
Multi Target Tracking from Drones by Learning from Generalized Graph

Differences

Håkan Ardö

Axis Communications

hakanad@axis.com

Mikael Nilsson

Center for Mathematical Sciences

Lund University

micken@maths.lth.se

Abstract

Formulating the multi object tracking problem as a net-

work flow optimization problem is a popular choice. The

weights of such network flow problem can be learnt effi-

ciently from training data using a recently introduced con-

cept called Generalized Graph Differences (GGD). This al-

lows a general tracker implementation to be specialized to

drone videos by training it on the VisDrone dataset. Two

modifications to the original GGD is introduced in this pa-

per and a result with an average precision of 23.09 on the

test set of VisDrone 2019 was achieved.

1. Introduction

Single frame object detectors have recently become very

powerful [18, 14, 7, 13, 6, 23]. These will for each frame in

a video give a list of objects in the scene and for each object

its class (person, car, ...) and some representation of the

object location (bounding box, keypoints, pixel mask, ...).

These detections can then be connected from frame to frame

into object tracks using a multi target tracking algorithm.

The task of that algorithm is also to discard false detections

and fill in missing detections.

Network flow-based methods is a classical approach to

resort to in multi target tracking [11, 17, 4, 25, 9, 2]. They

can be computational efficient implemented [1] and it is of-

ten possible to guarantee a globally optimal solution even

in an online setting [12].

In this paper a network flow tracker [2] using optical

flow to observe the motion (instead of estimating it from

observed positions) is extended and evaluated on the Vis-

Drone dataset. Long range connections are utilizes in the

flow graph. That allows the full tracking problem to be

solved with a single optimization without the need to first

produce tracklets that are later combined into tracks, which

is often otherwise needed [20, 25].

The tracker embeds all feasible solutions (Eq 7) to the

network flow problem into a one dimensional feature space

consisting of a score. The aim is to make this score of the

correct solution higher than the score of all other solutions.

Then a linear program is used during inference to efficiently

search for the highest scoring solution.

2. Tracking Algorithm

Here, an overview of the tracking algorithm [2] will be

presented as a constrained mathematical optimisation prob-

lem. It can then be solved using either network flow algo-

rithms or more general linear programming. To keep the

formulation simple, only a single object class is considered.

But generalizing to multiple classes is straight forward.

2.1. Basic graph formulation

The basic idea behind the algorithm is to build a graph

with object detections as vertices and use sparse optical flow

feature point tracks, KLT-tracks [24], to connect these ver-

tices with edges. Then a flow capacity of one is assigned to

each edge and a network flow problem is solved. The solu-

tion will have a positive flow of one between detections that

belong to the same object, see Figure 1.

The input to the algorithm is a set of detections,

V =
{

v0, v1, · · · v|V |

}

, (1)

produced by an object detector. Each detection, vk =
(tk, Lk, ck) consists of a frame number, tk, a location, Lk

and a confidence ck. The location represents which pixels

in the image the object covers. It is defined as a bounding-

box and pixels, (x, y), located on the object are be denoted

(x, y) ∈ Lk.

In addition to the detections there is also KLT-tracks con-

sisting of a set of point tracks

P =
{

P0, P1, · · · , P|P |

}

, (2)

where Pi =
(

pi,0, pi,1, · · · pi,|Pi|

)

and pi,j =
(ti,j , xi,j , yi,j , ci,j). Here ti,j is the global frame number



t = 1 t = 2 t = 3 t = end

A B
C D E F G IH

A

B

C

D

E

F

G

H

I

B F

H

NN embedding

Learn edge score.
fedge

NN embedding

Learn vertex score.
fdetect

Figure 1. Concept of proposed method to address tracking with a graph and learning mapping for edges and vertices.

and (xi,j , yi,j) is the pixel location of the KLT-track in that

frame and ci,j is a confidence. The confidence used here

is the negated L1 distance between a small patch centered

around the point in frame ti,j and ti,j-1.

Each KLT-track will connect the detections it intersects

into a sequences of detections. Each such sequence form

one object track hypothesis. All of those hypothesis will

be combined into edges in a graph representing different

possible object tracks.

