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Abstract

Scene graph prediction — classifying the set of objects

and predicates in a visual scene — requires substantial

training data. The long-tailed distribution of relationships

can be an obstacle for such approaches, however, as they

can only be trained on the small set of predicates that carry

sufficient labels. We introduce the first scene graph pre-

diction model that supports few-shot learning of predicates,

enabling scene graph approaches to generalize to a set of

new predicates. First, we introduce a new model of pred-

icates as functions that operate on object features or im-

age locations. Next, we define a scene graph model where

these functions are trained as message passing protocols

within a new graph convolution framework. We train the

framework with a frequently occurring set of predicates

and show that our approach outperforms those that use the

same amount of supervision by 1.78 at recall@50 and per-

forms on par with other scene graph models. Next, we ex-

tract object representations generated by the trained predi-

cate functions to train few-shot predicate classifiers on rare

predicates with as few as 1 labeled example. When com-

pared to strong baselines like transfer learning from ex-

isting state-of-the-art representations, we show improved

5-shot performance by 4.16 recall@1. Finally, we show

that our predicate functions generate interpretable visual-

izations, enabling the first interpretable scene graph model.

1. Introduction

Scene graph prediction takes as input an image of a vi-

sual scene, and returns as output a set of relationships de-

noted as <subject - predicate - object>, such

as <woman - drinking - coffee> and <coffee -

on - table>. The goal is for these models to classify

a large number of relationships for each image. However,

due to the complexity of the task and uneven distribution of

training relationship instances in the world and in training

data, existing scene graph models are only performant with

the most popular relationships (predicates). These existing

models can be broadly divided into two approaches. The

first approach detects the objects and then recognizes their

pairwise relationships [8, 38, 39, 57]. The second approach

jointly infers the objects and their relationships [33, 35, 55]

based on object proposals. Both approaches treat relation-

ship prediction as a multiclass predicate classification prob-

lem, given two object features. Such a formulation produces

reasonable results as objects are a good indicator of rela-

tionships [58]. However, since the resulting object repre-

sentations are utilized for both object as well as predicate

classification, they confound the information required for

both tasks. The representations, are therefore, not gener-

alizable and can not be used to train the vast majority of

less-frequently occurring predicates.

We present a new scene graph model that formulates

predicates as functions, resulting in a scene graph model

who’s object representations can be used for few-shot pred-

icate prediction. Instead of using the object representations

to predict predicates, we instead treat predicates as two in-

dividual functions: a forward function that transforms the

subject representation into the object, and an inverse

function that transforms the object representation back

into the subject. We further introduce a new graph con-

volution framework that uses these functions as localized

message passing protocols between object nodes [26]. To

further ensure that the object representations are disentan-

gled from encoding specific information about a predicate,

we divide each forward and inverse function into two com-

ponents: a spatial component that transforms attention over

the image space [29] and a semantic component that oper-

ates over the object features [59]. Within each graph con-

volution step, each pair of object representations score the

functions by checking which of them agree with the differ-

ence between their representations. These scores are then

used to weight the transformations performed by the func-

tions and used to update the object representations. After

multiple iterations, the object representations are classified

into object categories and the function weights that remain



above a threshold result in a detected relationship.

By treating predicates as functions between object rep-

resentations, our model is able to learn a meaningful em-

bedding space that can be used for transfer learning of new

few-shot predicate categories. For example, the forward

function for riding learns to move the spatial attention

to look below the subject to find the object and to move

to a semantic location where rideable objects like car,

skateboard, and bike can be found. We use the object

representations generated by these functions to train few-

shot predicate classifiers such as driving with as few as

1 labeled example.

Through our experiments on Visual Genome [30], a

dataset containing visual relationship data, we show that

the object representations generated by the predicate func-

tions result in meaningful features that can be used to enable

few-shot scene graph prediction, exceeding existing transfer

learning approaches by 4.16 at recall@1 with 5 labelled ex-

amples. We further justify our design decisions by demon-

strating that our scene graph model performs on par with ex-

isting state-of-the-art models and even outperforms models

that also do not utilize external knowledge bases [18], lin-

guistic priors [39, 58] or rely on complicated pre- and post-

processing heuristics [58, 6]. We run ablations where we

remove the semantic or spatial components of our functions

and demonstrate that both components lead to increased

performance but the semantic component is responsible for

most of the performance. Finally, since our predicates are

transformation functions, we can visualize them individu-

ally, enabling the first interpretable scene graph model.

