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Abstract

Scanned images of patent or historical documents of-

ten contain localized zigzag noise introduced by the digi-

tizing process; yet when viewed as a whole image, global

structures are apparent to humans, but not to machines.

Existing denoising methods work well for natural im-

ages, but not for binary diagram images, which makes

feature extraction difficult for computer vision and ma-

chine learning methods and algorithms. We propose

a topological graph-based representation to tackle this

denoising problem. The graph representation empha-

sizes the shapes and topology of diagram images, mak-

ing it ideal for use in machine learning applications such

as classification and matching of scientific diagram im-

ages. Our approach and algorithms provide essential

structure and lay important foundation for computer vi-

sion such as scene graph-based applications, because

topological relations and spatial arrangement among

objects in images are captured and stored in our skele-

ton graph. In addition, while the parameters for almost

all pixel-based methods are not adaptive, our method

is robust in that it only requires one parameter and it is

adaptive. Experimental comparisons with existing meth-

ods show the effectiveness of our approach.

1. Introduction

Image denoising is an important pre-processing

technique in computer vision and image processing.

Scanned images of patent or historical documents often

contain localized zigzag noise (see Figure 2 (a) for an

example of zigzag noise) introduced during the digitiz-

ing process that makes the automatic extraction of global

structures substantially more difficult. Many images

from scanned scientific documents only contain shape

and topology information comprised of lines and curves;

whereas, natural images have much richer features, such

as intensity, color, and texture. Existing denoising meth-

ods (detailed in Section 2) work well for natural images,

but not for binary diagram images (because those de-

noising methods are designed for natural images), which

makes feature extraction for binary types of images dif-

ficult for computer vision and machine learning methods

and algorithms.

Traditional computer vision feature descriptors, such

as SIFT [24] and SURF [3], are often based on local

scale. Recent work in computer vision and image pro-

cessing has shown that topological graph-based meth-

ods [42, 43] have intuitive and clear advantages for im-

age analysis [42, 41].

In this paper, we propose a topological graph-based

image representation that combines both local and

global features for denoising low quality binary images.

Specifically, our method combines the power of topo-

logical graphs and skeletons to generate a hierarchical

skeleton graph representation to tackle the denoising

challenges. A skeleton is a central line representation

of an object in an image obtained via thinning [22]. The

skeleton emphasizes topological and geometrical prop-

erties of shapes [42]. In our approach, the skeleton

serves as the essential bridge from image representation

to topological graph representation.

Our approach and algorithms provide essential struc-

ture and lay an important foundation for computer vi-

sion challenges such as scene graph-based applications,

because topological relations and spatial arrangement

among objects in images are captured and stored in our

skeleton graph. While the parameters for most pixel-

based methods are not adaptive, our method is robust

in that it only requires one parameter, and is adaptive.

We compare our approach with six commonly used de-

noising methods (specifically, five designed for natural



images and one for document images); the experimental

results show the effectiveness of our method and algo-

rithms based on topological graphs and computational

geometry (e.g. convex hull).

Here, we provide a road map to the rest of the paper.

Section 2 covers related work, including a brief review

of commonly used denoising methods for natural and

document images, and the topological-based approaches

that our method is built on. Section 3 is the core of the

paper, focusing on our methods and algorithms. Specif-

ically, Section 3.1 provides the workflow of our method

(Figure 1), and Section 3.2 data structures, which will

be used in our developed algorithms detailed in Sec-

tion 3.3. In Section 4, we present our experiments and

results. The paper concludes in Section 5 with discus-

sion of limitations and future work, including potential

applications.

For readability, we provide a list of abbreviations

used in Appendix A. To provide background for read-

ers, particularly those who are new to graph theory and

computational geometry, in Appendix B, we introduce

graph theory terms we used throughout the paper.

2. Related work

Most denoising methods are designed for the ma-

jor types of noise present in natural images that fol-

low different distributions (e.g., Gaussian noise, salt

and pepper noise, speckle noise, and Brownian noise)

[29, 38, 5, 20].

