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Abstract

This work analyses the sources of complexity in scene

graph proposal problems, and develops a mathematical

framework for efficiently designing synthetic relationship

models. An entropy based metric is proposed for measur-

ing the ambiguity of relational datasets. Using these tools,

a first approximation to a synthetic dataset is given, and

experiments with a simple baseline are performed to show

how the difficulty of the proposed task changes with varying

dataset parameters, like missing annotation ratio and fea-

ture granularity. These experiments illuminate the desirable

qualities of future synthetic relationship datasets.

1. Introduction

Scene understanding is a fundamental problem of com-

puter vision which can be posed in a variety of ways.

Datasets such as Places [22] assign scene-level labels to im-

ages, and pose ”holistic scene understanding” as a classifi-

cation task. This problem can be solved by the CNN based

techniques which spearheaded the deep learning revolution.

However, when scenes become complex, this holistic

formulation loses its validity. A singular label is bound to

be ambiguous and poorly defined, and cannot capture the

subtle interactions between multiple objects.

Scene graph proposal (SGP) is a significantly harder

task. Its goal is to detect objects and label the relationships

between them [7]. The difficulty can be partially attributed

to the fact that SGP confounds many different problems,

and the approaches to solving them are far from clear.

For example, recent works question the representation

learning power of graph convolutions [8, 17], which are

employed by many models [19, 11]. Sadly, with current

relational data, validating these claims would be arduous.

Additionally, the reliance on RCNNs [12] for object de-

tection could cause problems if it is shown that RCNN out-

puts do not contain enough information to solve the rela-

tionship proposal problem.

Furthermore, the datasets which currently exist introduce

further unwanted complications. This is because of biases

[20] and missing annotations [15].

Biases cause models to overfit to simple positional and

linguistic priors. Work has been done to create datasets

without such bias, but it is hindered by the cost of gathering

and annotating rare, unbiased data [10, 20].

Missing annotations complicate evaluation by making it

impossible to tell the difference between false positive pro-

posals and un-annotated ones, and can cause problems dur-

ing model training [15].

It is currently unfeasible to address these problems by

collecting larger natural image datasets. We believe that ap-

propriately designed synthetic datasets address these short-

comings. They give us access to richly labelled data, and

allow us to control for bias. Furthermore, by adjusting the

model’s inputs and the way relationships are defined, we

can monitor when the model fails to perform, and diagnose

the aforementioned problems.

Unfortunately, designing good synthetic relationships is

challenging. It is easy to inadvertently introduce biases, or

make the task too easy. Crucially, failing to capture the

nuances of real relationship dynamics will lead to datasets

which aren’t able to diagnose any real problems.

For this reason, we develop a mathematical framework

which helps with defining a synthetic relationship dataset,

and measuring its complexity using conditional entropy.

We illustrate how these methods work on a toy dataset,

SynthRel0. Composed of simple objects which interact in

one type of relationship, SynthRel0 is shown to be too easy

to solve. However it allows us demonstrate the strengths

of synthetic data. We document model behaviour under

held-out annotations, illustrate techniques for making future

datasets more challenging, and showcase how these changes

affect the conditional entropy of the relationships.



2. Related Work

Relationship Datasets

Most dominant datasets across the scene graph literature

fall into the same category of general relationship proposal.

These datasets include Visual Genome [4], Visual Relation-

ships [7] and Open Images [5]. They annotate the strongest

relationships across a limited number of dominant objects

in the scene.

This provides a great resource for learning common re-

lationships for downstream tasks such as VQA, scene cap-

tioning, and image retrieval [14, 6, 3]. However, it intro-

duces exploitable biases, allowing models to improve their

classification score without learning meaningful relation-

ship dynamics.

For example, in Visual Genome, 89% of relationships

involving a table contain the predicate ”on” [20]. Thus, a

lazy network will learn to predict that everything interacting

with a table is on it, which is a fantastic loss-minimising

strategy when training with biased data.

Missing annotations, common in popular datasets [15],

cause further problems. During evaluation, it becomes im-

possible to discriminate between false positives and un-

annotated correct detections. By including negative anno-

tations, such as in Open Images, it is possible to mitigate

this problem. However, this increases the cost of obtaining

annotated data, and limits the number of training samples

available.

Some recent works highlight a growing need for a differ-

ent style of relationship data. For example, Unusual Re-

lations [10] focuses on creating a test set which features

atypical relationship triplets, enabling the generalisation ca-

pabilities of the network to be evaluated. Yang et al. pro-

pose SpatialSense, a dataset of adversarial examples [20],

which facilitates diagnosing the aforementioned lazy net-

work problem. They evaluate several SOTA models against

simple baselines, and show that complex models fail to cap-

ture much information beyond positional and linguistic pri-

ors.