2. Related work

Scene graphs were introduced as a formal representa-

tion for visual information [25, 30] in a form widely used

in knowledge bases [19, 7, 61]. Each scene graph encodes

objects as nodes connected together by pairwise relation-

ships as edges. Scene graphs have led to many state of the

art models in image captioning [1], image retrieval [25, 48],

visual question answering [24], relationship modeling [29],

and image generation [23]. Given its versatile utility, the

task of scene graph prediction has resulted in a series of

publications [30, 8, 37, 33, 35, 41, 55, 58, 56, 22] that

have explored reinforcement learning [37], structured pre-

diction [28, 9, 51], utilizing object attributes [11, 43], se-

quential prediction [41], and graph-based [55, 34, 56] ap-

proaches. However, all of these approaches have classified

predicates using object features, confounding the object fea-

tures with predicate information that prevents their utility

when used to train new few-shot predicate categories.

Predicates and relationships. The strategy of decom-

posing relationships into their corresponding objects and

predicates has been recognized in other works [34, 56] but

we generalize existing methods by treating predicates as

functions, implemented as general neural network modules.

Recent work on referring relationships showed that predi-

cates can be learned as spatial transformations in visual at-

tention [29]. We extend this idea to formulate predicates as

message passing semantic and spatial functions in a graph

convolution framework. This framework generalizes exist-

ing work [34, 56] where relationships are usually treated

as latent representations instead of functions. It also gen-

eralizes papers that have restricted these functions to linear

transformations [5, 59].

Graph convolutions. Modeling graphical data has his-

torically been challenging, especially when dealing with

large amounts of data [53, 4, 60]. Traditional methods

have relied on Laplacian regularization through label prop-

agation [60], manifold regularization [4], or learning em-

beddings [53]. Recently, operators on local neighbor-

hoods of nodes have become popular with their ability to

scale to larger amounts of data and parallelizable computa-

tion [17, 44]. Inspired by these Laplacian-based, local op-

erations, graph convolutions [26] have become the de facto

choice when dealing with graphical data [26, 46, 36, 21,

10, 42]. Graph convolutions have recently been combined

with RCNN [16] to perform scene graph detection [56, 23].

Unlike most graph convolution methods, which assume a

known graph structure, our framework doesn’t make any

prior assumptions to limit the types of relationships between

any two object nodes, i.e. we don’t use relationship propos-

als to limit the possible edges. Instead, we learn to score

the predicate functions between the nodes, strengthening

the correct relationships and weakening the incorrect ones

over multiple iterations.

Few-shot prediction. While graph-based learning typ-

ically requires large amounts of training data, we extend

work in few-shot prediction, to show how the object rep-

resentations learned using predicate functions can be fur-

ther used to transfer to rare predicates. The few-shot liter-

ature is broadly divided into two main frameworks. The

first strategy learns a classifier for a set of frequent cat-

egories and then uses them to learn the few-shot cate-

gories [27, 52, 50, 14]. The second strategy learns in-

variances or decompositions that enable few-shot classifica-

tion [12, 13, 32, 49, 40, 6]. Our framework more closely re-

sembles the first framework because we use the object rep-

resentations learned using the frequent predicates to iden-

tify few-shot relationships with rare predicates.

Modular neural networks have been successful in nu-

merous machine learning applications [3, 31, 54, 2, 24].

Typically, their utility has focused on the ability to train in-

dividual components and then jointly fine-tune them. Our

paper focuses on a complementary ability of such networks:

our functions are trained together and then used to learn ad-

ditional predicates without retraining the entire model.



Figure 1. We introduce a scene graph approach that formulates predicates as learned functions, which result in an embedding space for

objects that is effective for few-shot. Our formulation treats predicates as learned semantic and spatial functions, which are trained within

a graph convolution network. First, we extract bounding box proposals from an input image and represent objects as semantic features and

spatial attentions. Next, we construct a fully connected graph where object representations form the nodes and the predicate functions act

as edges. Here we show how one node, the person’s representation is updated within one graph convolution step.

3. Graph convolution framework with predi-

cate functions

In this section, we describe our graph convolution frame-

work (Figure 1) and the predicate functions.

Problem formulation. Our goal is to learn effective predi-

cate functions whose transformations result in effective ob-

ject embeddings. We will use these functions for the task

of scene graph generation in a graph convolution frame-

work. Formally, the input to our model is an image I

from which we extract a set of bounding box proposals

B = {b1, b2, . . . bn} using a region proposal network [45].

