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Abstract

Recently, instance segmentation models have been devel-

oped to a great promising accuracy on public benchmarks.

However, these models are too heavy to be applied for real

applications due to their low inference speed. In this pa-

per, we propose a faster instance segmentation model uti-

lizing a teacher-student learning framework that transfers

the knowledge obtained by a well-trained teacher model

to a lightweight student model. In addition to the conven-

tional strategy of knowledge distillation in classification or

semantic segmentation networks which are both single-task

networks, we investigate a hierarchical distillation (H-Dis)

framework for structure information distillation on multi-

task learning based instance segmentation. H-Dis consists

of two distillation schemes: representation distillation that

distills pair-wise quantized feature maps shared by multi-

heads, and semantic distillation that makes sure to distill

each head information in an instance level. In particular,

we present channel-wise distillation for the segmentation

head to achieve instance-level mask knowledge transfer. To

evaluate our approach, we carry out experiments with dif-

ferent settings of distillation methods on different datasets

Pascal VOC and Cityscapes. Our experiments prove that

our approach is effective for accelerating instance segmen-

tation models with less accuracy drop under limited com-

puting resources.

1. Introduction

In recent years, the performance of instance segmenta-

tion has been dramatically improved by deep convolutional

neural networks, which has made an attractive possibility

to apply it to real-world applications, such as surveillance

systems, auto-driving systems and medical systems. In

general, a stronger DNN model has a deeper and heavier

network design which makes it suffer from low inference

speed, while on the contrary, the speed is a key require-

ment in most real-world applications. Thus, a faster and

lighter instance segmentation model with promising accu-

racy is highly demanded.

Previous researchers discovered some possible ways to

accelerate the DNN models. Model compression [7, 14,

27, 28] decomposes the weights in each layer to remove

redundancy, recovering some accuracy by layer-wise recon-

structions and fine-tuning. Model pruning [1, 24, 16] selects

layer channels with higher importance or under sparse con-

straint. These kinds of methods achieve significant speed-

up, but the accuracy drop is obvious as well, especially for

complex tasks such as object detection and segmentation.

In order to enhance the accuracy of tiny or compressed

models, knowledge transfer is a good way to transfer useful

and effective knowledge learned by a cumbersome teacher

model to a lightweight student model. Popular ways to

transfer knowledge from one model to another are knowl-

edge distillation[13, 26] and mimic learning[22, 17]. Con-

ventional use of knowledge distillation has been widely pro-

posed for classification networks [13, 15]. Meanwhile, for

training compact semantic segmentation networks whose

problem can be simply seen as pixel-wise classification,

knowledge distillation can also be directly applied as pixel-

wise distillation [25, 20]. However, both classification dis-

tillation and semantic segmentation distillation are single-

task knowledge distillation. Applying knowledge distilla-

tion on popular multi-task instance segmentation networks

is challenging because it is a structure information transfer

with multiple kinds of semantic information in an instance

level, that both classification and semantic segmentation are

out scope of it.

In this paper, we propose a Hierarchical Distillation (H-

Dis) framework for instance segmentation by taking both

the distillation of outputs from middle layers as representa-

tion distillation and late layers as semantic distillation into

consideration, to transfer the structure information from the

cumbersome teacher network to the compact student net-

work. H-Dis is a RoI(region of interest) based operation to

optimize instance-level distillation. Representation distilla-

tion uses the quantized feature maps shared by each head

network after RoI pooling as the representation information

for distillation. Semantic distillation uses the outputs from

each head network consisting of classification, bounding

box regression and mask prediction. Different from pixel-



level classification with softmax in semantic segmentation,

the mask branch in instance segmentation can be designed

without inter-class competition (by a sigmoid instead of

softmax), which gives large gains over softmax [11]. Thus,

we present channel-wise distillation for the mask branch, in

addition to the straightforward scheme by distilling the soft

targets from classification networks and the bounding box

coordinates from bounding box regression networks.

To summarize, the contributions of this paper are three-

folds:

• We propose a novel hierarchical distillation framework

for instance segmentation that utilizes both the mid-

dle and late layers’ outputs from a teacher network as

our distillation targets to train an efficient student net-

work with a fast segmentation speed. To the best of

our knowledge, this is the first trial for knowledge dis-

tillation on instance segmentation.