However, collecting thoroughly annotated, real data

comes with high overheads. Therefore, their work is limited

by only containing 9 predicate classes, which are adequate

for coarsely describing spatial relationships, but do not take

into account the more complex functional relationships, or

the long tail distribution of real relationships.

Synthetic datasets are able to overcome these problems.

Fully annotated data is a given, and meta-annotations (such

as whether scenes contain rare or non-trivial relationships)

allow for diagnosing particular weaknesses. With an appro-

priate synthetic generator, we are also able to freely control

the number of object and predicate classes, and analyse how

models perform as these factors vary.

Synthetic Datasets

Synthetic datasets have had a significant impact in other

fields, such as VQA, where it is hard to gather large,

richly annotated, unbiased datasets of natural images. Early

datasets such as DAQUAR [9] suffered from not control-

ling for question conditional bias, low question variance,

and not having appropriate functional frameworks for ex-

pressing their generation process.

The CLEVR [2] dataset tackled these issues and became

widely adopted across the field. It gave a robust frame-

work for scene and question generation using a functional-

programming style formulation.

However, its focus on question answering makes it ill

suited to SGP, as CLEVR defines only five relationship

types, four spatial and one colour dependent.

Therefore, evaluating a relational reasoning module on

CLEVR [13] does not reflect on the performance of the

module on the complicated relationship dynamics observed

in natural images. This shows a lack of theoretical foun-

dations necessary for expanding and modifying synthetic

scene datasets.

Scene Graph Proposal

Single relationship proposal techniques [7, 10] serve as

a conceptual predecessor of scene graph generation. How-

ever, objects in a scene are not isolated, and there exists

mutual information between relationships. This led to the

logical extension that by sharing information between ob-

jects, the initial proposals for both objects and relationships

can be improved.

Xu et al. [18] used an RNN architecture to iteratively

refine the scene graph.

An improvement over this approach was realised by em-

ploying graph convolutional networks [1]. GCNs provided

tools which were more effective at distributing information

across graph structures, such as graph attention [16]. Many

papers focus on ways to implement these techniques.

Graph-RCNN [19] uses novel relationship proposal

based on object priors, followed by graphical attention

which refines the initial estimates. Qi et al. [11] also utilise

graphical attention to focus on effectively diffusing infor-

mation through the scene graph.

There are several noteworthy similarities between these

models. First, all the models share the common RCNN

backbone, used for object detection and feature extraction.

Additionally, all the models use supervised training.

This means they are vulnerable to missing, erroneous or

sparse annotation data. Unfortunately, many works opts

to ignore rare annotations, due to the noisiness of the la-

bels on datasets without a closed vocabulary, such as Visual

Genome, or due to a lack of an adequate number of training

samples in other cases.



3. Dataset Design

3.1. Mathematics of Scene Graphs

In this section, we develop a mathematical notation for

describing the scene graph proposal problem. First, let’s

describe the variables of a scene in plain language, to gain

a general understanding of the problem before introducing

mathematical notation.

We define an abstract scene as a set of objects, described

by features. Objects form pairwise relationships with each

other, and the type of relationship is determined by the fea-

tures of the directly interacting objects, as well as the fea-

tures of the nearby objects, which contribute to a wider

scene context.

We can say the scene S contains N objects, and each ob-

ject i has a corresponding fi such that the feature set of S is

F = {f1, ..., fN}.

Further, we say that there exists a mapping from F to

R, the set of relationships in scene S, i.e. pr : F �→ R.

The sets F and R define the vertices and edges of the scene

graph, respectively.

Note that these are prescribed qualities, which nonethe-

less conform to the intuition behind the problem. However,

several of these inoffensive assertions require further dis-

cussion. How exactly can the features fi, and the relation-

ships in R represented?

First, let’s consider the features. The de-facto standard

is to use the output of an RCNN [12], which for each object

gives a triplet (c, x, fv), corresponding to the class, position

and CNN output layer activations.

We generalise object features as a set of correlated,

yet orthogonal representations, i.e. fi = {f1

i , ..., f
K
i }.

This representation corresponds to the intuition that features

such as class, pose, position, size, or appearance are co-

variant, yet distinct, and could be disentangled, given the

right feature extractor. Additionally, we can define the set

of distributions from which the features fk are sampled as

Pf = {p(f1), ..., p(fK)}.

In practice, it is difficult to derive this representation.