From these bounding boxes, we extract initial object fea-

tures H0 = {h0
1, h

0
2, . . . h

0
n}. These boxes and features are

sent to our graph convolution framework. The final output

of our model is a scene graph denoted as G = {V, E ,P}
with nodes (objects) vi ∈ V , and labeled edges (relation-

ships) eijp =< vi, p, vj >∈ E , where p ∈ P is one of |P|
predicate categories.

Traditional graph convolutional network. Our model is

primarily motivated as an extension to graph convolutional

networks that operate on local graph neighborhoods [10, 47,

26]. These methods can be understood as simple message

passing frameworks [15]:

mt+1
i =

∑

j∈N(i)

M(ht
i, h

t
j , eij), ht+1

i = U(ht
i,m

t+1
i )

(1)

where ht
i is a hidden representation of node vi in the tth

iteration, M and U are respectively aggregation and ver-

tex update functions that accumulate information from the

other nodes. N(i) is the set of neighbors of i in the graph.

Our graph convolutional network. Similar to previous

work [47] which used multiple edge categories, we ex-

pand the above formulation to support multiple edge types,

i.e. given two nodes vi and vj , an edge exists from vi to

vj for all |P| predicate categories. Unlike previous work

where edges are an input [47], we initialize a fully con-

nected graph, i.e. all objects are connected to all other ob-

jects by all predicate edges. If after the graph messages

are passed, predicate p is scored above a hyperparameter

threshold, then that relationship < vi, p, vj > is part of the

generated scene graph. The updated equations are then,

mt+1
i =

∑

p∈P

∑

j �=i

Mp(h
t
i, h

t
j , eijp), (2)

ht+1
i = U(ht

i,m
t+1
i ) = σ(W0h

t
i +mt+1

i ) (3)

where Mp(·) are learned message functions between two

nodes for the predicate p, which we will detail later in this

section. Note that this formula is a generalized version

of the exact representation used in the previous work [47],

where Mp(h
t
i, h

t
j , eijp) = 1

ci,p
Wph

t
j if (vi, p, vj) ∈ E and

0 otherwise, and σ is the sigmoid activation. Here, ci,p is a

normalizing constant for the edge (i, j) as defined in previ-

ous work [47].

Node hidden representations. With the overall update step

for each node defined, we now explain the hidden object



representation ht
i. Traditionally, object nodes in graph mod-

els are defined as being a D-dimensional representation of

the node hi ∈ RD [10, 47, 26]. However, in our case, we

want these hidden representations to encode both the se-

mantic information for each object proposal as well as its

spatial location in the image. These two components will

be separately utilized by the semantic and spatial predicate

functions. Instead of asking our model to learn to represent

both of these pieces of information, we built invariances

into our representation such that it knows to encode them

both explicitly. Specifically, we define each hidden repre-

sentation as a tuple of two entries: ht
i = (ht

i,sem, ht
i,spa) —

a semantic object feature ht
i,sem ∈ RD and a spatial atten-

tion map over the image hi,spa ∈ RL×L. In practice, we

extract h0
i,sem from the penultimate layer in ResNet-50 [20]

and set hi,spa as a L × L mask with 1 for the pixels within

the object proposal and 0 outside.

With the semantic and spatial separation, we can rewrite

equation 3:

mt+1
i = (mt+1

i,sem,mi,spa),

mt+1
i,sem =

∑

p∈P

∑

j �=i

Msem(ht
i,sem, ht

j,sem, eijp) (4)

Note that mi,spa does not get updated because we fix the

object masks for each object.

Predicate functions. To define Msem(·), we introduce the

semantic (fsem,p) and spatial (fspa,p) predicate functions

for predicate p. Semantic functions are multi-layer percep-

trons (MLP) while spatial functions are convolution layers,

each with 6 layers and ReLU activations. Previous work on

multi-graph convolutions [47] assumed that they had a pri-

ori information about the structure of the graph, i.e. which

edges exist between any two nodes. In our case, we are at-

tempting to perform both node classification as well as edge

prediction simultaneously. Without knowing which edges

actually exist in the graph, we would be adding a lot of noise

if we allowed every predicate to equally influence another

node. To circumvent this issue, we first calculate a score for

each predicate p:

sp(h
t
i, h

t
j) = αsp,sem(ht

i,sem, ht
j,sem)+

(1− α)sp,spa(hi,spa, hj,spa), (5)

sp,sem(ht
i,sem, ht

j,sem) = cos
[

fsem,p(h
t
i,sem), ht

j,sem

]

