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Abstract

This work analyses the sources of complexity in scene
graph proposal problems, and develops a mathematical
framework for efficiently designing synthetic relationship
models. An entropy based metric is proposed for measur-
ing the ambiguity of relational datasets. Using these tools,
a first approximation to a synthetic dataset is given, and
experiments with a simple baseline are performed to show
how the difficulty of the proposed task changes with varying
dataset parameters, like missing annotation ratio and fea-
ture granularity. These experiments illuminate the desirable
qualities of future synthetic relationship datasets.

1. Introduction

Scene understanding is a fundamental problem of com-
puter vision which can be posed in a variety of ways.
Datasets such as Places [22] assign scene-level labels to im-
ages, and pose "holistic scene understanding” as a classifi-
cation task. This problem can be solved by the CNN based
techniques which spearheaded the deep learning revolution.

However, when scenes become complex, this holistic
formulation loses its validity. A singular label is bound to
be ambiguous and poorly defined, and cannot capture the
subtle interactions between multiple objects.

Scene graph proposal (SGP) is a significantly harder
task. Its goal is to detect objects and label the relationships
between them [7]. The difficulty can be partially attributed
to the fact that SGP confounds many different problems,
and the approaches to solving them are far from clear.

For example, recent works question the representation
learning power of graph convolutions [8, 17], which are
employed by many models [19, 11]. Sadly, with current
relational data, validating these claims would be arduous.

Additionally, the reliance on RCNNs [ 2] for object de-
tection could cause problems if it is shown that RCNN out-

puts do not contain enough information to solve the rela-
tionship proposal problem.

Furthermore, the datasets which currently exist introduce
further unwanted complications. This is because of biases
[20] and missing annotations [15].

Biases cause models to overfit to simple positional and
linguistic priors. Work has been done to create datasets
without such bias, but it is hindered by the cost of gathering
and annotating rare, unbiased data [10, 20].

Missing annotations complicate evaluation by making it
impossible to tell the difference between false positive pro-
posals and un-annotated ones, and can cause problems dur-
ing model training [15].

It is currently unfeasible to address these problems by
collecting larger natural image datasets. We believe that ap-
propriately designed synthetic datasets address these short-
comings. They give us access to richly labelled data, and
allow us to control for bias. Furthermore, by adjusting the
model’s inputs and the way relationships are defined, we
can monitor when the model fails to perform, and diagnose
the aforementioned problems.

Unfortunately, designing good synthetic relationships is
challenging. It is easy to inadvertently introduce biases, or
make the task too easy. Crucially, failing to capture the
nuances of real relationship dynamics will lead to datasets
which aren’t able to diagnose any real problems.

For this reason, we develop a mathematical framework
which helps with defining a synthetic relationship dataset,
and measuring its complexity using conditional entropy.

We illustrate how these methods work on a toy dataset,
SynthRel0. Composed of simple objects which interact in
one type of relationship, SynthRelO is shown to be too easy
to solve. However it allows us demonstrate the strengths
of synthetic data. We document model behaviour under
held-out annotations, illustrate techniques for making future
datasets more challenging, and showcase how these changes
affect the conditional entropy of the relationships.



2. Related Work
Relationship Datasets

Most dominant datasets across the scene graph literature
fall into the same category of general relationship proposal.
These datasets include Visual Genome [4], Visual Relation-
ships [7] and Open Images [5]. They annotate the strongest
relationships across a limited number of dominant objects
in the scene.

This provides a great resource for learning common re-
lationships for downstream tasks such as VQA, scene cap-
tioning, and image retrieval [14, 6, 3]. However, it intro-
duces exploitable biases, allowing models to improve their
classification score without learning meaningful relation-
ship dynamics.

For example, in Visual Genome, 89% of relationships
involving a table contain the predicate on” [20]. Thus, a
lazy network will learn to predict that everything interacting
with a table is on it, which is a fantastic loss-minimising
strategy when training with biased data.

Missing annotations, common in popular datasets [15],
cause further problems. During evaluation, it becomes im-
possible to discriminate between false positives and un-
annotated correct detections. By including negative anno-
tations, such as in Open Images, it is possible to mitigate
this problem. However, this increases the cost of obtaining
annotated data, and limits the number of training samples
available.

Some recent works highlight a growing need for a differ-
ent style of relationship data. For example, Unusual Re-
lations [10] focuses on creating a test set which features
atypical relationship triplets, enabling the generalisation ca-
pabilities of the network to be evaluated. Yang et al. pro-
pose SpatialSense, a dataset of adversarial examples [20],
which facilitates diagnosing the aforementioned lazy net-
work problem. They evaluate several SOTA models against
simple baselines, and show that complex models fail to cap-
ture much information beyond positional and linguistic pri-
ors.