Firstly, in natural images, the set of relevant features is not

known. Further, the image pixels of an object are simply

one sample from one element of Pf , from which we are re-

quired to infer much higher level features. RCNN networks

give us just one way of mapping pixel values to the set of

features (c, x, fv), with no indication of how well suited this

feature set is to solving the SGP problem.

The first power of synthetic datasets lies in being able to

define all the relevant features of generated objects by spec-

ifying Pf . These features can be sampled from arbitrarily

complex distributions, but knowing them during training al-

lows us to skip the feature detection stage of most scene

graph proposal networks. This isolates the scene graph pro-

posal stage, leading to faster training. Additionally, it lets

us determine exactly how informative each element of Pf

is during relationship inference, allowing a well annotated

dataset to be used for diagnosing model robustness.

Having developed the above representation for a scene’s

objects, we now consider the relationship proposal mech-

anism. For simplicity, we assume that R = {rij∀i, j ∈
{1, ..., N}} where rij ∈ R

d encodes the relationship be-

tween a pair of objects i and j.

This assumption has limitations, such as being unable to

express relationships which involve multiple objects. Such

relationships, e.g. ”Alice, Bob and Charlie are playing foot-

ball”, are expressed naturally by scene hypergraphs. How-

ever, the field is not refined enough to merit considering

such esoteric models, making this assumption valid.

Next, we can formulate the relationship proposal map-

ping pr : F �→ R, and reason about the strata of relationship

complexity.

For example, models which predict relationships by con-

sidering the pairwise interaction between objects [10, 7], as-

sume that the function pr can be factorised into a series of

functions p′r : fi, fj �→ rij which operate on object pairs,

i.e. R = {p′r(oi, oj) ∀o ∈ O}.

However, it is easy to observe that this assumption is

faulty, since real relationships are influenced by scene con-

text, and pr is likely to operate on the more than just two

feature vectors at a time.

Additionally, we are able to consider how informative

the elements fk
i of each fi are to relationship proposal. For

example, one of the implications of the work of Yang et al.

[20], is that 2D position and language priors are either far

more informative than visual activations, or the functions

which map these features to relationships are far easier to

learn than the mappings between activations and relation-

ships. This kind of reasoning is closely tied to the entropy

based metrics put forward in Section 3.4.

During the design of synthetic datasets, we propose a

custom function pr. In the synthetic universe, we are able

to control how many types of relationships are possible, and

how they are defined by the interactions of each objects’

features.

3.2. Synthetic Relation Datasets

Following the formulation in the previous section, to cre-

ate a complete synthetic universe we need to specify, im-

plicitly or explicitly:

• The form of object features f

• A sampling strategy Pf

• A relationship proposal function pr

To guide the design of the above parameters, we identify

factors contributing to the complexity of SGP on natural im-

ages.



The following properties were identified:

1. Distinctions between functional and geometric rela-

tionships

2. Ambiguous relationships

3. Missing annotations

4. Conditional dependence between elements of Pf

5. Adversarial examples

6. Different forms of the features in f

The above points are explained in detail below.

We propose that the difference between functional and

geometric relationships, such as dog-wears-hat vs

dog-under-hat, arises when multiple pr are applied to

the same objects, but operate on different elements f. For

example, consider a fictional object whose f = {x, c}, a

combination of a position vector and a colour. We can

define two pr, a geometric pr1 : x �→ r and a colouric

pr2 : c �→ r. Thus, relations like on, below are con-

trolled by pr1, whereas is-the-same-colour-as is

controlled strictly by pr2. This fits the intuition behind real

relationships, where geometric relationships depend only

on the position of two objects, whereas other relationships

consider more esoteric object features. With multiple pr,

we could emulate a wealth of functional relationships.

Ambiguity exists in relationships, where a pair of ob-

jects can be annotated with multiple correct relationships.

Some works deal with multiple predicate labels for an ob-

ject pair by randomly sampling one predicate [21]. How-

ever, it would be insightful to observe how models behave

in an ambiguous environment, and what strategies can be

developed to cope with it. In Section 3.4, entropy is ex-

plored as a measure of ambiguity, and a method for increas-

ing dataset ambiguity is given.

Missing annotations can be easily incorporated into syn-

thetic datasets, however, care needs to be taken to ensure

that relationships are removed in a similar way they would

be in real datasets. In real data, only the weakest relation-

ships are left unannotated. Thus, synthetic data needs to

be able to order the relationships in a scene by a metric

of strength, and when removing them, remove the weak-

est ones first. Failure to do so can lead to unexpected model

behaviour, as discussed in Section 4.1.

Two kinds of feature dependence need to be considered,

intra- and inter-object. To illustrate the significance of each

of the former effects, consider a real scene with two objects.