To formalize, a set Ai is introduced, that contains all de-

tections intersecting the feature point track Pi,

Ai = {vk |ti,j = tk, (xi,j , yi,j) ∈ Lk for some j } . (3)

Then a graph is formed where the detections, vk, are ver-

tices and edges between the vertices are produced from

neighbouring detections within each of the Ai tracks. Note

that the distance between neighbouring detections in Ai

might be several frames as the feature points can be tracked

even if there are no detections. A neighbouring radius of

rneighbours is used. That is, a detection is considered to be

neighbour with the rneighbours preceding and rneighbours fol-

lowing detections. In order to avoid connecting distant

detection a threshold, tmax, is introduced to discard such

edges. That is, two detections, vk1
and vk2

are not con-

sidered neighbours if |tk2
− tk1

| > tmax. Also note that in

the case of overlapping detections, Ai might contain two

(or more) detections for the same frame. These detections

are not considered neighbours to each other. Instead their

neighbouring detections will have multiple incoming or out-

going edges. Formally, let (vk1
, vk2

) ∈ Ni denote that vk1

and vk2
are neighbours in Ai according to the neighbouring

structure described above. Then there is a set of directed

edges,

E = {(vk1
, vk2

) |tk2
> tk1

, (vk1
, vk2

) ∈ Ni for some i} .
(4)

Each edge is weighted with a weight func-

tion, fedge, that depend on all the KLT-tracks

between the detections vk1
and vk2

, Pk1,k2
=

{Pi | pi,j1 ∈ Lk1
, pi,j2 ∈ Lk2

for some j1, j2}. The

vertexes are also weighted with a weight function, fdetect,

that depend on the detection vk. These are learned from

training data, see Section 3.

2.2. Long range connections

To allow objects to occlude each other, long range con-

nections are added to the graph. The problem is that during

an occlusion a lot of feature point tracks will jump from

one object to the other, which means that the feature point

tracks are not reliably in such situations. In order to address

this issue, the objects are assumed to approximately follow

the linear motion model [15]. Therefore, a velocity, w
pre
i,k, is

also estimated for each KLT-track, Pi, intersecting the de-

tection vk. It is produced by fitting a line to the nvelest most

recent positions preceding tk of that KLT-track. Using this

velocity the location can be projected into the nproject clos-

est future frames, and connections made to detections there.

The weights of such connections will depend both on how

well the future detection matches the predicted location and



on how well the estimated velocities match. This kind of

edges can skip over problematic situations entirely and in-

stead match velocity and position of incoming and outgoing

tracks. The velocity of the outgoing detections, w
post
i,k , is cal-

culated from the nvelest KLT-track positions directly follow-

ing the detection time tk. This way the incoming velocity

is estimated prior to the occlusion and the outgoing veloc-

ity is estimated after the occlusion. That means that neither

of them should be affect too much by confusing KLT-tracks

jumping target during the occlusion.

A set of long connections, Ck1,k2
, connecting vk1

and

vk2
will be formed, with one connection for each KLT-track

intersecting vk1
that started more than nvelest before tk1

.

Each of these connection will be based on different velocity

estimates, w
pre
i,k1

. That is

Ck1,k2
=

{

w
pre
i,k1

|pi,j ∈ Lk1
, for some j ≥ nvelest

}

.

(5)

Now the edge weight function, fedge depend

on both the KLT-tracks and the long connections,

fedge (Pk1,k2
, Ck1,k2

, vk1
, vk2

).

2.3. Network flow

Using the constructed graph, the multi target tracking

problem can be formulated as a network flow problem. In-

dicator variables, v̂k ∈ {0, 1}, are introduced that indi-

cates whether each detection is a true positive or a false

positive. Also, indicator variables, êk1,k2
∈ {0, 1}, for

the edges are introduced. The edges indicate that the two

detections they connect are adjacent connections of the

same track. One of the features used to form the edge

weights will be the temporal difference of the detections,

which allows for a penalty for missing detections to be

learnt. Finally, f̂k, l̂k ∈ {0, 1} are introduced to indicate

that vk is the first, f̂k, and/or the last, l̂k, detection of

a track. By denoting the combination of these indicators

x = (v1, f1, l1, e1,2, v2, · · · ), the score, fscore (x) =

∑

k

f̂ksentry +
∑

k

v̂kfdetect (vk)+

+
∑

k1,k2

êk1,k2
fedge (Pk1,k2

, Ck1,k2
, vk1

, vk2
) (6)

can be optimized to find the best solution to the tracking

problem. Here, sentry is a negative number efficiently be-

coming a threshold on the total track score for a track not to

be considered noise.