However, collecting thoroughly annotated, real data
comes with high overheads. Therefore, their work is limited
by only containing 9 predicate classes, which are adequate
for coarsely describing spatial relationships, but do not take
into account the more complex functional relationships, or
the long tail distribution of real relationships.

Synthetic datasets are able to overcome these problems.
Fully annotated data is a given, and meta-annotations (such
as whether scenes contain rare or non-trivial relationships)
allow for diagnosing particular weaknesses. With an appro-
priate synthetic generator, we are also able to freely control
the number of object and predicate classes, and analyse how
models perform as these factors vary.

Synthetic Datasets

Synthetic datasets have had a significant impact in other
fields, such as VQA, where it is hard to gather large,
richly annotated, unbiased datasets of natural images. Early
datasets such as DAQUAR [9] suffered from not control-
ling for question conditional bias, low question variance,
and not having appropriate functional frameworks for ex-
pressing their generation process.

The CLEVR [2] dataset tackled these issues and became
widely adopted across the field. It gave a robust frame-
work for scene and question generation using a functional-
programming style formulation.

However, its focus on question answering makes it ill
suited to SGP, as CLEVR defines only five relationship
types, four spatial and one colour dependent.

Therefore, evaluating a relational reasoning module on
CLEVR [13] does not reflect on the performance of the
module on the complicated relationship dynamics observed
in natural images. This shows a lack of theoretical foun-
dations necessary for expanding and modifying synthetic
scene datasets.

Scene Graph Proposal

Single relationship proposal techniques [7, 10] serve as
a conceptual predecessor of scene graph generation. How-
ever, objects in a scene are not isolated, and there exists
mutual information between relationships. This led to the
logical extension that by sharing information between ob-
jects, the initial proposals for both objects and relationships
can be improved.

Xu et al. [18] used an RNN architecture to iteratively
refine the scene graph.

An improvement over this approach was realised by em-
ploying graph convolutional networks [1]. GCNs provided
tools which were more effective at distributing information
across graph structures, such as graph attention [16]. Many
papers focus on ways to implement these techniques.

Graph-RCNN [19] uses novel relationship proposal
based on object priors, followed by graphical attention
which refines the initial estimates. Qi et al. [11] also utilise
graphical attention to focus on effectively diffusing infor-
mation through the scene graph.

There are several noteworthy similarities between these
models. First, all the models share the common RCNN
backbone, used for object detection and feature extraction.

Additionally, all the models use supervised training.
This means they are vulnerable to missing, erroneous or
sparse annotation data. Unfortunately, many works opts
to ignore rare annotations, due to the noisiness of the la-
bels on datasets without a closed vocabulary, such as Visual
Genome, or due to a lack of an adequate number of training
samples in other cases.



3. Dataset Design
3.1. Mathematics of Scene Graphs

In this section, we develop a mathematical notation for
describing the scene graph proposal problem. First, let’s
describe the variables of a scene in plain language, to gain
a general understanding of the problem before introducing
mathematical notation.

We define an abstract scene as a set of objects, described
by features. Objects form pairwise relationships with each
other, and the type of relationship is determined by the fea-
tures of the directly interacting objects, as well as the fea-
tures of the nearby objects, which contribute to a wider
scene context.

We can say the scene S contains N objects, and each ob-
ject i has a corresponding f; such that the feature set of S is
F= {f17“'7fN}'

Further, we say that there exists a mapping from F to
R, the set of relationships in scene S, i.e. p, : F — R.
The sets F' and R define the vertices and edges of the scene
graph, respectively.

Note that these are prescribed qualities, which nonethe-
less conform to the intuition behind the problem. However,
several of these inoffensive assertions require further dis-
cussion. How exactly can the features f;, and the relation-
ships in R represented?

First, let’s consider the features. The de-facto standard
is to use the output of an RCNN [12], which for each object
gives a triplet (¢, x, f,), corresponding to the class, position
and CNN output layer activations.

We generalise object features as a set of correlated,
yet orthogonal representations, i.e. f; = {f}, ..., fX}.
This representation corresponds to the intuition that features
such as class, pose, position, size, or appearance are co-
variant, yet distinct, and could be disentangled, given the
right feature extractor. Additionally, we can define the set
of distributions from which the features f* are sampled as
P = {p(f1), - p(FF)}.