• We devise a new distillation loss for the mask branch

in multi-task instance segmentation frameworks, with

channel-wise distillation for teacher-student learning.

• The evaluations performed on large-scale benchmarks

for demonstrating the effectiveness of the proposed

method.

2. Related work

Instance segmentation: The task is to assign instance-level

segmentation masks for each object in the image. Typically,

the task requires segmentation, classification and box re-

gression, which are accomplished separately or jointly re-

lying on the region based methods, such as a Region Pro-

posal Network (RPN). This paradigm includes most popu-

lar approaches, such as SDS [10], CFM[5] and MNC [6].

Most recently, FCIS [18] was proposed as a fully convo-

lutional end-to-end solution for instance segmentation, per-

forming position-sensitive output channels for mask estima-

tion, classification and box regression jointly and simulta-

neously, which achieved both high accuracy and fast speed.

Mask R-CNN [11] extended Faster R-CNN [9] by adding a

FCN [21] branch for predicting an object mask in parallel

with the class and box prediction branches. Mask R-CNN

achieved competitive accuracy on public benchmarks, how-

ever the speed was not in their consideration. Considering

both accuracy and speed, as well as the training time, we

take the original FCIS as the baseline of this work.

Knowledge transfer: As a pioneering work of knowledge

distillation, Hinton et al. [13] suggested a useful way to sig-

nificantly improve the accuracy of a small model by trans-

ferring the generalization ability of an ensemble of net-

works, which leaded to a significant performance enhance-

ment on the image classification task. The idea is to al-

low the student network to capture not only the information

provided by the ground truth labels, but also the extra in-

formation about the finer structure learned by the teacher

networks. Subsequent works tried to tackle the drawbacks

of [13] by transferring intermediate features. Romero et al.

[22] further developed this idea to make a thin and deep

student network mimic the full feature maps of a wide and

shallow teacher network. However, such assumptions are

too strict since the capacities of teacher and student may dif-

fer greatly. In certain circumstances, it may adversely affect

the performance and convergence. Chen et al. [2] proposed

distillation losses for classification and box regression and

applied mimic learning [22] in object detection networks.

This work suggests a general way of applying knowledge

transfer to multi-task networks. However, this work can

only handle object detection problems and has no contri-

bution in optimizing mimic learning for RoI-based tasks.

Li et al. [17] extended mimic learning for object detection

tasks, solving the above problem by transferring features

merely in the RoIs. Xie et al. [25] investigated knowledge

distillation for semantic segmentation networks, applying

pixel-wise distillation on masks and consistency distillation

which distills the information of mask boundaries. Liu et

al. [20] further proposed a GAN(Generative adversarial net-

work) based holistic distillation to match the masks gener-

ated by the teacher and the student. These works provide

feasible ways for segmentation distillation, but are restricted

to single-task semantic segmentation networks.

3. Method

We distill knowledge from a heavy and cumbersome

teacher network to teach a light but efficient student net-

work. Both of them follow the state-of-the-art instance seg-

mentation architecture e.g., [18], with classification, box re-

gression and mask branches in the heads of the network.

The teacher network performs better than the student net-

work in terms of segmentation accuracy, but with a slower

processing speed. As [2] does, knowledge distillation is

suggested to be added both in the head network and shared

convolution layers.

Our method adopts both middle and late layers’ output

from the teacher network as our distillation targets to trans-

fer the structure information to the student. The overview

of our proposed method is shown in Figure.1.

3.1. Representation distillation

For instance segmentation, the feature maps extracted

from shared convolutional layers will affect localization,

classification and segmentation accuracy. It’s essential to

transfer from middle layers which contain numerous dark

knowledge to facilitate the student model. Instance seg-

mentation is a region-based work and the head networks

are based on the pooled region proposals, so the region

proposals play very important roles in this task. To distill
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Figure 1. The overview of our proposed hierarchical distillation framework for instance segmentation. Firstly, we train the teacher network

with all the training data and it only forwards the input image without back propagation in the distillation phase. Secondly, we operate

representation distillation between RoIs on the feature maps of the teacher and student networks by L2 regularization as a middle layer

distillation loss. Since most of the multi-task networks are heavier and deeper, a quantization operation [23] is adopted on the feature maps

to make the student network converge faster and easier by learning from the teacher. Thirdly, we also distill the late layers’ output as

semantic information from the teacher but customized for each head, which consists of soft targets, bounding box coordinates and channel-

wise masks for each RoI. Semantic distillation loss is composed of cross-entropy loss for classification distillation and L2 losses for box

and mask distillation.

