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Abstract

The problem of different training and test set class priors

is addressed in the context of CNN classifiers. We compare

two approaches to the estimation of the unknown test priors:

an existing Maximum Likelihood Estimation (MLE) method

and a proposed Maximum a Posteriori (MAP) approach in-

troducing a Dirichlet hyper-prior on the class prior proba-

bilities. Experimental results show a significant improve-

ment in the fine-grained classification tasks using known

evaluation-time priors, increasing top-1 accuracy by 4.0%

on the FGVC iNaturalist 2018 validation set and by 3.9%

on the FGVCx Fungi 2018 validation set. Estimation of

the unknown test set priors noticeably increases the ac-

curacy on the PlantCLEF dataset, allowing a single CNN

model to achieve state-of-the-art results and to outperform

the competition-winning ensemble of 12 CNNs. The pro-

posed MAP estimation increases the prediction accuracy by

2.8% on PlantCLEF 2017 and by 1.8% on FGVCx Fungi,

where the MLE method decreases accuracy.

1. Introduction

A common assumption of many machine learning al-

gorithms is that the training set is independently sampled

from the same data distribution as the test data [1, 8, 9]. In

practice, this assumption is often violated - training samples

may be obtained from diverse sources where classes appear

with frequencies differing from the test-time. For instance,

for the task of fine-grained recognition of plant species from

images, training examples can be downloaded from an on-

line encyclopedia. However, the number of photographs of

a species in the encyclopedia may not correspond to the fre-

quency a species is queried in a plant identification service.

Problems related to the differences between training- and

test-set domains are studied in the field of domain adapta-

tion [3, 14]. In transductive learning [6], the source and

target tasks are the same, but the data representations or dis-

tributions are different. We are interested in the special case

of calibrating classifier predictions when statistical proper-

ties of observations from the same class stay the same (i.e.

Figure 1. Examples from the fine-grained datasets FGVCx Fungi

2018 (top) and PlantCLEF 2017 (bottom).

appearance does not change), and the only assumed differ-

ence is in the class priors p(ck).

Methods [4, 16] for adjusting classifier outputs to new

and unknown a-priori probabilities have been published

years ago, yet the problem of changed class priors is com-

monly not addressed in computer vision tasks where the sit-

uation arises. An exception is the work of Royer et Lampert

[15], who consider the case of sequential adaptation at pre-

diction time (i.e. sample after sample) and take a classical

Bayesian approach, using a symmetric Dirichlet distribution

to form a posterior (mean) predictive estimate.

This paper focuses mainly on the case when a whole

dataset is available at test time. Adopting the Maximum

Likelihood Estimation (MLE) approach [4, 16], we propose

an alternative solver for the MLE optimization, and we for-

mulate a more stable Maximum a Posteriori (MAP) estima-

tion approach with a Dirichlet hyperprior.

Section 2 provides a formulation of the problem: a prob-

abilistic interpretation of CNN classifier outputs in Section

2.1, compensation for the change in a-priori class probabil-

ities in Section 2.2 and estimation of the new a-priori prob-

abilities using the frameworks of Maximum Likelihood in

Section 2.3 and Maximum a Posteriori in Section 2.4.

Experiments in Section 3 show that state-of-the-art

CNNs on fine-grained image classification tasks noticeably

benefit from the adaptation to new class prior probabilities,

and that the Dirichlet hyper-prior introduced to the proposed

MAP approach improves the results over the ML estimate

on most datasets. While our experiments focus on Neural

Networks, the proposed framework is applicable to all clas-

sifiers with probabilistic (posterior) outputs.



2. Problem formulation and methodology

2.1. Probabilistic interpretation of CNN outputs

Let us assume that a classifier with parameters θ∗ is

trained to provide an estimate of posterior probabilities of

classes c1, . . . , cK ∈ C given an image observation xi:

fCNN(ck|xi, θ
∗) ≈ p(ck|xi), (1)

This is a common interpretation of the process of training

a deep network by minimizing the cross-entropy loss LCE

over samples xi with known class-membership labels cik:

θ∗ = argmin
θ

LCE = argmin
θ

−
N∑

i=1

K∑

k=1

cik log f(ck|xi, θ)

= argmax
θ

N∑

i=1

log f(cyi
|xi, θ) = argmax

θ

N∏

i=1

f(cyi
|xi, θ)

(2)

where cik is a one-hot encoding of class label yi:

cik =

{

1 if k = yi

0 otherwise
(3)