Given that object A is red, it is more likely to be an apple

than a cucumber. Given that A is a red cucumber, does that

increase the probability of the other object being an art stu-

dent? One strategy when sampling synthetic features is to

Figure 1. A visualisation of a SynthRel0 scene

make them as independent of each other as possible, to min-

imise biases which lazy models will exploit. However, we

argue that this naive approach would limit the informative-

ness of object relationships, most of which are defined by

the dependencies between objects. Further work is required

to propose appropriate rules for conditionally sampling ob-

ject features.

Adversarial examples come from relationships which are

easy to misclassify. For example, SpatialSense [20] con-

tains abundant spatially adversarial examples, where it is

easy to falsely infer the relationship between two objects

based only on their position. Correctly identifying the rela-

tionship requires reasoning about about the remaining fea-

tures of the object, which are usually much less significant

to the relationship.

Finally, real data is likely to be described by a number of

data formats, such as one-hot encodings, real valued con-

tinuous or limited-domain tensors. Synthetic models need

to be able to effectively leverage various data types, which

ought to be provided by a well-designed synthetic dataset.

It is worth mentioning that badly designed synthetic

datasets would not be useful either for complex diagnos-

tic tasks, or for the testing of new ideas. However, when

designed with care, they could prove to be a useful tool

for the evaluation of theoretical capabilities of new models.

This could be ensured by designing an adequately complex

pr, and presenting the model with uniquely sampled data,

designed to test characteristics such as few-shot potential,

generalizability, and robustness to missing annotations or

adversarial examples.

3.3. SynthRel0

SynthRel0 is a toy dataset which serves as the first ap-

proximation to a complete synthetic relationship dataset.

While it is missing many of the desirable features identified

in Section 3.2, we demonstrate it to highlight challenges in-

herent in relationship dataset design. When evaluating the

dataset on our benchmarks, we used 12k training and 3k val

scenes.

Each scene in SynthRel0 is composed of 10 objects. This



constraint allows for our simple baseline, which is incapable

of abusing this fact, to be tested quickly and efficiently.

Each object’s features f are given by position and orien-

tation, i.e. f = {x, θ}. These objects can be visualised, as

in Figure 1, as circles with a beak. According to the cho-

sen relationship proposal function pr, two objects are in a

relationship if their beaks point directly at each other. This

function, defined below, chooses for each object one rela-

tionship, based on the minimum of a cost function propor-

tional to perpendicular distance and angular affinity.

rij = argmin
j

[d(fi, xj) · a(θi, θj)]

d = (xi − xj)−

(

(

(xi − xj) ·

(

cos θi
sin θi

)

)

·

(

cos θi
sin θi

))

a = c+ cos(θi − θj)

Where d and a are distance and angular affinity func-

tions, respectively, and the constant c = 2. Due to fea-

ture sampling technique selected, each object has a partner

whose cost is exactly 0.

The simplicity of this dataset allows us to test techniques

for making synthetic relationship data more complicated,

while also revealing pitfalls which future datasets need to

avoid.

For example, without due care given to the generation

process, it is easy to introduce biases, such as when assign-

ing object IDs. During our first approach, we assigned them

sequentially. This introduced a bias in the ground truth ad-

jacency matrix, and models trained on the biased dataset

performed far better than ones trained on a dataset where

this bias was eliminated.

3.4. Measuring dataset complexity

One measure of the complexity of a system is its unpre-

dictability. It is also interesting to measure how this unpre-

dictability changes as we obtain more information. These

quantities are elegantly expressed by conditional informa-

tion entropy.

H(X|y) = −
∑

x

p(x|y) log p(x|y)

Thus, the entropy of a relationship conditional on some fea-

tures tells us how inherently unpredictable this relationship

is. For a relationship rij and a set of objects’ features F, we

can define several quantities of interest.

H(rij) gives the prior entropy, which ought to be high,

as relationships ought to be unpredictable without looking

at object features.

H(rij |fi, fj) describes how unpredictable a relationship

is based on the two implicated objects. A high entropy can

indicate that a relationship is ambiguous, or that some in-

formative features have not been considered.

Figure 2. Baseline model, composed of two MLPs and trained with

cross entropy loss

H(rij |f
k
i , f

k
j ) is the entropy given only partial object

features. If this value is low, it means that the conditioning

features are highly informative. Informative features make

the problem solvable, but also lead to overfitting issues.

H(rij |F ) is the entropy given all object features. If this

value is non-zero, it means the problem is inherently am-

biguous, and cannot be solved perfectly.

These quantities are easy to measure on synthetic data,

with hand-crafted statistics. To demonstrate, we will ex-

plore how entropy changes on SynthRel0 as the features are

made more ambiguous.