Here we briefly review some commonly used denois-

ing methods, some of which we compare in our experi-

ments (Section 4). Smoothing filters, such as Gaussian,

median, and bilateral filters, are often the commonly

used techniques to denoise images. Gaussian filtering is

a linear operation. However, it does not necessarily pre-

serve edges, as the Gaussian filter computes a weighted

average of pixel values in the neighborhood, where the

weights decrease with distance from the neighborhood

center [36]; that is, the value of the variance governs the

degree of smoothing. Median filtering is a non-linear

operation [2, 17]. Unlike linear filters, as its name im-

plies, median filters replace the pixel values with the

median value in the local neighborhood. Median filter-

ing, often for salt and pepper noise reduction, preserves

edges while removing noise [19, 2, 17, 16], as the me-

dian value must actually be the value of one of the pixels

in its neighborhood. Bilateral filtering is a non-linear,

local, non-iterative and simple edge-preserving filtering

method [36, 17]. As the name suggests, bilateral fil-

tering was the combination of two types of filtering –

domain filtering using pixel spatial closeness and range

filtering using pixel value similarity [17].

Total variation (TV) denoising is non-linear, simple

and relatively fast; it removes small scale noise while

leaving important features such as edges intact, and thus

is edge-preserving [31, 35, 17]. TV-l1 – a modified ver-

sion of TV – uses an ℓ1 norm as a measure of fidelity

between the observed and denoised images; the ℓ1 norm

makes it more geometric-based in the denoising process,

as the regularization process has less dependence on the

contrast of image features than on their shapes [7]. Non-

local means (NLM) method uses a weighted averaging

scheme to denoise images (it is non-local as the aver-

ages could be calculated over all pixels of the image);

the authors [6] of NLM assume that in natural images a

lot of structural similarities are present in different parts

of the image and these repetitive structures can be used

to restore images [6, 17]. Several extensions of NLM

methods are developed (e.g., BM3D [10] and its exten-

sion BM4D [25]. However, although NLM and its ex-

tension are powerful and effective for denoising but the

challenges of non-adaptive parameters (e.g., the sizes of

smoothing kernel and neighborhood) still remains [17].

Relevant research on document images exists (as doc-

ument images often contain noise introduced by the

scanning process), but major methods on document im-

ages focus on binarization of images with thresholding

techniques [33, 8, 16]. In [28], the different characters

in the document are analyzed and a binary representa-

tion of the image is generated using thresholding, sepa-

rating the text from a noisy background. Other methods

of creating a binary representation of a text-based image

include applying Otsu and Sauvola’s thresholding [18],

and Otsu thresholding alongside applying a median fil-

ter and other morphological techniques [46]. These pro-

cesses are shown to remove salt and pepper noise, as

well as smears [46, 28]. However, binarization is not the

primary focus of this paper. We focus on how to remove

the localized zigzag noise generated from scanning that

are present in scanned binary diagrams. These localized

noises are seen at the edges of the diagram and cannot

be removed by many denoising methods, even the de-

noising methods designed for document images will not

remove the zigzag noises. For example, in [46] a hy-

brid method is proposed, which uses the Otsu’s method

to initialize binarization, uses two dimensional median

filters to reduce the leftover salt and pepper noises, and

performs open and close operators to eliminate the re-

maining noises. Wavelet transform-based methods, of-

ten called wavelet shrinkage, use wavelet thresholding

according to a shrinkage rule to denoise images. A

challenge in the wavelet shrinkage process is to find



an adequate threshold value. Non-adaptive (e.g., Vis-

uShrink [12]) and adaptive (e.g., SureShrink [11] and

BayesShrink [9]) threshold estimation criteria were in-

troduced for desired threshold estimation. Wavelets are

used to denoise document images suffering from scan-

ning introduced noises [4]. However, as [30] pointed

out, wavelets are not shift and rotation invariant, and

therefore they used curvelet transform (first introduced

in [34]) to denoise document images.

There are other methods for document images, but to

our knowledge, most of the methods are machine learn-

ing [23], neural network (e.g., cellular neural networks

in [32]) or deep learning based (e.g., DnCNN used in

[44, 16]), which requires (a large set of) training data.

These approaches are beyond the scope of this work, as

our approach provides a topological-based image repre-

sentation and denoising method that requires no training

data and is robust and whose parameter(s) are adaptive.

All the above denoising methods are pixel-based.