2.2. New a-priori class distribution

When the prior class probabilities pe(ck) in our vali-

dation/test1 set differ from the training set, the posterior

pe(ck|xi) changes too. The probability density function

p(xi|ck), describing the statistical properties of observa-

tions xi of class ck, remains unchanged:

p(xi|ck) =
p(ck|xi)p(xi)

p(ck)
= pe(xi|ck) =

pe(ck|xi)pe(xi)

pe(ck)
(4)

Since
K∑

k=1

pe(ck|xi) = 1 , we can get rid of the unknown

probabilities p(xi), pe(xi) of fixed sample xi:

pe(ck|xi) = p(ck|xi)
pe(ck)p(xi)

p(ck)pe(xi)
∝ p(ck|xi)

pe(ck)

p(ck)
(5)

The class priors p(ck) can be empirically quantified as

the number of images labeled as ck in the training set. The

test-time priors pe(ck) are, however, often unknown at test

time.

1We use index e to denote all evaluation-time distributions.

2.3. ML estimate of new a-priori probabilities

Saerens et al. [16] proposed to approach the estimation

of unknown test-time a-priori probabilities by iteratively

maximizing the likelihood of the test observations

L(x1, ...xN ) =

N∏

i=1

pe(xi) =

N∏

i=1

[
K∑

k=1

pe(xi, ck)

]

=

=

N∏

i=1

[
K∑

k=1

p(xi|ck)pe(ck)

] (6)

They derive a simple EM algorithm comprising of the fol-

lowing steps:

p(s)e (ck|xi) =

p(ck|xi)
p
(s)
e (ck)

p(ck)

K∑

j=1

p(cj |xi)
p
(s)
e (cj)

p(cj)

(7)

p(s+1)
e (ck) =

1

N

N∑

i=1

p(s)e (ck|xi) (8)

where Eq. 7 is the Expectation-step, Eq. 8 is the

Maximization-step, and p0e(ck) may be initialized, for ex-

ample, by the training set relative frequency ≈ p(ck).
Du Plessis and Sugiyama [4] proved that this procedure

is equivalent to fixed-point-iteration minimization of the KL

divergence between the test observation density pe(x) and

a linear combination of the class-wise predictions qe(x) =
K∑

k=1

Pkp(x|ck), where Pk are the estimates of pe(ck).

KL(qe‖pe) =

∫

pe(x) log
pe(x)

qe(x)
dx =

=

∫

pe(x) log pe(x)dx−

∫

pe(x) log

K∑

k=1

Pkp(x|ck)dx

(9)

Note that estimating the priors PMLE = (P1, .., PK)
by minimization of the KL divergence on the test set

(x1, ..,xN) can be rewritten as maximization of the log-

likelihood ℓ(x1, ..,xN ) = logL(x1, ..,xN ) of the observed

data given the prior probability estimates Pk ≈ pe(ck):

argmin
P

KL(qe‖pe) = argmax
P

1

N

N∑

i=1

log
K∑

k=1

Pkp(xi|ck)

︸ ︷︷ ︸

ℓ

= argmax
P

N∑

i=1

log
K∑

k=1

Pk

p(ck|xi)✟✟✟p(xi)

p(ck)
︸ ︷︷ ︸

aik

= PMLE

s.t.

K∑

k=1

Pk = 1; ∀k : Pk ≥ 0

(10)



As shown in [4], using the EM algorithm from Eq. 7, 8

may not result in the unique optimal value, as the mapping

of the fixed-point iteration is not a contraction mapping.

We therefore experiment also with direct optimization of

the objective from Eq. 10 using the projected gradient de-

scent algorithm [2]. At each step s, we update the variables

as follows:

P
(s+1)
k = π

(

P
(s)
k + λ

∂ℓ(x1, ..,xN )

∂Pk

)

, (11)

where λ is the learning rate, π represents projection onto

the unit simplex, and the partial derivatives are:

∂ℓ(x1, ..,xN )

∂Pk

=
N∑

i=1

aik
K∑

j=1

Pjaij

(12)

To compute the Euclidean projection π onto the unit sim-

plex, we use the efficient algorithm from [5, 18].

2.4. MAP estimate of new a-priori probabilities

Having a prior knowledge on the categorical distribu-

tion, p(P), the maximum a-posteriori (MAP) estimate of

the class prior probabilities is:

PMAP = argmax
P

p(P|(x1, ..,xN ))

= argmax
P

p(P)
N∏

i=1

p(xi|P)

= argmax
P

log p(P) +
N∑

i=1

log p(xi|P)

s.t.