Constraints have to be introduced to ensure that it is a

proper solution in the sense that each detection only belongs

to a single track and that unconnected detections are consid-

ered false positives. These are the flow constraints with flow

variables both on edges and on vertices [9]. It ensures that

x1
h1,1 h1,2

. . .

h1,nlayers y1

x2
h2,1 h2,2

. . .

h2,nlayers y2

...
...

...
. . . ...

...
xninput hnhidden,1 hnhidden,2

. . .

hnhidden,nlayers ynoutput

Figure 2. Generic fully connect neural network used in framework.

the outgoing flow of each vertex is the same as the incom-

ing flow and equal to the flow variable of the vertex. The

constraints are

v̂k = f̂k +
∑

k1

êk1,k = l̂k +
∑

k2

êk,k2
. (7)

The solutions, x, that fulfills this equation are considered

feasible solutions and the set containing all of them is de-

noted S, which allows the tracking problem to be expressed

as

argmax
x∈S

fscore (x) . (8)

2.4. Optimization

The multi target tracking problem can be formulated as

the maximisation in Equation 8. It can be solved using a

linear program. This is guaranteed to result in a integer so-

lution as it exhibits the total unimodularity property [4]. A

more efficient way is to convert the linear program into a

classical network cost flow problem [25] by replacing each

vertex with two vertexes connected with a single edge with

the original vertex weight as the edge weight and placing

all incoming edges on one of these vertexes and all outgo-

ing edges on the other. This network flow problem can then

be solved using Bellmann-Ford [5] or, more efficiently, us-

ing Successive Shortest Paths [1]. Yet another alternative is

to use K-shortest paths [4]. There are also solutions that can

be used for online tracking [12].

3. Parameter learning

The tracking model in the previous section contains

some functions that needs to be learned from annotated

training sequences. These sequences are training examples

consisting of short videos fully annotated with multi object

tracking ground truth. This training can be performed effi-

ciently using Generalized Graph Differences[2].

Fully connected neural networks will be used as basic

blocks to construct these functions. These blocks are pa-

rameterised with two parameters only, the number of layers

and the number of features. All layers have the same num-

ber of features, see Figure 2.



3.1. Model architecture

The parameters that needs to be learned are the scalar

sentry and the embedded parameters in the functions

fdetect (vk) and fedge (Pk1,k2
, Ck1,k2

, vk1
, vk2

). These func-

tions will be implemented as neural networks and it is the

parameters of those networks that needs to learned together

with sentry.

The detection score, fdetect (vk), is a scalar valued func-

tion that depend on features extracted from the detection,

vk. The features used are

• The detection confidence, ck.

• The maximum IoU between the detection vk and any

other detection in the same frame.

• The maximum IoA (intersection over area of vk) be-

tween the detection vk and any other detection in the

same frame.

The detection score function, fdetect, will be realized as a

small neural network with three inputs and one output, the

detection score. The network has ndetlayers fully connected

hidden layers with ndetfeat features each.

The edge score, fedge (Pk1,k2
, Ck1,k2

, vk1
, vk2

) is more

complicated and an overview of it is shown in Figure 3. It

depend on all KLT-track connections, Pk1,k2
, and all long

connections, Ck1,k2
, connecting the detections vk1

and vk2
,

see example in Figure 4. The number of such connections

will vary from edge to edge, as will the number of positions

in the KLT-tracks. To handle that each KLT-track, Pi ∈
Pk1,k2

is converted into a fixed length feature vector, xKLT
i ,

consisting of the features

• Temporal distance, tk2
− tk1

.

• Minimum confidence, minj ci,j .

• The intersection over union between vk2
and vk1

trans-

lated according to the motion of the KLT-track Pi.

• A normalized trajectory shape consisting of Pi trans-

lated to place pi,j1 (for ti,j1 = tk1
) at origin and

then linearly interpolated into nlinpkt points placed uni-

formly spaced between ti,j1 and ti,j2 .

These feature vectors are processed, one by one, by a

neural network, fKLT

(

xKLT
i

)

, with nkltlayers fully connected

layers with nkltfeat features each. That produces one feature

vector for each KLT-track. They are then combined using

average-pooling to form a single fixed length feature vector,

xKLT
k1,k2

=
1

|Pk1,k2
|

∑

i|Pi∈Pk1,k2

fKLT

(

xKLT
i

)

. (9)

This allows the varying number of KLT-tracks to be pro-

cesses by a network construction with a fixed number of pa-

rameters and produce a feature vector of fixed length. Train-

ing this construction is similar to training a normal neural

network while varying the batch size.