In practice, it is difficult to derive this representation.
Firstly, in natural images, the set of relevant features is not
known. Further, the image pixels of an object are simply
one sample from one element of Py, from which we are re-
quired to infer much higher level features. RCNN networks
give us just one way of mapping pixel values to the set of
features (¢, X, f, ), with no indication of how well suited this
feature set is to solving the SGP problem.

The first power of synthetic datasets lies in being able to
define all the relevant features of generated objects by spec-
ifying Py. These features can be sampled from arbitrarily
complex distributions, but knowing them during training al-
lows us to skip the feature detection stage of most scene
graph proposal networks. This isolates the scene graph pro-
posal stage, leading to faster training. Additionally, it lets

us determine exactly how informative each element of Py
is during relationship inference, allowing a well annotated
dataset to be used for diagnosing model robustness.

Having developed the above representation for a scene’s
objects, we now consider the relationship proposal mech-
anism. For simplicity, we assume that R = {rijVi, j €
{1,...,N}} where r;; € R? encodes the relationship be-
tween a pair of objects i and j.

This assumption has limitations, such as being unable to
express relationships which involve multiple objects. Such
relationships, e.g. ”Alice, Bob and Charlie are playing foot-
ball”, are expressed naturally by scene hypergraphs. How-
ever, the field is not refined enough to merit considering
such esoteric models, making this assumption valid.

Next, we can formulate the relationship proposal map-
ping p, : F' — R, and reason about the strata of relationship
complexity.

For example, models which predict relationships by con-
sidering the pairwise interaction between objects [ 10, 7], as-
sume that the function p,- can be factorised into a series of
functions p). : f;, f; — r;; which operate on object pairs,
ie. R = {p](0;,05) Yo € O}.

However, it is easy to observe that this assumption is
faulty, since real relationships are influenced by scene con-
text, and p, is likely to operate on the more than just two
feature vectors at a time.

Additionally, we are able to consider how informative
the elements fF of each f; are to relationship proposal. For
example, one of the implications of the work of Yang et al.
[20], is that 2D position and language priors are either far
more informative than visual activations, or the functions
which map these features to relationships are far easier to
learn than the mappings between activations and relation-
ships. This kind of reasoning is closely tied to the entropy
based metrics put forward in Section 3.4.

During the design of synthetic datasets, we propose a
custom function p,.. In the synthetic universe, we are able
to control how many types of relationships are possible, and
how they are defined by the interactions of each objects’
features.

3.2. Synthetic Relation Datasets

Following the formulation in the previous section, to cre-
ate a complete synthetic universe we need to specify, im-
plicitly or explicitly:

e The form of object features f
e A sampling strategy P
e A relationship proposal function p,

To guide the design of the above parameters, we identify
factors contributing to the complexity of SGP on natural im-
ages.



The following properties were identified:

1. Distinctions between functional and geometric rela-
tionships

2. Ambiguous relationships

3. Missing annotations

4. Conditional dependence between elements of Py
5. Adversarial examples

6. Different forms of the features in f

The above points are explained in detail below.

We propose that the difference between functional and
geometric relationships, such as dog-wears-hat vs
dog-under-hat, arises when multiple p, are applied to
the same objects, but operate on different elements f. For
example, consider a fictional object whose f = {x,c}, a
combination of a position vector and a colour. We can
define two p,, a geometric p,; : X — 7 and a colouric
pro : ¢ — r. Thus, relations like on, below are con-
trolled by p,1, whereas i s—-the-same-colour-as is
controlled strictly by p,o. This fits the intuition behind real
relationships, where geometric relationships depend only
on the position of two objects, whereas other relationships
consider more esoteric object features. With multiple p,.,
we could emulate a wealth of functional relationships.

Ambiguity exists in relationships, where a pair of ob-
jects can be annotated with multiple correct relationships.
Some works deal with multiple predicate labels for an ob-
ject pair by randomly sampling one predicate [21]. How-
ever, it would be insightful to observe how models behave
in an ambiguous environment, and what strategies can be
developed to cope with it. In Section 3.4, entropy is ex-
plored as a measure of ambiguity, and a method for increas-
ing dataset ambiguity is given.

Missing annotations can be easily incorporated into syn-
thetic datasets, however, care needs to be taken to ensure
that relationships are removed in a similar way they would
be in real datasets. In real data, only the weakest relation-
ships are left unannotated. Thus, synthetic data needs to
be able to order the relationships in a scene by a metric
of strength, and when removing them, remove the weak-
est ones first. Failure to do so can lead to unexpected model
behaviour, as discussed in Section 4.1.