K∑

k=1

Pk = 1; ∀k : Pk ≥ 0

(13)

Note that the second term is the log-likelihood from the

previous section, ℓ(x1, ..,xN ) =
N∑

i=1

log p(xi|P).

Let us model the prior knowledge about the categorical

distribution by the symmetric Dirichlet distribution:

p(P) =
1

B(α)

K∏

k=1

Pα−1
k (14)

parameterized by α > 0, where the normalization factor

for the symmetric case is B(α) =
Γ(α)K

Γ(αK)
.

Choosing an α ≥ 1 favours dense distributions, and

thus avoids setting the categorical priors too close to zero.

Zero priors may suppress even highly confident predic-

tions. Moreover, the Dirichlet distribution with α ≥ 1 is

a log-concave distribution, allowing optimization with the

projected gradient descent optimizer from Section 2.3 by

adding the following gradient components:

∂ log p(P)

∂Pk

=
∂(α− 1) log(Pk)

∂Pk

=
α− 1

Pk

(15)

Figure 2. Top and middle row: Comparison of class frequency and

CNN output marginalization over all images in the train- and test-

sets sampled from CIFAR-100. Bottom row: test set empirical

error ǫ
emp

k
and the expected error ǫk, sorted by ǫ

emp

k
.

3. Experiments

The following fine-grained classification datasets are

used for experiments in this Section:

CIFAR-100 [11] is a popular dataset for smaller-scale

classification experiments. It contains small resolution

(32x32) color images of 100 classes. The full dataset con-

tains 500 training samples and 100 test samples for each

class. We sample a number of it’s unbalanced subsets for

our experiments in this Section.

PlantCLEF 2017 [7] was a plant species recognition

challenge. The provided training images for 10,000 plant

species consisted from an EOL2 ”trusted” training set, a sig-

nificantly larger ”noisy” training set (obtained from Google

and Bing image search results, including mislabeled or ir-

relevant images), and the previous years (2015-2016) im-

ages depicting only a subset of the species. We use the

2downloaded from the Encyclopedia of Life, http://www.eol.org/
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Figure 3. Training and validation set distributions (top) and accuracy before and after correcting predictions with the known/uniform val.

set distribution (bottom) for FGVC iNaturalist 2018 (left), FGVCx Fungi 2018 (middle) and Webvision 2017 (right).

training data in two ways: Either training on all the sets to-

gether - further denoted as PlantCLEF-All, or excluding the

”noisy” set - further denoted as PlantCLEF-Trusted. The

test set from PlantCLEF 2017 is used for evaluation. All

data is publicly available3. PlantCLEF presents an example

of a real-world fine-grained classification task, where the

number of available images per class is highly unbalanced.

FGVC iNaturalist 2018 is a large scale species classi-

fication competition, organized with the FGVC5 workshop

at CVPR 2018. The provided dataset covers 8,142 species

of plants, animals and fungi. The training set is highly un-

balanced and contains almost 440K images. A balanced

validation set of 24K images is provided.

FGVCx Fungi 2018 is a another species classification

competition, focused only on fungi, also organized with

the FGVC5 workshop at CVPR 2018. The dataset covers

nearly 1,400 fungi species. The training set contains almost

86K images, and is highly unbalanced. The validation set is

balanced, with 4,182 images in total.

Webvision 1.0 [13] (also Webvision 2017) is a large

dataset designed to facilitate learning visual representation

from noisy web data. It contains more than 2.4 million of

images crawled from Flickr and Google Images and cov-

ers the same 1,000 classes as the ILSVRC 2012 dataset.

The number of images per category ranges from hundreds

to more than 10 thousand, depending on the number of

queries generated from the synset for each category and on

the availability of images on the Flickr and Google.

3.1. Validation of class posterior estimates

Let us check if the marginalization of predictions on

training and validation data estimates the class priors well:

p(ck) =
1

N

N∑

i=1

p(ck|xi) ≈
1

N

N∑

i=1

fCNN(ck|xi) ≈
Nk

N
,

(16)

3http://imageclef.org/lifeclef/2017/plant, imageclef.org/lifeclef/2016/plant

where Nk =
N∑

i=1

cik is the number of images of class ck. We

randomly picked subsets of CIFAR-100 that follow chosen

non-uniform distributions. A 32-layer Residual Network4

[10] was trained on the training-subsets. The comparison

of empirical class frequencies and the estimates obtained

by marginalization (i.e. averaging CNN predictions) is dis-

played in Figure 2 (top). The training set class distributions

are estimated almost perfectly. The estimates on the test set

are more noisy, but approximate the class frequencies well.