For each scene p(rij) = 0.1. This allows us to calculate

entropy as H(R) = 0.469, which is low, due to the low

cardinality of the set of possible relationships and the high

prior probability of no relationship. The prior entropy of

real data is higher, because the relationship set is larger, and

relationships are more equiprobable without given features.

To calculate H(Rij |[fi, fj ]) on SR0, we can use the re-

lationships proposal function pr. We must approximate the

calculation over a continuous f by discretizing the feature

space.

Each position can be assigned to one of n sectors, and

each orientation to one of m nominal directions. We can es-

timate the probability p(rij |[fi, fj ]) using a frequentist ap-

proach, by finding out, for a given [fi, fj ], the fraction of

times a relationship between the two objects occurs.

It is trivial to observe that as the granularity of the dis-

cretization decreases, H(Rij |[fi, fj ]) goes to zero, because

the relationship is completely specified by the given fea-

tures.

Further work is needed to determine how to scale this

method to larger, more elaborate datasets, since the dis-

cretization schemes used here are specific to the simple fea-

tures of SynthRel0.

4. Experiments

We ran experiments on a simple benchmark, varying the

fraction of annotations which are removed during training,

γ, and the complexity of the dataset. Two ways of increas-

ing complexity were tested: increasing ambiguity by mod-

ifying the input using the bucketing scheme described in

Section 3.4, and adding a non-informative feature vector to

f which the network must learn to ignore. We use orienta-

tion bucketing, with 4 buckets, meaning that every value of

θ is rounded to the nearest of four cardinal orientations.



Model performance was evaluated using Recall@1. We

use this strict metric due to the simplicity of the problem,

since a more forgiving metric would fail to be discrimina-

tive enough.

The benchmark used was a network of two MLPs,

trained using cross entropy loss on binary predictions be-

tween object pairs. The input to the model is a tensor of

features F. We directly use the positions and orientations of

the objects to make this tensor, since it would be trivial to

train a detection network on the objects in the image. Skip-

ping the object detector increases computational efficiency

and focuses on graph proposal instead.

4.1. Results

Based on the recall curves in Figure 3, we can make sev-

eral interesting observations.

On the uncorrupted data, the model performs well,

reaching >99% R@1. As γ is increased, the model con-

verges more slowly, but the final recall is almost unaffected.

With 90% of the annotations removed, only a 10% drop in

performance is observed.

This indicates that as predicted, the task is too simple.

To make it more difficult, the feature set of each object can

be expanded, and the number of possible relationships and

complexity of the proposal functions can be increased.

Additionally, we see how removing relationships at ran-

dom does not make the task more difficult in a predictable

manner. We believe this is due to the fact that SynthRel0

has no means of ranking the strength of relationships in the

scene. Due to this, there are no discernible differences be-

tween removed and retained relationships, which causes a

properly tuned model to simply propose all feasible rela-

tionships as positives.

Bucketing makes the problem more difficult. The per-

formance is worse, but far less than anticipated. At γ = 0,

achieving R@1 of 87%. Interestingly, performance de-

creases dramatically as γ is increased.

This shows that, as predicted, increasing the entropy of

the task makes it more difficult, and the model is unable to

mimic the performance it achieved previously. However, it

reveals an unforeseen dependence on γ, which highlights

the fact that synthetic relational dataset design is a compli-

cated problem with many unknown interactions between the

models and data.

Finally, when uninformative features are added, the

model learns to ignore them extremely quickly, and per-

formance is identical to that on the uncorrupted data. This

means that simple schemes for adding non-informative fea-

tures are not effective, and more complicated modes of fea-

ture obfuscation should be pursued.

Figure 3. Recall curves for the uncorrupted data (top) and the

bucketed data (bottom), show that performance decreases as con-

ditional relationship entropy increases

5. Conclusion

Development of synthetic data for scene graph recogni-

tion is an open problem that poses many challenges.

It is not clear what the characteristics of natural relation-

ships are, and emulating them artificially is even harder.

Our mathematical framework enables structured reason-

ing about the problem, and with its help many relationship

datasets can be developed. Further work can refine the gen-

eral class of relationship models proposed here, to better

express the complexity of real data.

Likewise, a detailed analysis of the factors contributing

to the complexity of real data can inform the design of more

complex relationship proposal functions. We recommend

studying how changing features and proposal functions af-

fects the behaviour of current models.

There is a demand for better diagnostic data, and we be-

lieve the answer is synthetic. We hope this work serves as

a stepping stone towards a powerful dataset, which high-

lights the weaknesses of current models and moves future

research down new, unexplored avenues.
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