In a similar fashion, the long connections, w
pre
i,k1

∈

Ck1,k2
are converted to fixed length feature vectors, x

long
i ,

with the features

• Temporal distance, tk2
− tk1

.

• The intersection over union between vk2
and vk1

trans-

lated according to the predicted velocity, w
pre
i,k.

• The predicted velocity, w
pre
i,k1

.

• The median post velocity of vk2
, mediani

(

w
post
i,k2

)

.

These feature vectors are processed, one by one, by a neural

network, flong

(

x
long
i

)

, with nlonglayers fully connected layers

with nlongfeat features each, and averaged

x
long
k1,k2

=
1

|Ck1,k2
|

∑

i

∣

∣

∣
w

pre

i,k1
∈Ck1,k2

flong

(

x
long
i

)

. (10)

The feature vectors, xklt
k1,k2

and x
long
k1,k2

are then

concatenated and extended with the number of KLT-

tracks, |Pk1,k2
| and the number of long connec-

tions, |Ck1,k2
| and passed to a final neural network,

fcombine

(

xklt
k1,k2

, x
long
k1,k2

, |Pk1,k2
| , |Ck1,k2

|
)

. This network

has ncombinelayers fully connected hidden layers with

ncombinefeat features each, and a single output, the edge fea-

ture fedge (Pk1,k2
, Ck1,k2

, vk1
, vk2

).

3.2. Loss function

The multi target tracking optimization problem, Equa-

tion 8, can, in theory, be solved by enumerating all fea-

sible solutions, x ∈ S (Equation 7), and picking the one

that maximizes fscore (x) (Equation 6). The score function,

fscore (x), is a linear combination of the outputs of several

invocations of the neural networks defined above. That

means the entire function, fscore (x), is differentiable and

can be learned using for example SGD.

The function can be seen as an embedding that embeds

feasible solutions, x, into a one-dimensional feature space

with the one property that better solution should have higher

score.

The embedding can be learnt from training data consist-

ing of ordered pairs of feasible solutions, (x∗, x) where x∗

is the correct globally optimal solution and x is any other

feasible solution. Details of how x is created in practice will



Figure 3. The architecture of fedge (Pk1,k2
, Ck1,k2

, vk1
, vk2

).

Figure 4. A pair of detections, (vk1
, vk2

) (black boxes) connected

with
∣

∣

∣
Pvk1

,vk2

∣

∣

∣
= 2 KLT-tracks (blue dots) and

∣

∣

∣
Cvk1

,vk2

∣

∣

∣
= 2

long connections (red lines) estimated from nvelest = 6 positions

(green circles).

be discussed later, but in general consider it to be a modi-

fication of x∗. The learning is achieved using the ranking

loss

− log σ (fscore (x
∗)− fscore (x)) , (11)

where σ is the sigmoid function. It is used here to sup-

press large differences as the only property from the pair

of interest is that fscore (x
∗) should be larger than fscore (x).

Note that it is the ranking of these that are important, and

how much larger one is over the other is not that interesting,

since the following linear program will find the best one.

Another way to motivate this loss is to derive it from a bi-

nary classifier trained using a sigmoid activation and cross

entropy loss to produce whether x∗ or x is the correct so-

lution. Such a detector would be trained using both posi-

tive and negative samples. The loss for a positive sample,

(x∗, x), is in that case the same as in Equation 11. For a

negative sample, (x, x∗), the loss is

− log (1− σ (fscore (x)− fscore (x
∗))) , (12)

which is also equal to Equation 11 since 1 − σ (−x) =
σ (x).

3.3. Generalized Graph Differences (GGD)

The feasible solutions, x∗ and x, can be represented

using graphs constructed from the tracking graph by only

keeping the edges and vertices with positive flow, i.e. the

positive elements of x∗ and x. All terms common to both x∗

and x will cancel each other out in the difference in Equa-

tion 11. This means that only the terms that differ needs to

be considered. That is a concept, introduced in [2], called a

Generalized Graph Difference, or GGD. It consists of

• A set of edges consisting of the edges in x∗ but not in

x with the same weights and the edges in x but not in

x∗ with negated weights.