Now we discuss some topological-based methods from

which our denoising method builds upon. Yang et al.

propose a topological graph-based image representation

to automatically extract topological features that can be

fed into different machine learning algorithms for image

classification tasks [41]. Their topological graphs are

generated automatically from image skeletons, which

capture the topological and geometrical properties of

shapes of objects present in images [21]. Yang et al. [41]

uses the Zhang-Suen thinning algorithm [45], which is

a well-known and robust skeleton extraction method, to

extract skeletons from images. In our work, we also use

the Zhang-Suen thinning algorithm to extract skeletons

from binary diagram images. To further improve their

graph representation, authors in [41] suggest two algo-

rithms to simplify the geometries in the graph represen-

tation: the Douglas-Peucker [13] and the Visvalingam’s

[39]. In our method, we use the Douglas-Peucker algo-

rithm because of its simplicity and robustness.

3. Methods and algorithms

In this section, we elaborate the proposed methods

and algorithms, including workflow (Section 3.1), and

data structures (Section 3.2) used in our developed algo-

rithms (Section 3.3).

3.1. Workflow

The overview workflow of our method is provided

in Figure 1. Given a diagram image, its skeleton is ex-

tracted using Zhang-Suen thinning algorithm [45]. The

skeleton is then used to generate a skeleton graph. Af-

ter that, important feature points defined as landmark

nodes are detected from the skeleton graph. These land-

mark nodes are used to segment the graph into individual

paths. In the next step, these paths and their geometry

are used to create a hierarchical skeleton graph repre-

senting different levels of abstraction of the graph struc-

ture. We then compute an adaptive parameter to sim-

plify each path in the hierarchical skeleton graph using

Douglas-Peucker algorithm [13]. Once we get a simpli-

fied hierarchy skeleton graph Gs, we get a denoised im-

age by drawing lines between those nodes that are con-

nected in Gs.

Figure 1. Workflow of our method.

3.2. Data structures

Below we introduce the data structures that will be

used in the algorithms provided in Section 3.3.

Skeleton graph: A skeleton graph is an embedded

graph G = {V,E} generated from the skeleton of

an image, where V is a set of white pixel-id, along

with pixel coordinates as node attribute, and E is

the edge list containing spatial connections among

the nodes in V .

Hierarchical skeleton graph: A parent embedded

graph Gp = {Vp, Ep} contains simplified paths.

Specifically, Vp contains collections of landmark

nodes and Ep contains the path through those

nodes.



Path: Each path is a child embedded graph Gc =
{Vc, Ec} that contains non-landmark nodes for

paths identified by landmark nodes. Specifically,

Vc contains collections of non-landmark nodes for

a specific path defined by a member of Vp and Ec

contains the edges that connect the non-landmark

nodes through different paths.

3.3. Algorithms

3.3.1 Generating skeleton graph

Algorithm 1 provides detailed steps to generate a skele-

ton graph from a given diagram image. We use the

Zhang-Suen thinning algorithm [45] to extract the skele-

ton for a given image, which is one pixel wide. From this

skeleton a graph is constructed, where white pixels are

represented by nodes, and edges are assigned between

nodes whose pixels are nearest neighbors in the image

skeleton. The result is an embedded graph G = {V,E}
where V holds the node id and planar coordinates and

E holds the pairwise edge connections for each node.

Figure 2 shows an example of a skeleton graph.

Algorithm 1: Generating skeleton graph

Input: A diagram image I
Output: An embedded graph G = {V,E}

representing the skeleton of I // the

nodes of an embedded graph contain

coordinates, therefore the graph

can be drawn uniquely on a plane

1 I ← imported image

/* Pre-processing */

2 I ← binarized I
3 if background (I) is white then

4 I ← invert (I)

5 I ← pad (I , 0) // border extension

6 I ← dilate (I)

7 S ← skeleton (I) // Skeleton Extraction

/* Generating Skeleton Graph */

8 V ← nodes (S)

// the coordinates of each node are stored

in a list where the list index is the

id/label for the individual node

9 E ← edges (S) // two nodes are

edge-connected if the pixels represented

by the nodes are first nearest neighbors.

A list of all edge connections is stored

for each node.

10 return V,E

3.3.2 Detecting landmark nodes

The next step is to segment the skeleton graph G into a

collection of paths. In order to perform the segmenta-

tion, breakpoints (i.e., landmark nodes) need to be de-

tected within the graph structure. Algorithm 2 provides

the details for detecting landmark nodes.