,

(6)

sp,spa(hi,spa, hj,spa) = IoU
[

fspa,p(hi,spa), hj,spa

]

,

(7)

where α ∈ [0, 1] is a hyperparameter, cos(·) is the cosine

distance function, and IoU(·) is the differentiable intersec-

tion over union function that measures the similarity be-

tween two soft heatmaps. This gives us a score for how

likely the node vi believes that the edge < vi, p, vj > exists.

Similar to recent work [29], fspa,p(·) shifts the spatial atten-

tion from hi,spa to where it thinks node vj should be. It en-

codes the spatial properties of the predicate we are learning

and ignores the object features. To complement the spatial

predicate function, we use fsem,p(·) to transform ht
i,sem.

This shifted representation is what the model expects to be

similar to ht
j,sem. By using both the spatial and semantic

score in our update of hi, the two representations interact

with one another. So, even though these components are

separate, they create a cohesive score for each predicate.

This score is used to weight how much node vj will influ-

ence node vi through a predicate p in the update in equa-

tion 3. We can now define:

Msem(ht
i,sem, ht

j,sem, eijp) = slp(h
t
i, h

t
j)f

−1
sem,p−1(h

t
j,sem)

(8)

fp−1(·) represents the backward predicate function from

object back to the subject. For example, given the

relationship <person - riding - snowboard>, our

model not only learns how to transform person using the

function riding, but also how to transform snowboard

to person by using the inverse predicate riding
−1.

Learning both the forward and backward functions per

predicate allows us to pass messages in both directions even

though our predicates are directed edges.

Hidden representation update. We now define Usem(·)
that accumulate the messages passed by the semantic predi-

cate functions to update the semantic object representation:

Usem(ht
i,sem,mt+1

i,sem) = W0h
t
i,sem +

1

|P|(|V| − 1)
mt+1

i,sem

(9)

ht+1
i = (Usem(ht

i,sem,mt+1
i,sem), hi,spa)

(10)

where W0 is learned weight. The spatial representation does

not get updated because the spatial location of an object

does not move.

Scene graph output. Finally, we predict the categories of

each node using vi = g(hi), where g is an MLP that gen-

erates a probability distribution over all the possible object

categories. Each possible relationship eijp is output as a re-

lationship only if sTp (h
T
i , h

T
j ) ∗ s

−T
p−1(h

T
j , h

T
i ) > τ where T

the total number of iterations in the model and τ a threshold

hyperparameter.

4. Few-shot predicate framework

With our semantic (fsem,p) and spatial (fspa,p) predi-

cate functions trained for the frequent predicates p ∈ P , we

now utilize these functions to create object representations

to train few-shot predicates. We design few-shot predicate

classifiers to be MLPs with 2 layers with ReLU activations



Figure 2. Overview of our few-shot training framework. We use the learned predicate function from the graph convolution framework

to generate embeddings and attention masks for the object representations. These representations are used to train few-shot predicate

classifiers.

between layers. We assume that rare predicates are p′ ∈ P ′

and only have k examples each.

The intuition behind our k-shot training scheme lies in

the modularity of predicates and their shared semantic and

spatial components. By decomposing the predicate repre-

sentations from the object in the graph convolutions, we cre-

ate an representation space that supports predicate transfor-

mations. We will show in our experiments that our embed-

dings space places semantically similar objects that partic-

ipate in similar relationships together. Now, when training

with few examples of rare predicates, such as driving,

we can rely on the semantic embeddings for objects that

were clustered by riding.

We pass all k labelled examples of a predicate pair of

objects < vi, p
′, vj > through the learned predicate func-

tions and extract the hidden representations (hi,sem, hi,spa)
and (hj,sem, hj,spa) from the final graph convolution layer.

We concatenate these transformations along the channel di-

mension and feed them as an input to the few-shot clas-

sifiers. We train the k-shot classifiers by minimizing the

cross-entropy loss against the k labelled examples amongst

|P ′| rare categories.