Two kinds of feature dependence need to be considered,
intra- and inter-object. To illustrate the significance of each
of the former effects, consider a real scene with two objects.
Given that object A is red, it is more likely to be an apple
than a cucumber. Given that A is a red cucumber, does that
increase the probability of the other object being an art stu-
dent? One strategy when sampling synthetic features is to

Figure 1. A visualisation of a SynthRelO scene

make them as independent of each other as possible, to min-
imise biases which lazy models will exploit. However, we
argue that this naive approach would limit the informative-
ness of object relationships, most of which are defined by
the dependencies between objects. Further work is required
to propose appropriate rules for conditionally sampling ob-
ject features.

Adversarial examples come from relationships which are
easy to misclassify. For example, SpatialSense [20] con-
tains abundant spatially adversarial examples, where it is
easy to falsely infer the relationship between two objects
based only on their position. Correctly identifying the rela-
tionship requires reasoning about about the remaining fea-
tures of the object, which are usually much less significant
to the relationship.

Finally, real data is likely to be described by a number of
data formats, such as one-hot encodings, real valued con-
tinuous or limited-domain tensors. Synthetic models need
to be able to effectively leverage various data types, which
ought to be provided by a well-designed synthetic dataset.

It is worth mentioning that badly designed synthetic
datasets would not be useful either for complex diagnos-
tic tasks, or for the testing of new ideas. However, when
designed with care, they could prove to be a useful tool
for the evaluation of theoretical capabilities of new models.
This could be ensured by designing an adequately complex
pr, and presenting the model with uniquely sampled data,
designed to test characteristics such as few-shot potential,
generalizability, and robustness to missing annotations or
adversarial examples.

3.3. SynthRel0

SynthRel0 is a toy dataset which serves as the first ap-
proximation to a complete synthetic relationship dataset.
While it is missing many of the desirable features identified
in Section 3.2, we demonstrate it to highlight challenges in-
herent in relationship dataset design. When evaluating the
dataset on our benchmarks, we used 12k training and 3k val
scenes.

Each scene in SynthRelO is composed of 10 objects. This



constraint allows for our simple baseline, which is incapable
of abusing this fact, to be tested quickly and efficiently.

Each object’s features f are given by position and orien-
tation, i.e. f = {x,6}. These objects can be visualised, as
in Figure 1, as circles with a beak. According to the cho-
sen relationship proposal function p,., two objects are in a
relationship if their beaks point directly at each other. This
function, defined below, chooses for each object one rela-
tionship, based on the minimum of a cost function propor-
tional to perpendicular distance and angular affinity.

i = argmin[d(fi,X;) - a(6;, 0;)]
j

= x - (1600 (5 (520
a=c+ cos(0; — 0)

Where d and a are distance and angular affinity func-
tions, respectively, and the constant ¢ = 2. Due to fea-
ture sampling technique selected, each object has a partner
whose cost is exactly 0.

The simplicity of this dataset allows us to test techniques
for making synthetic relationship data more complicated,
while also revealing pitfalls which future datasets need to
avoid.

For example, without due care given to the generation
process, it is easy to introduce biases, such as when assign-
ing object IDs. During our first approach, we assigned them
sequentially. This introduced a bias in the ground truth ad-
jacency matrix, and models trained on the biased dataset
performed far better than ones trained on a dataset where
this bias was eliminated.

3.4. Measuring dataset complexity

One measure of the complexity of a system is its unpre-
dictability. It is also interesting to measure how this unpre-
dictability changes as we obtain more information. These
quantities are elegantly expressed by conditional informa-
tion entropy.

H(X|y) == p(xly)logp(z|y)

Thus, the entropy of a relationship conditional on some fea-
tures tells us how inherently unpredictable this relationship
is. For a relationship r;; and a set of objects’ features F, we
can define several quantities of interest.

H(r;;) gives the prior entropy, which ought to be high,
as relationships ought to be unpredictable without looking
at object features.

H(ri;|fi, f;) describes how unpredictable a relationship
is based on the two implicated objects. A high entropy can
indicate that a relationship is ambiguous, or that some in-
formative features have not been considered.

Pairwise
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Figure 2. Baseline model, composed of two MLPs and trained with
cross entropy loss
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H(ri;|fF, ff) is the entropy given only partial object
features. If this value is low, it means that the conditioning
features are highly informative. Informative features make
the problem solvable, but also lead to overfitting issues.

H(r;;|F) is the entropy given all object features. If this
value is non-zero, it means the problem is inherently am-
biguous, and cannot be solved perfectly.

These quantities are easy to measure on synthetic data,
with hand-crafted statistics. To demonstrate, we will ex-
plore how entropy changes on SynthRelO as the features are
made more ambiguous.