In [43] junction nodes, turning nodes, and end nodes

are defined based on the topological and geometric fea-

tures found in the graphs. A junction node is where

more than two paths meet, specifically any node that

is connected to three or more other nodes. A turning

node is where the direction of a path changes signifi-

cantly, specifically a node where the angle between its

two nearest neighbors is within a set tolerance range.

An end node is any node where a path ends, specifically,

any node that only has one neighbor.

3.3.3 Segmenting paths

After landmark nodes are detected, they are used to seg-

ment the skeleton graph into a collection of paths. The

details for path segmentation using landmark nodes are

provided in Algorithm 3.

The paths containing junction nodes are firstly col-

lected. Starting with a single junction node, a path stem-

ming from that junction node is explored and stored as

separate non-landmark nodes in the Path graph. The ex-

ploration occurs by taking one step at a time down the

path and comparing the newly discovered node to the

list of junction nodes and end nodes. The path ends

when another junction node or an end node is found.

After one path is completed, the process is repeated for

all other paths stemming from that initial junction node.

The paths are explored for all junction nodes and for

any end or turning nodes that have not already been

added to a previous path. A portion of the graph with-

out junction nodes could be a disconnected section of

the skeleton graph. A circular curve of an image skele-

ton may produce a section of its corresponding skeleton

graph with no junction nodes or end nodes, so turning

nodes are also checked.

3.3.4 Simplifying hierarchical skeleton graph

Once paths are segmented, to create a simplified hierar-

chical skeleton graph, the segmented paths need to be

simplified.

The hierarchical skeleton graph is simplified by using

the Douglas-Peucker algorithm [13], which takes geo-

metric curves composed of line segments, and reduces

the number of points to represent the curve. Here the



(a) Original image (b) Image skeleton

(c) Skeleton graph (d) A zoomed in detail of (c)

Figure 2. Example of the graph generation process. Figure 2 (a) shows the original image before processing. Figure 2

(b) shows the skeleton of the original image. Figure 2 (c) plots the graph generated from the skeleton where each red

dot is a node in the graph. Figure 2 (d) shows a zoomed in detail of Figure 2 (c), highlighting the nodes and edges in

the skeleton graph.

curve is taken to be the collection of planar coordinates

contained in the nodes of a given path. Detailed steps

are given in Algorithm 4.

The simplified representation of the curve is assigned

as a node in the hierarchical graph. The edges in the hi-

erarchical graph connect the nodes together completing

the path.

The Douglas-Peucker algorithm requires a parameter

ǫ that governs the complexity of the simplified curve. In

our algorithm, this parameter is adaptive, because it is

computed automatically based on the convex hull of the

coordinates of the nodes that comprise a specific path.

Once the hierarchical skeleton graph is simplified, a

denoised image can be generated by drawing lines be-

tween those nodes that are connected in the simplified

skeleton graph.

4. Experiments and results

To test and evaluate our method and algorithms, we

run experiments on diagram images from the 2000 Bi-

nary Patent Image Database developed by Multime-

dia Knowledge and Social Media Analytics Laboratory

(MKLab); the database contains images from patents

maintained by the European Patent Office [1]. For

the implementation, we use OpenCV, Scikit-image [37],

SymPy [26], and NetworkX [14], as well as SParse Op-

timization Research COde (SPORCO) [40].

We compare our method with six commonly used de-

noising methods: Gaussian filter, median filter, bilateral

filter, TV-l1, NLM, and wavelet; where the first five are



Algorithm 2: Detecting landmark nodes

Input: An embedded graph G = {V,E}
representing the skeleton of a diagram

image

Output: A list of junction nodes Junct pts, a list

of end nodes End pts, and a list of

turning nodes Turn pts of the skeleton

graph G // A junction node is a

node where more than two paths

meet, an end node is a node where a

path ends, and a turning node is a

node where the angle of a path

changes significantly.