5. Experiments

We begin our evaluation by first describing the dataset,

evaluation metrics, and baselines. Our first experiment stud-

ies our graph convolution framework and compares our

scene graph prediction performance against existing state-

of-the-art methods. Our second experiment tests the utility

of our approach on our main objective of enabling few-shot

scene graph prediction. Finally, our third experiment show-

cases interpretable visualizations by visualizing the predi-

cate transformations.

Dataset: We use the Visual Genome [30] dataset for train-

ing, validation and testing. To benchmark against existing

scene graph approaches, we use the commonly used subset

of 150 object and 50 predicate categories [55, 58, 56]. We

use publicly available pre-processed splits of train and test

data, and sample a validation set from the training set [58].

The training, validation, and test sets contain 36, 662 and

2, 794 and 15, 983 images, respectively.

Evaluation metrics: For scene graph prediction, we

use three evaluation tasks, all of which are evaluated at

recall@50 and recall@100. (1) PredCls predicts predi-

cate categories, given ground truth bounding boxes and ob-

ject classes, (2) SGCls predicts predicate and object cate-

gories given ground truth bounding boxes, and (3) SGGen

detects object locations, categories and predicate categories.

Metrics based on recall require ranking predictions. For

PredCls this means a simple ranking of predicted pred-

icates by score. For SGCls this means ranking subject-

predicate-object tuples by a product of subject, object, and

predicate scores. For SGGen this means a similar product

as SGCls, but tuples without correct subject or object lo-

calizations are not counted as correct. We refer readers to

previous work that defined these metrics for further read-

ing [39].

For few-shot prediction, we report recall@1 and

recall@50 on the task of PredCls. We vary the number of

labeled examples available for training few-shot predicate

classifiers from k ∈ [1, 2, 3, 4, 5]. We also report recall@1
in addition to the traditional recall@50 because each image

only has a few instances of rare predicates in the test set.

Baselines: We classify existing methods into two

categories. The first category includes other scene

graph approaches that, like our approach, only uti-

lizes Visual Genome’s data as supervision. This in-

cludes Iterative Message Passing (IMP) [55], Multi-level

scene Description Network (MSDN) [35], ViP-CNN [33],

MotifNet-freq [58]. The second category includes

models such as Factorizable Net [34], KB-GAN [18]

and MotifNet [58], which use linguistic priors in the form

of word vectors or external information from knowledge

bases while MotifNet also deploys a custom trained ob-

ject detector, class-conditioned non-maximum suppression,

and heuristically removes all object pairs that do not over-

lap. While not comparable, we report their numbers for

clarity.

5.1. Scene graph prediction

We report scene graph prediction numbers on Visual

Genome [30] in Table 1. This experiment is meant to

serve as a benchmark against existing scene graph ap-

proaches. We outperform existing models that only use



Table 1. We perform on par with all existing state-of-the-art scene graph approaches and even outperform other methods that only utilize

Visual Genome’s data as supervision. We also report ablations by separating the contribution of the semantic and the spatial components.

SG GEN SG CLS PRED CLS

Metric recall@50 recall@100 recall@50 recall@100 recall@50 recall@100
v
is

io
n

o
n
ly

IMP [55] 06.40 08.00 20.60 22.40 40.80 45.20

MSDN [35] 07.00 09.10 27.60 29.90 53.20 57.90

MotifNet-freq [58] 06.90 09.10 23.80 27.20 41.80 48.80

Graph R-CNN [56] 11.40 13.70 29.60 31.60 54.20 59.10

Our full model 13.18 13.45 23.71 24.66 56.65 57.21

ex
te

rn
al Factorizable Net [34] 13.06 16.47 - - - -

KB-GAN [18] 13.65 17.57 - - - -

MotifNet [58] 27.20 30.30 35.80 36.50 65.20 67.10

PI-SG [22] - - 36.50 38.80 65.10 66.90

A
b
la

ti
o
n Our spatial only 02.05 02.32 03.92 04.54 04.19 04.50

Our semantic only 12.92 12.39 23.35 24.00 56.02 56.67

Our full model 13.18 13.45 23.71 24.66 56.65 57.21

Figure 3. Example scene graphs predicted by our graph convolution fully-trained model.