Figure 2 (bottom) compares the expected error ǫk and the

empirical error ǫ
emp

k for each class ck:

ǫk =
1

Nk

∑

i:yi=k

1− p(ck|xi), (17)

ǫ
emp

k =
1

Nk

∑

i:yi=k

[[k �= argmax
cj

fCNN(cj |xi)]], (18)

3.2. Adjusting predictions when test-time priors are
known

To experiment with known test-time prior probabilities

pe(ck), we use the training and validation sets from the

FGVC iNaturalist5 and the FGVCx Fungi6 Classification

Competitions 2018. In both challenges the validation sets

are balanced, i.e. the class prior distribution is uniform. A

state-of-the-art Convolutional Neural Network, Inception-

v4 [17], was fine-tuned for each task. The predictions were

corrected as defined by Eq.5.

A similar case is the Webvision 2017 dataset, where the

training set is highlt unbalanced and the validation set is bal-

anced. In the classification/baseline experiments of Li et al.

[13], the change of class prior probabilities is not taken into

4http://github.com/tensorflow/models/tree/master/research/resnet
5http://sites.google.com/view/fgvc5/competitions/inaturalist
6http://sites.google.com/view/fgvc5/competitions/fgvcx/fungi



Train. distribution

Acc.[%] 48.15 55.70 60.88 64.01 65.62 67.29 36.68 47.72 54.00 56.57 60.37 61.66

– after ML 49.71 56.94 61.64 64.58 65.62 67.11 38.67 49.05 55.18 57.05 60.59 61.74

– after MAP, α = 3 49.75 56.94 61.65 64.59 65.64 67.18 38.75 49.20 55.19 57.10 60.58 61.76

– after MAP, α = 10 50.07 56.97 61.68 64.55 65.70 67.23 39.12 49.34 55.22 57.10 60.69 61.76

Acc.[%] known pe(ck) 51.20 57.61 62.23 64.73 65.92 67.44 40.62 50.07 55.86 57.49 60.92 62.11
Table 1. Accuracy of CNN classifiers trained on unbalanced CIFAR-100 subsets (top) and evaluated on the full CIFAR-100 test set,

adjusted by estimated class priors using the MLE and MAP estimates. Predictions adjusted by an oracle knowing the class priors (bottom).

consideration. Similarly to [13] we train an AlexNet net-

work from scratch. (Note that our model did not converge

to the same accuracy, probably due to difference in imple-

mentation and hyper-parameters.)

Figure 3 displays the training and evaluation distribution

and the improvement in accuracy achieved by correcting the

predictions with the known priors. The improvement in top-

1 accuracy is 4.0% and 3.9% after 400K training steps (and

up to 7.4% and 4.9% during fine-tuning) for the FGVC

iNaturalist and FGVCx Fungi classification challenges re-

spectively and 1.3% for the Webvision 2017 dataset.

3.3. Adjusting predictions when the whole test set
with unknown priors is available at test-time

The PlantCLEF 2017 test set is an example of a test en-

vironment where no knowledge about the class distribution

was available. The training set is highly unbalanced, the test

set does not follow the training set statistics and it does not

contain examples from all classes.

We used an Inception-V4 model pre-trained on all avail-

able training data (PlantCLEF-All). Results in Table 2 show

that the top-1 accuracy increases by 3.4% when estimating

the test set priors using the EM algorithm [16]. To com-

pare with the results of the 2017 challenge, we combine the

predictions per specimen observation (the test set contained

several images per specimen, linked by ObservationID

meta-data) and compute the observation-identification ac-

curacy. After the test set prior-estimation our single CNN

outperforms the winning submission of PlantCLEF 2017

composed of 12 CNNs (ResNet-152, ResNeXt-101 and

GoogLeNet architectures).