knowledge from middle layers, we follow [23] to introduce

a quantization operation on the feature maps of the teacher

and student networks. The quantization method is to dis-

cretize the output of both teacher network and student net-

work in order to help the student to match the teacher bet-

ter. The representation distillation loss function Lrp dis is

defined as:

Lrp dis =
1

2N

∑

i∈N

‖Q(f i
t )−Q(r(f i

s))‖
2

2
(1)

where Q is an element-wise quantization function that

follows [23]. N is the number of proposals, and r is a func-

tion to transfer the student feature maps to the same size of

the teacher’s. Here, we use a 1× 1 convolutional layer as r.

3.2. Semantic distillation

We adopt the outputs of the heads in the network

which are kinds of semantic information. There are three

branches used in the popular instance segmentation frame-

works which consist of classification, box regression and

mask prediction. Since the head networks are trained based

on the region proposals generated by RPN, the region pro-

posals for training the student network are the same as the

teacher’s.

Distillation for classification and box regression. Con-

ventional use of knowledge distillation has been proposed

for training classification networks, where categorization

predictions of a teacher model are used as “soft targets”

to guide the training of a student model. The neural net-

works typically produce class probabilities by using a soft-

max output layer that converts the classification score out-

put zi of the ith prediction computed for each class into

a probability pi, by comparing zi with the other logits

pi = softmax( zi
T
), where T is a temperature parameter

that is normally set to 1. A higher value for T means a

softer probability distribution over classes.

In our work, the class probability of the ith region pro-

posal predicted by the teacher model as {pti,l, l ∈ L}, where

l is the lth class probability and L is the number of cate-

gories. pti,l is treated as the soft targets to be transferred

from the teacher to the student by optimizing the following

cross entropy loss function as our classification distillation

loss Lcls dis:

Lcls dis = −
1

N

∑

i∈N

∑

l∈L

pti,llog(p
s
i,l) (2)

where psi,l is the class probabilities predicted from stu-

dent model, and N is the number of region proposals. The



soft targets contain information about the relationship be-

tween different classes as discovered by the teacher model.

By learning from the soft targets, the student model inherits

such hidden information.

For the bounding box regression branch which adjusts

the location and size of the proposals, we define bounding

box distillation loss using L2 optimization as shown below:

Lbbox dis =
1

2N

∑

i∈N

‖Rt
i −Rs

i ‖
2

2
(3)

where Rt and Rs means the outputs of regression layer

from the teacher and student respectively. Lbbox dis could

encourage the student to get closer to the teacher’s perfor-

mance in terms of box regression.

Distillation for mask. The student network is trained

with the help of a teacher in the mask prediction head with a

channel-wise distillation. The prediction result of the mask

head is a multi-channel mask. In each channel, the mask

means the segmentation result of a certain category or sim-

ply a background or a foreground. Compared with semantic

segmentation which can be treated as a pixel-wise classifi-

cation task using softmax to predict the class for each pixel,

instance segmentation decouples classification and segmen-

tation heads to predict class-specific masks. Inspired by

[11] which suggests that the competition among classes is

not good for mask prediction, we designed the mask distil-

lation loss Lmask dis in channel-wise as shown below:

Lmask dis = −
1

2N × C

∑

i∈N

∑

c∈C

‖M t
i,c −Ms

i,c‖
2

2
(4)

where M t
i,c, Ms

i,c are 14×14 mask outputs of the student

and teacher network at channel c in the region proposal i in

our setting. C denotes the channel number which equals

to the number of categories. It is defined in the way such

that the class-specific mask output of the student segmenta-

tion head layer is similar with that of the teacher network,

regardless of the class prediction. Thus, our semantic distil-

lation loss Lsm dis is:

Lsm dis = Lcls dis + Lbbox dis + Lmask dis (5)

which is the ensemble of each head distillation loss.