1 Junct pts, End pts, Turn pts ← null
// Initialization

2 foreach v ∈ V do
/* count the number of edges that are

incident to node v to determine the

node type of v */

3 n ← sum(E(v))
4 if n == 1 then

5 append v to End pts

6 if n > 2 then

7 append v to Junct pts

8 if n == 2 then
// exactly two incident edges

implies a possible turning node

9 first ← first neighbor of v
10 second ← second neighbor of v
11 angle ← angle between(first, second)

12 if angle >= 45 and angle <= 135 then
// the path turns at a

significant angle, therefore v

is a turning node

13 append v to Turn pts

14 return End pts, Junct pts, Turn pts

designed for natural images and wavelet is for document

images. These results can be found in the set of fig-

ures organized in Table 1 (for readability, only partial

images are given here; pre-processing, such as border

extension, is performed before denoising using the six

existing methods, and before skeleton extraction using

our method).

From the experiment results shown in Table 1, we

can see that our method successfully removes the jagged

zigzag edge noise found in scanned diagram images. As

our method is developed to enhance the linear features of

Algorithm 3: Segmenting paths

Input: An embedded graph G = {V,E}
representing the skeleton of a diagram

image

Output: A list of paths P from the graph G
separated by landmark nodes

1 Junct pts, End pts, Turn pts ←
detect landmark nodes (G) // Detecting

landmark nodes using Algorithm 2

/* Initialization */

2 P ← null // completed paths

3 V isited ← null // nodes already touched

4 Current ← null // working path

/* Start with the junction nodes */

5 foreach v ∈ Junct pts do
/* edges represent path directions */

6 Edges ← E(v)
7 foreach neighbor ∈ Edges do

/* the next step in the path */

8 next ← neighbor
/* start walking the path */

9 append v to Current
10 append v to V isited
11 append next to Current
12 append next to V isited
13 while there are more steps to take do

/* Test to see if we reached the

end of a path */

14 if next ∈ Junct pts or

next ∈ End pts then
/* the path is finished */

15 break

16 else
/* walk forward */

17 first ← first neighbor of next
18 second ← second neighbor of

next
/* add the node that isn’t in

the path */

19 if first /∈ V isited then

20 next ← first
21 else

22 next ← second

23 append next to Current
24 append next to V isited

25 append Current to P

/* There may be paths that do not contain

a junction node */

26 Repeat for nodes N ∈ End pts that are /∈ V isited

27 Repeat for nodes N ∈ Turning pts that are

/∈ V isited
28 return P



Algorithm 4: Simplifying hierarchical skeleton

graph

Input: Segmented paths P
Output: A simplified hierarchical skeleton graph

S
1 S ← null // Initialization

2 foreach path p ∈ P do

3 N ← Node (p) // the nodes of p

4 n ← num (N ) // the number of nodes

5 if n > 2 then
/* cacluate adaptive Douglas-Peucker

parameter ǫ */

6 C ← convex hull (N )

7 ǫ ← area of C / perimeter of C

8 Simplify path p using Douglas-Peucker

algorithm with parameter ǫ
9 new path ← simplified p

10 append new path to S

11 return S

diagram images, the width of the lines and curves are re-

duced in our denoising method while junctions between

lines and linear directions are preserved well.

Looking closer at the experiment results in Table 1,

we can see that in Images 4, 5, and 6, there are some

curved lines that appear boxy in our denoised images,

but the zigzag pattern in Image 7 is preserved well. For

Image 6 and 7 we can see lines that are very close to-

gether in the original image being combined into one re-

gion to varying degrees in all denoising methods. The

lines being smeared together is caused by image di-

lation, which is one of the pre-processing techniques.

In addition, in Image 5 the original image has arrows,

which are reduced to lines in the skeletonization process.

All of the six denoising methods require pre-setting

of parameters, but the parameter in our method is adap-

tive. See Table 2 provided in Appendix C for parameter

settings for the denoising methods shown in Table 1.

The computation time for each method and each sam-

ple image are shown in Table 3 in Appendix C (see Ap-

pendix D for our experiments’ computing environment).

In terms of computation time, our method is on par with

NLM approach, outperforms the TV-l1 method, but is

not as fast as the Gaussian, median, and bilateral filter-

ing and wavelet methods.

5. Conclusion, limitation and future work

We have proposed a topological graph-based repre-

sentation, along with algorithms built upon the represen-

tation, to denoise (binary) diagram images that contain

zigzag noise introduced by digitization techniques such

as scanning. Our hierarchical skeleton graph image rep-

resentation can capture the major topological relations

and spatial arrangement among entities present in an im-

age, while eliminating undesired zigzag noise found at

the edges of lines and curves in diagram images.