• A set of vertices consisting of the vertices in x∗ but not

in x with the same weights and the vertices in x but not

in x∗ with negated weights.



Note that a generalized graph difference is typically not a

graph, or even a generalized graph, as it can contain edges

not connected to any vertices. Thus, the focus here is on

the graph-difference in a general sense when referring to

general graph difference.

This is interesting because hard examples consists of

cases where x∗ and x are very similar and thus have a lot

of terms in common, resulting in small generalized graph

differences. Such differences can be constructed by look-

ing at annotated sequences where the optimal solution is

known and introducing small errors by changing one or a

few edges to form another feasible solution. Several such

modifications are introduced in [2] representing common

errors made by trackers. These are shown in Table 3, 4, 5

and 6.

Applying these modifications to every position where

they apply in a ground truth graph results in a lot of GGDs

that can be generated and used for training.

Each generated training example is constructed by tak-

ing a single ground truth graph and applying a single modi-

fication to a single position. Hence each batch will contain

one mistake per example. All possible such examples are

generated and will form one epoch.

In addition to the GGDs introduced by the modifications

suggested in [2], two new ways of generating GGDs were

also used:

LongConnectionOrder Each detection will have several

edges to future detections belonging to the same track at dif-

ferent future frames. These are all correct connections in the

sense that they connect detections of the same object. How-

ever the connection skipping one or several frames should

be interpreted as a claim that the object were not detected

in the skipped frames. This means that solutions skipping

frames with true positive detections should be assigned a

lower score than solutions including those detections even

though both solutions are in some sense correct. Since the

loss function used is a ranking loss, this is possible without

having to consider any of the solution a negative example.

To encourage this, the outgoing connections of each detec-

tion going to another detection of the same object is order

by the number of frames they skip. Then a GGD is formed

for each adjacent pair of such connections with the shorter

of the two augmented with ground truth connections until it

reaches the same detection as the longer connection.

LongFalsePositiveTrack Long false positive tracks can

be formed by starting at any false positive detection that

have no incoming connections from other false positive de-

tections and form a track by recursively adding the next con-

nected false positive detection that skips the least amount of

frames. Such tracks should score less than the empty solu-

tions which gives another form of GGD.

MOTA FN FP Frag. IDF1

GT 43.3 41068 112 1981 60.6

GT Interpolated 48.4 32802 4686 422 67.9

Proposed 23.4 42917 12630 1314 48.2

Interpolated 22.6 41802 14366 893 48.6

Table 1. Results on VisDrone2019 validation set. GT lines uses the

ground truth to assign ID’s to detections and gives an upper bound

to the scores for trackers that simply connects the provided detec-

tions. Proposed and Interpolated are the proposed approach where

the holes in the tracks have been filled using linear interpolation in

the later.

This will produce several additional general graph dif-

ferences which are added to the training data used to train

the tracker.

4. Experiments

The presented tracker were trained on the VisDrone2019

dataset [26] and evaluated on the validation set and test

set. The provided public FasterRCNN [19] detections were

used. Training details and hyperparameters were identical

to the original tracking paper [2]. Except for the nminlen,

which were set to 20.

The results for the validation set are shown in Table 1

and compared to an optimal solution that uses the ground

truth to assign track ID’s to detections. This gives an up-

per bound to the scores for a tracker that simply connects

the provided detections. Note that this optimal tracker do

make 112 false positive detections (top row in Table 1).

This is due to annotation noise causing the class label of

one of the ground truth tracks to varies between car and

van from frame to frame. In Table 2 the Average Precision

(AP) overall and for each category can be found for the test

set of the submitted Generalized Graph Difference Tracker

(GGDTRACK) at VisDrone 2019 together with baselines

provided by the VisDrone Team[22]. Some scores can be

improved by filling in the holes in the produced tracks using

linear interpolation, but this will also increase the false pos-

itive detections which will for example worsen the MOTA

score.

The tracker performs fairly well. Especially in the IDF1

score. The MOTA score is however not as good. The main

reason for that is a high count of false negative detections.

But 95.7% (or 78.4% in the interpolated case) of those fail-

ures are also present in the optimal solution, which means

the main problem here is the detector and not the presented

tracking framework.

