

1will be available at https://github.com/kaniblu/pythia-srn

test-dev

Methods All Yes/no Number Other

Pythia (Reported) 68.05 - - -

Pythia (Reprod.) 67.14 84.55 45.70 57.16

Attentional RN 67.04 84.50 45.28 57.09

SRN (Ours) 67.42 84.61 46.35 57.53

Table 2. Main experimental results on VQA 2.0 (Accuracy %).

All Pythia version is v0.1. We include the results of our attempt

to reproduce the reported Pythia results on github. Our approach

(SRN) has been successfully applied to the real-world visual ques-

tion answering, taking advantage of all candidate object features.

than in some aspects such as number question types, vanilla

RN consuming significantly less computational resources

(as much as the square of the average activation rate of z in

the discriminative network).

Full Experiments. Having established the feasibility of

SRN in a miniature setting of VQA, we now examine its ap-

plicability in the original setting. We try our best to adhere

to the hyperparameter settings of the previous state-of-the-

art (mini-batch size was 512). For RNs, we set the mini-

batch size to 400, as it is the maximal level that can be run

without errors in our configuration. The results (Table 5.3)

show SRN perform better than the previous state-of-the-art

and even the attentional variant of RN, which uses ”soft” at-

tention mechanism to aggregate objects into a fixed number

of entities. The largest improvement is in number-related

question types, which might be attributed to the distractor-

suppression effect achieved through discrete object dropout.

As number-related question types require more discrete rea-

soning (counting and identifying numbers, etc.), they have

might benefit most from the distractor-suppression effect.

6. Conclusion

In this preliminary work, we proposed a variant of RN

where objects are selected based on the relevance to the

downstream task before being processed for relational rea-

soning. Our model alleviates the inherent scalability issue

of pair-wise operations in RNs, allowing models to safely

reduce computational costs in situations where the number

of candidate objects is significant but not all objects are rele-

vant for relational reasoning. Results in VQA show that our

approach is not only efficient but could also potentially im-

prove task performances by suppressing distractors in can-

didate objects. As future work, we hope to explore more

applications of our approach, one of which is to explore the

possibility of making hierarchical relational networks feasi-

ble using the discrete object selection mechanism. We are

also interested in analyzing the interpretability of object se-

lectors learned by SRNs.
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