Our method is applied to diagram images from a

patent database, and compared with six commonly used

denoising methods; the experiment results show the ef-

fectiveness of our topological graph-based representa-

tion and algorithms. Specifically, our approach achieves

very good and robust results with only one parameter

(and most importantly, it is adaptive). By contrast, al-

most all other denoising methods require pre-setting of

parameter(s), and this indicates fine-tuning is required to

get optimized parameter(s) for desired results, which is

time-consuming and thus not practical.

One major limitation of our method is that curves

with large curvature may be oversimplified and thus re-

sulting in boxy line segments (see images 4, 5, and 6

in Table 1). We will optimize our adaptive parameter

to make our method able to cope with denoising both

lines and curves with large curvature. In addition, the

computation time of our method was mostly spent on

the skeleton extraction step. We will improve skeleton

extraction using the algorithm introduced in [42].

Our demonstrated denoising method and algorithms

are applied to binary images, but we expect our topolog-

ical graph-based image representation should work for

other types of images. Non-binary images can be con-

verted to grayscale and then binarization through thresh-

olding, after which our method should be applicable.

Our hierarchical skeleton graph representation of

(low quality) binary images using a topological graph-

based approach provides essential structure and lays an

important foundation for computer vision such as scene

graph based applications. In this paper, we have demon-

strated that the representation works effectively and ro-

bustly for denoising low quality binary images, but its

potential has a much wider range. Many computer vi-

sion and image processing tasks and applications can

benefit from our representation and algorithms, from

fundamental and classic computer vision tasks such as

line detection, image classification (see [41] for an ex-

ample) and object recognition, to higher level tasks

and applications such as text recognition using OCR,

detection of lanes, stop signs, and crossing lines for

autonomous driving, as well as scene understanding

through scene graphs that can be generated from our hi-

erarchical skeleton graph representation.
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A. Abbreviations

In this appendix, we provide the abbreviations (or-

dered alphabetically) of terms we used in the paper.

BM3D Block-matching and 3D filtering

DnCNN Denoising convolutional neural network

NLM Non-local mean

OCR Optical character recognition

SIFT Scale-invariant feature transform

SURF Speeded up robust features

TV Total variation

TV-l1 Total variation-l1 norm

B. Definition of terms used

In this appendix, we provide brief definitions to some

concepts (ordered alphabetically; referenced [42, 43, 41,

15, 27]) in graph theory and computational geometry we

used in our hierarchical skeleton graph based image de-

noising methods and algorithms.

Convex hull

Given a collection of 2D points P , the convex hull

of P is the smallest convex set S that contains P; S
is a subset of P , and S contains all possible con-

vex combinations of P . For a set {p1, p2, ..., pn}, a

convex combination of those points is represented

as another point p =

n∑

k=1

αkpk where

n∑

k=1

αk = 1.

Embedded graph

An embedded graph is a graph where each node has

(planar) coordinates so the graph can be drawn on

a plane uniquely.

Graph

A graph consists of a collection of nodes (also

called vertices or points) and edges that connect

nodes.

Skeleton

The skeleton of a binary image is a central line ex-

traction of objects in the image via thinning.

Skeleton graph

The skeleton graph of a binary image B is an em-

bedded graph generated by pixels (including co-

ordinates) and connection among pixel neighbors

from the skeleton extracted from B.

Path

In graph theory, a path is a set of nodes and their

connecting relationships. From a given node, all

other nodes in the path can be traversed by travel-

ling through the edges.

C. Parameter settings and computation time

This appendix provides the parameter settings and

computation time for denoising methods in Table 1.

Table 2 provides parameter settings for the denois-

ing methods shown in Table 1 (For other parameters not

listed specifically in the table, we took default parame-

ters available in the tools used).

Table 3 provides the computation time for each

method and each sample image (computing environment

for the experiments is provided in Appendix D below).

D. Computing environment

In this appendix, we provide the computing environ-

ment that we ran our experiments. We ran all the ex-

periments on a ThinkPad l580 (Linux: Ubuntu:version

18.04) with Intel(R) Core(TM) i5-7200U CPU @

2.50GHz (1 processor, and 4 CPU cores for each pro-

cessor; 4 GiB RAM).
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