There is also a fair amount of false positive detections

(17%, or 19% if interpolated). Some of these can be ex-

planted by the fact that the detector does not always agree

with the annotators on exactly which frame each object en-



AP AP@0.25 AP@0.50 AP@0.75 AP car AP bus AP truck AP ped AP van

Proposed 23.09 31.01 22.7 15.55 35.45 28.57 11.9 17.2 22.34

Ctrack [27] 16.12 22.40 16.26 9.70 27.74 28.45 8.15 7.95 8.31

CMOT [3] 14.22 22.11 14.58 5.98 27.72 17.95 7.79 9.95 7.71

GOG [17] 6.16 11.03 5.30 2.14 17.05 1.80 5.67 3.70 2.55

TBD [10] 5.92 10.77 5.00 1.99 12.75 6.55 5.90 2.62 1.79

CEM [16] 5.70 9.22 4.89 2.99 6.51 10.58 8.33 0.70 2.38

H2T [21] 4.93 8.93 4.73 1.12 12.90 5.99 2.27 2.18 1.29

IHTLS [8] 4.72 8.60 4.34 1.22 12.07 2.38 5.82 1.94 1.40

Table 2. Results on VisDrone2019 test set for the Generalized Graph Differences tracker compared with baselines provided by the VisDrone

Team[22].

ters or leaves the scene. But even if they were somehow

ignored, it is likely that a tendency for connecting false pos-

itive detections into tracks rather than discarding them is the

main weakness of the presented algorithm.

5. Conclusions

We have presented a method that can learn the weights

of a network flow tracker from Generalized Graph Differ-

ences. That is an efficient representation of differences be-

tween graphs. Two modifications from the original work

[2] has been introduced, see details in section 3.3. The

algorithm were evaluated in the VisDrone2019 competi-

tion, where it outperforms the baselines and are ranked 6th

among all the teams. Training data were produced from

small perturbation of ground truth tracks which allows the

model to be trained using the standard Adam optimizer.

There is no need to solve an additional optimisation prob-

lem for each example in each training batch as some prior

work do. The method resulted in an overall average preci-

sion of 23.09 in the test set of VisDrone 2019.

6. Acknowledgement

The computations were performed on resources pro-

vided by the Swedish National Infrastructure for Comput-

ing (SNIC) at LUNARC.

References

[1] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows:

Theory, Algorithms, and Applications. Prentice-Hall, Inc.,

Upper Saddle River, NJ, USA, 1993.

[2] H. Ardö and M. Nilsson. Multi target tracking by learning

from generalized graph differences. CoRR, abs/1908.06646,

2019.

[3] S.-H. Bae and K.-J. Yoon. Robust online multi-object track-

ing based on tracklet confidence and online discriminative

appearance learning. In Proceedings of the 2014 IEEE Con-

ference on Computer Vision and Pattern Recognition, CVPR

Name Ground Truth Possible Error

ID
Switch

Split

Merge

Split
and

Merge

Double
Split
and

Merge

Table 3. Switch, split and merge errors introduced to form training

data pairs from ground truth.

’14, pages 1218–1225, Washington, DC, USA, 2014. IEEE

Computer Society.

[4] J. Berclaz, F. Fleuret, E. Turetken, and P. Fua. Multiple

object tracking using k-shortest paths optimization. IEEE

Transactions on Pattern Analysis and Machine Intelligence,

33(9):1806–1819, Sept 2011.

[5] D. Bertsekas and R. Gallager. Data Networks (2Nd Ed.).

Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1992.

[6] Z. Cao, T. Simon, S. Wei, and Y. Sheikh. Realtime multi-

person 2d pose estimation using part affinity fields. In 2017

IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR), pages 1302–1310, July 2017.

[7] J. Dai, Y. Li, K. He, and J. Sun. R-fcn: Object detection

via region-based fully convolutional networks. In D. D. Lee,

M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett, edi-



Name Ground Truth Possible Error

Detection
Skip

Skip
First

Skip
Last

Extra
First

Extra
Last

Table 4. Skip and extra errors introduced to form training data

pairs from ground truth.

Name Ground Truth Possible Error

False
positive

Split
to

False
Positive

Split
from
False

Positive

Table 5. False positives introduced to form training data pairs from

ground truth.

Name Ground Truth Possible Error

Too Short
Track

. . .

nminlen
2

Proper
Track

. . .

nminlen

Table 6. Track lengths data pairs used for training.

tors, Advances in Neural Information Processing Systems 29,

pages 379–387. Curran Associates, Inc., 2016.