3.3. Hierarchical distillation (H-Dis)

Our overall distillation training loss is a hierarchical dis-

tillation loss which consists of representation and semantic

distillation losses that can be written as Lhis dis:

Lh dis = Lgt + λLsm dis + σLrp dis (6)

where the hyper-parameters λ and σ denote the balance

parameters among different losses, which are fixed as 1 in

our experiments.

4. Experiments

In this section, we perform evaluations on different

backbones and different datasets to prove the effective-

ness and generalization ability of our approach. In detail,

we use FCIS[18] instance segmentation framework with

ResNet[12] as our backbone. Results are reported on Pas-

cal VOC 2012 [8] and Cityscapes [4]. Accuracy is evaluated

by mean average precision at mask-level IoU (intersection-

over-union) thresholds at 0.5 and 0.7. Speed is counted for

all the processing of one image input on a single Nvidia

1080Ti GPU and we implement our approach on Mxnet [3].

4.1. Implementation details

We implement hierarchical distillation following a two-

stage training strategy proposed in [17]. The first stage is to

train a RPN network w/o mimicking the feature maps in the

RoIs. The second stage is to train the head networks w/o

distillation. Since achieving the highest accuracy is not our

target, our implementation is not optimized with any accu-

racy enhancement tricks. The RPN anchors span 3 scales

and 1 aspect ratio in all the experiments.

Training: We mostly follow the training setting of FCIS

[18]. We train on a single GPU so the batch size is 1. For

experiments on Pascal VOC, 240k iterations are performed

where the learning rates are 10−3 and 10−4 in the first 160k

and the last 80k iterations respectively. The iteration num-

ber is 144k for experiments on Cityscapes. In each batch,

128 proposals will back-propagate their gradients. All the

teacher models and student models are performed on the

same training set and test/val set.

Inference: At test time, forward propagation is performed

on 300 proposals for one image in the first iteration, and

then another 300 proposals are generated after the box re-

gression branch. Our approach won’t add any computation

at test time, so that the speed of the student model would be

the same with the baseline model.

4.2. Ablation study on Pascal VOC

Ablation experiments are performed on Pascal VOC.

Following the protocol in [18, 10, 6], model training is per-

formed on the train set, and evaluation is performed on the

validation set, including objects of 20 categories. The train-

ing images are resized to have a shorter side of 600 pixels.

The ablation study results of our work and other con-

ventional instance segmentation works are shown in Table

1. Upon these popular works in instance segmentation,

we choose FCIS [18] as our teacher and student instance

segmentation framework, because it’s competitive in both

speed and accuracy and has a good balance between them.

We can observe that the FCIS framework with ResNet-18

backbone as our student model could achieve a very high

speed at 16 fps with 10.2% accuracy drop compared with



ResNet-101 as our teacher model. Our proposed approach

could enhance the accuracy of the tiny student model to

58.1%, which is close to the result of PFN [19], while it

can retain a 16 fps speed compared to the 1 fps of PFN.

Model AP0.5(%) speed(fps)

SDS[10] 49.7 <1

CFM[5] 60.7 <1

PFN[19] 58.7 1

MNC[6] 63.5 1

Mask R-CNN[11] 69.0 3

Teacher(ResNet-101) 65.7 6

Student(ResNet-18) 55.5 16

Student w/ H-Dis 58.1 16

Table 1. Comparison results between our proposed method and

other popular instance segmentation works on Pascal VOC 2012

dataset. Teacher(ResNet-101) is the well-trained teacher network.

Student(ResNet-18) is our student network trained without distil-

lation as our baseline. Student w/ H-Dis is our proposed student

network trained with our hierarchical distillation loss.

GT Cls Box Mask Mid AP0.5 AP0.7

� 55.5 36.1

� � 55.8 36.1

� � � 56.2 36.3

� � � � 57.2 39.2

� � � � � 58.1 42.3

Table 2. Effectiveness about different settings of components in

our hierarchical distillation on Pascal VOC 2012 dataset. Mid de-

notes the representation distillation from middle layers.