Visual Genome supervision for SGGen and PredCls by

1.78 and 1.82 recall@50, respectfully. But we fall short on

recall@100. As we move from recall@50 to recall@100,

models are evaluated on their top 100 predictions instead of

their top 50. Unlike other models that perform a multi-class

classifiction of predicates for every object pair, we assign

binary scores to each possible predicate between an object

pair individaully. Therefore, we can report that no relation-

ship exists between a pair of objects. While this design

decision allows us to separate learning predicates transfor-

mations and object representations, it penalizes our model

for not guessing relationships for every single object pair,

thereby, reducing our recall@100 scores. We also notice

that since our model doesn’t utilize the object categories to

make relationship predictions, it performs worse for the task

of SGCls, which presents models with ground truth object

locations.

We also report ablations of our model trained using only

the semantic or spatial functions. We observe that differ-

ent ablations of the model perform better on certain types

of predicates. The spatial model performs well on predi-

cates that have a clear spatial or location-based aspect, such

as above and under. The semantic model performs bet-

ter on non-spatial predicates such as has and holding.

Our full model outperforms the individual semantic-only

and spatial-only models as predicates can utilize both com-

ponents. We visualize some scene graphs generated by our

network in Figure 3.

5.2. Few-shot prediction

Our second experiment studies how well we perform

few-shot scene graph prediction with limited examples per

predicate. Our approach requires two sets of predicates, a

set of frequently occurring predicates and a second set of

rare predicates with only k examples. we split the usual 50
predicates typically used in Visual Genome, and place the

25 most predicates with the most training examples into the

first set and place the remaining 25 predicates into the sec-

ond set. In our experiments, we train the predicate functions

and the graph convolution framework using the predicates

in the first set. Next, we use them to train k-shot classi-

fiers for the rare predicates in the second set by utilizing the

representations generated by the pretrained predicate func-

tions. We iterate over k ∈ [1, 2, 3, 4, 5].

For a rigorous comparison, we choose to compare

our method against MotifNet [58], which outperforms

all existing scene graph approaches and uses linguis-

tic priors from word embeddings and heuristic post-

processing to generate high-quality scene graphs. Specif-

ically, we report two different training variants of Mo-

tifNet: MotifNet-Baseline, which is initialized with

random weights and trained only using k labelled examples



Figure 4. We show Recall@1 and Recall@50 results on k-shot predicates. We outperform strong baselines like transfer learning on

MotifNet [58], which also relies on linguistic priors.

and MotifNet-Transfer, which is first trained on the

frequent predicates and then finetuned on the k few-shot

predicates. We also compare against Ours-Baseline,

which trains our graph convolution framework on the k

few-shot predicates and Ours-Oracle, which reports the

upper bound performance when trained with all of Visual

Genome.

Results in Figure 4 outline that our method performs bet-

ter than all baseline comparisons for all values of k. We

find that our learned classifiers are similar in performance

to MotifNet-Transfer when k = 1. This is likely

because MotifNet-Transfer also has access to addi-

tional information available from word embeddings. The

improvements seen by our approach increase as k increases

to k = 5, where we outperform the baselines by 3.26
recall@50. Eventually, as more labels becomes available,

the Neural Motif model outperforms our model for values

of k ≥ 10.

5.3. Interpretable predicate transformation visual-
izations

Our final experiment showcases another utility of treat-

ing predicates as functions. Once trained, these func-

tions can be individually visualized and qualitatively eval-

uated. Figure 5(left and middle) shows examples of trans-

forming spatial attention from four instances of person,

horse, boy, and banana in four images. We see that

above and standing onmoves attention below the per-

son looking moves attention left towards the direction

the horse is looking. wearing highlights the center of

the boy. Figure 5(right) shows semantic transformations

applied to the embedding representation space of objects.

We see that riding transforms the embedding to a space

that contains objects like wave, skateboard, bike and

horse. Notice that unlike linguistic word embeddings,

which are trained to place words found in similar contexts

together, our embedding space represents the types of vi-

sual relationships that objects participate. We include more

visualizations in our appendix.

6. Conclusion

We introduced the first scene graph prediction model that

treats predicates as functions and generates object represen-

tations that can effectively enable few-shot learning. We

treat predicates as neural network transformations between

object representations. The functions disentangle the object

representations from storing predicate information, and in-

stead generates an embedding space with objects that em-

bed similar relationships close together. Our representa-

tions outperform existing methods for few-shot predicate

prediction, a valuable task since most predicates occur in-

frequently. Also, our graph convolution network, which

trains the predicate functions, performs on par with exist-

ing scene graph prediction state-of-the-art models. Finally,

the predicate functions result in interpretable visualizations,

allowing us to visualize the spatial and semantic transfor-

mations learned for each predicate.
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