Networks trained on the selected subsets of CIFAR-100

from Section 3.1 were evaluated on the full (balanced)

CIFAR-100 test set with different adjustments of predic-

tions: none, ML estimate, MAP estimate, and oracle-

provided test-time priors. The results are compared in Table

1. As expected, the ground truth priors always lead to the

best results. With only one exception, estimating the test-

time priors always increases accuracy. The MAP estimate

consistently achieves higher test-time accuracy, although,

as illustrated in Figure 4, the likelihood of its estimate is

lower than of the ML estimates. This demonstrates the im-

portance of adding prior assumptions on the estimated class

0.0

0.1

L
og

-l
ik
el
ih
o
o
d
ℓ

0.2

0.3

H
(P

,p
e
)

0 10 20 30 40 50

Estimator iteration

49

50

A
cc
u
ra
cy

[%
]

0.00

0.02

0.06

0.08

0.10

0 10 20 30 40 50

Estimator iteration

65.60

65.65

65.70

65.75

Figure 4. Iterative estimation of test-time priors on the full CIFAR-

100 test set from CNNs trained on unbalanced CIFAR-100 subsets.

prior probabilities. The EM algorithm for ML estimation,

however, converges noticeably faster.

Figure 5 summarizes the estimation of class priors on the

fine-grained datasets PlantCLEF, FGVCx Fungi and Webvi-

sion. MAP estimation has a positive effect on the FGVCx

Fungi dataset, where it increases accuracy by 1.8%, while

ML estimate leads to a decrease in accuracy. All estimation

methods decrease the accuracy on Webvision, MAP has the

lowest decrease. The poor performance on Webvision may

be related to the high number of outliers in the training set

- Li et al. [13] suggest that only 66% of the images can

be considered inliers. This may affect the reliability of the

CNN posterior estimate. The accuracy on PlantCLEF in-

creases by 2.8% after MAP estimation and by 3.4% after

ML estimation. Note that on PlantCLEF, many classes are

not present in the test set and therefore the optimization is

actually disadvantaged by the Dirichlet hyperprior prevent-

ing the class priors from converging to zero.

3.4. Adjusting posterior probabilities on-line with
new test samples

In practical tasks, test samples are often evaluated se-

quentially rather than all at once. We evaluated how the test-

time class prior estimation on the PlantCLEF 2017 dataset



Model Accuracy Acc. after EM

Acc. per observation,

(our method after EM)

Acc. per observation,

pe(ck) known

Inception V4 83.3% 86.7% 90.8% 93.7%

Ensemble of 12 CNNs [12]

(PlantCLEF2017 winner) – – 88.5% –
Table 2. Improvement in accuracy after applying the iterative test set prior estimation in the PlantCLEF 2017 plant identification challenge.
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Figure 5. Iterative estimation of test-time priors on fine-grained datasets: PlantCLEF (Inception-v4), FGVCx Fungi (Inception-v4), and

Webvision 1.0 (AlexNet). Top row: The log-likelihood surrogate �. Middle row: Hellinger distance between the prior estimate and ground

truth class frequencies. Bottom row: Accuracy.

affects the results on-line, i.e. when the priors are estimated

from the already seen examples, see Figure 6. After about

1,000 test samples, the predictions adjusted by class priors

iteratively estimated by the EM algorithm gain a noticeable

margin against plain CNN predictions.

4. Conclusions

The paper highlighted the importance of not ignoring the

commonly found difference between the class priors in the

training and test sets in computer vision. We compared two

approaches: the existing MLE [?] and the proposed MAP

approach, applying the Dirichlet prior on the categorical

distributions.

Experimental results show a significant improvement on

the FGVC iNaturalist 2018 and FGVCx Fungi 2018 clas-

sification tasks using the known evaluation-time priors, in-

creasing the top-1 accuracy by 4.0% and 3.9% respectively.

Iterative EM estimation of test-time priors on the Plant-

CLEF 2017 dataset increases the image classification ac-

curacy by 3.4%, allowing a single CNN model to achieve

state-of-the-art results and outperform the competition-

winning ensemble of 12 CNNs. Adding the Dirichlet prior,

preventing the class prior estimates from getting too close

to zero, brings a slightly lower 2.8% increase in accuracy

on the PlantCLEF dataset (where many classes are actually

missing in the test set), but improves the results and stability

in most cases, including the FGVCx Fungi dataset, where it

increased accuracy by 1.8% while the ML estimate would

lead to a decrease. The estimatation of new priors didn’t

help only on Webvision dataset - this may be related to the

high amount (≈ 34%) of outliers in the dataset.

Figure 6. On-line test-prior estimation for PlantCLEF 2017.
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