The Table 2 shows different strategies for distillation to

highlight the effectiveness of different losses. The loss of

mask head shows the highest improvement (+1% for AP0.5)

to the result. The reason is that we utilize the multi-class

mask predictions instead of class-agnostic mask predictions

for distillation, which could include the full class-specific

information obtained by the teacher. The improvement

by distillation of classification and bounding box regres-

sion heads is weak because instance segmentation task is

complicated and has multiple impact factors, merely distill-

ing the logits can not transfer strong knowledge from the

teacher. And unlike distillation for discrete categories, the

bounding box regression outputs could provide very wrong

guidance toward the student model. However, by combin-

ing these losses together, the teacher knowledge becomes

influential enough to contribute to student network train-

ing and the accuracy enhancement becomes more promis-

ing (totally +2.6% for AP0.5).

Model student w/ H-Dis speed(fps)

ResNet-18 55.5 58.1(+2.6) 16

ResNet-18-4 39.0 42.5(+3.5) 19

Table 3. Comparison results of student models with different back-

bones on Pascal VOC 2012 dataset. The teacher model is ResNet-

101 when H-Dis is used.

Model AP [test] AP [val]

Teacher(ResNet-101) 26.5 31.5

Student(ResNet-18) 16.5 18.6

Student w/ H-Dis 18.1 20.5

Table 4. Comparison results on Cityscapes dataset.

Besides ResNet-18, we also perform the experiment on a

compressed ResNet-18 named ResNet-18-4, of which chan-

nel numbers of every layer are reduced to 1/4 compared

to the original one. The Table 3 shows the accuracy en-

hancement and speed result of ResNet-18-4, which obtains

3.5% improvement compared with the baseline. This re-

sult suggests that a lighter and weaker student model could

achieve more accuracy enhancement by learning from a

well-trained teacher model. We could also conclude that

more improvement can be gained by distilling from a bet-

ter teacher model, since the larger gap they have, the more

informative and effective knowledge the teacher transfers.

To show the effectiveness of our proposed H-Dis

method, sample instance segmentation results from

PSACAL VOC dataset are shown in Figure 2. The top 3

columns of images show that distilled model can segment

the instances that are missed in the baseline results. The

last 3 columns suggest that our method can reduce some

false positive results.

4.3. Results on Cityscapes

We further report results on the Cityscapes dataset, us-

ing 2975 finely annotated images for training, 500 valida-

tion images and 1525 test images for evaluation. The im-

ages have a high resolution of 1024×2048 and we rescaled

the image to have a shorter side of 512 pixels in both train-

ing and testing. The dataset involves 8 caregories for the

instance segmentation task, within dominating number of

samples for the person and car categories.

The evaluation results on Cityscapes dataset are shown

in Table 4. As expected, the performance of the student

model increases 1.6% and 1.9% AP respectively in test set

and val set, suggesting the effectiveness of our proposed

method. The improvement is not as obvious as the results

on Pascal VOC dataset mainly because the teacher model

is not strong enough to provide effective knowledge to the



Input Ground truth Baseline Ours

Figure 2. Sample results on PSACAL VOC 2012 from Baseline: Student(ResNet-18) and Ours: Student w/ H-Dis. The corresponding

instances between ground truth and results are printed with the same mask color. The mask that printed with other color denotes to be false

positive results.

student. Combined with the results in Table 3, we can verify

that when the teacher is not well-trained enough to teach a

student, the enhancement degree will be lower or even none.

5. Conclusion

In this paper, we investigate knowledge distillation for

training tiny instance segmentation networks through a

teacher-student learning framework with hierarchical dis-

tillation loss. Knowledge distillation is used to transfer the

knowledge through the head and middle layers, distilling

the structure information from the cumbersome teacher net-

work to the compact student network. In addition to clas-

sification and box regression distillation in our semantic

distillation, we introduced a channel-wise distillation for

the mask branch to achieve instance-level mask knowledge

transfer. The experiments on Pascal VOC and Cityscapes

datasets show that our approach outperforms the baseline

model in accuracy while achieving a promising speed for

real applications. Our experiment on backbones with differ-

ent size verifies that our approach is increasingly effective

when the gap between the teacher and student is larger.
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