For each scene p(r;;) = 0.1. This allows us to calculate
entropy as H(R) = 0.469, which is low, due to the low
cardinality of the set of possible relationships and the high
prior probability of no relationship. The prior entropy of
real data is higher, because the relationship set is larger, and
relationships are more equiprobable without given features.

To calculate H(R;;|[f;, f;]) on SRO, we can use the re-
lationships proposal function p,.. We must approximate the
calculation over a continuous f by discretizing the feature
space.

Each position can be assigned to one of n sectors, and
each orientation to one of m nominal directions. We can es-
timate the probability p(r;;|[fi, f;]) using a frequentist ap-
proach, by finding out, for a given [f;, f;]. the fraction of
times a relationship between the two objects occurs.

It is trivial to observe that as the granularity of the dis-
cretization decreases, H (R;;|[fi, f;]) goes to zero, because
the relationship is completely specified by the given fea-
tures.

Further work is needed to determine how to scale this
method to larger, more elaborate datasets, since the dis-
cretization schemes used here are specific to the simple fea-
tures of SynthRelO.

4. Experiments

We ran experiments on a simple benchmark, varying the
fraction of annotations which are removed during training,
v, and the complexity of the dataset. Two ways of increas-
ing complexity were tested: increasing ambiguity by mod-
ifying the input using the bucketing scheme described in
Section 3.4, and adding a non-informative feature vector to
f which the network must learn to ignore. We use orienta-
tion bucketing, with 4 buckets, meaning that every value of
6 is rounded to the nearest of four cardinal orientations.



Model performance was evaluated using Recall@1. We
use this strict metric due to the simplicity of the problem,
since a more forgiving metric would fail to be discrimina-
tive enough.

The benchmark used was a network of two MLPs,
trained using cross entropy loss on binary predictions be-
tween object pairs. The input to the model is a tensor of
features F. We directly use the positions and orientations of
the objects to make this tensor, since it would be trivial to
train a detection network on the objects in the image. Skip-
ping the object detector increases computational efficiency
and focuses on graph proposal instead.

4.1. Results

Based on the recall curves in Figure 3, we can make sev-
eral interesting observations.

On the uncorrupted data, the model performs well,
reaching >99% R@1. As + is increased, the model con-
verges more slowly, but the final recall is almost unaffected.
With 90% of the annotations removed, only a 10% drop in
performance is observed.

This indicates that as predicted, the task is too simple.
To make it more difficult, the feature set of each object can
be expanded, and the number of possible relationships and
complexity of the proposal functions can be increased.

Additionally, we see how removing relationships at ran-
dom does not make the task more difficult in a predictable
manner. We believe this is due to the fact that SynthRelO
has no means of ranking the strength of relationships in the
scene. Due to this, there are no discernible differences be-
tween removed and retained relationships, which causes a
properly tuned model to simply propose all feasible rela-
tionships as positives.

Bucketing makes the problem more difficult. The per-
formance is worse, but far less than anticipated. Aty = 0,
achieving R@1 of 87%. Interestingly, performance de-
creases dramatically as ~ is increased.

This shows that, as predicted, increasing the entropy of
the task makes it more difficult, and the model is unable to
mimic the performance it achieved previously. However, it
reveals an unforeseen dependence on 7y, which highlights
the fact that synthetic relational dataset design is a compli-
cated problem with many unknown interactions between the
models and data.

Finally, when uninformative features are added, the
model learns to ignore them extremely quickly, and per-
formance is identical to that on the uncorrupted data. This
means that simple schemes for adding non-informative fea-
tures are not effective, and more complicated modes of fea-
ture obfuscation should be pursued.

Comparison of recall, at range of missing annotation ratios
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Figure 3. Recall curves for the uncorrupted data (top) and the
bucketed data (bottom), show that performance decreases as con-
ditional relationship entropy increases

5. Conclusion

Development of synthetic data for scene graph recogni-
tion is an open problem that poses many challenges.

It is not clear what the characteristics of natural relation-
ships are, and emulating them artificially is even harder.

Our mathematical framework enables structured reason-
ing about the problem, and with its help many relationship
datasets can be developed. Further work can refine the gen-
eral class of relationship models proposed here, to better
express the complexity of real data.

Likewise, a detailed analysis of the factors contributing
to the complexity of real data can inform the design of more
complex relationship proposal functions. We recommend
studying how changing features and proposal functions af-
fects the behaviour of current models.

There is a demand for better diagnostic data, and we be-
lieve the answer is synthetic. We hope this work serves as
a stepping stone towards a powerful dataset, which high-
lights the weaknesses of current models and moves future
research down new, unexplored avenues.
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