[8] C. Dicle, O. I. Camps, and M. Sznaier. The way they move:

Tracking multiple targets with similar appearance. In The

IEEE International Conference on Computer Vision (ICCV),

December 2013.

[9] D. Frossard and R. Urtasun. End-to-end learning of multi-

sensor 3d tracking by detection. In 2018 IEEE International

Conference on Robotics and Automation (ICRA), pages 635–

642, May 2018.

[10] A. Geiger, M. Lauer, C. Wojek, C. Stiller, and R. Urtasun. 3d

traffic scene understanding from movable platforms. IEEE

transactions on pattern analysis and machine intelligence,

36, 09 2013.

[11] C. Kim, F. Li, A. Ciptadi, and J. M. Rehg. Multiple hy-

pothesis tracking revisited. In 2015 IEEE International Con-

ference on Computer Vision (ICCV), pages 4696–4704, Dec

2015.

[12] P. Lenz, A. Geiger, and R. Urtasun. Followme: Efficient on-

line min-cost flow tracking with bounded memory and com-

putation. In ICCV 2015, pages 4364–4372, 12 2015.

[13] T. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and

S. Belongie. Feature pyramid networks for object detection.

In 2017 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pages 936–944, July 2017.

[14] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C. Fu,

and A. Berg. Ssd: Single shot multibox detector. In B. Leibe,

J. Matas, M. Welling, and N. Sebe, editors, Computer Vision

- 14th European Conference, ECCV 2016, Proceedings, Lec-

ture Notes in Computer Science (including subseries Lecture

Notes in Artificial Intelligence and Lecture Notes in Bioin-

formatics), pages 21–37, Germany, 1 2016. Springer Verlag.

[15] W. Luo, X. Zhao, and T. Kim. Multiple object tracking: A

review. CoRR, abs/1409.7618, 2014.

[16] A. Milan, S. Roth, and K. Schindler. Continuous energy min-

imization for multitarget tracking. IEEE Trans. Pattern Anal.

Mach. Intell., 36(1):58–72, Jan. 2014.

[17] H. Pirsiavash, D. Ramanan, and C. C. Fowlkes. Globally-

optimal greedy algorithms for tracking a variable number of

objects. In Proceedings of the 2011 IEEE Conference on

Computer Vision and Pattern Recognition, CVPR ’11, pages

1201–1208, Washington, DC, USA, 2011. IEEE Computer

Society.

[18] J. Redmon and A. Farhadi. Yolo9000: Better, faster, stronger.

In 2017 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pages 6517–6525, July 2017.

[19] S. Ren, K. He, R. Girshick, and J. Sun. Faster R-CNN: To-

wards real-time object detection with region proposal net-

works. arXiv preprint arXiv:1506.01497, 2015.

[20] E. Ristani, F. Solera, R. S. Zou, R. Cucchiara, and C. Tomasi.

Performance measures and a data set for multi-target, multi-

camera tracking. In Computer Vision - ECCV 2016 Work-

shops - Amsterdam, The Netherlands, October 8-10 and 15-

16, 2016, Proceedings, Part II, pages 17–35, 2016.

[21] L. Wen, W. Li, J. Yan, Z. Lei, D. Yi, and S. Z. Li. Multiple

target tracking based on undirected hierarchical relation hy-

pergraph. In Proceedings of the 2014 IEEE Conference on

Computer Vision and Pattern Recognition, CVPR ’14, pages

1282–1289, Washington, DC, USA, 2014. IEEE Computer

Society.

[22] L. Wen, P. Zhu, et al. Visdrone-mot2019: The vision meets

drone multiple object tracking challenge results. In ICCV

Workshops, 2019.

[23] B. Xiao, H. Wu, and Y. Wei. Simple baselines for human

pose estimation and tracking. In European Conference on

Computer Vision (ECCV), 2018.



[24] J. yves Bouguet. Pyramidal implementation of the lucas

kanade feature tracker. Intel Corporation, Microprocessor

Research Labs, 2000.

[25] L. Zhang, Y. Li, and R. Nevatia. Global data association for

multi-object tracking using network flows. In 2008 IEEE

Computer Society Conference on Computer Vision and Pat-

tern Recognition (CVPR 2008), 24-26 June 2008, Anchor-

age, Alaska, USA, 2008.

[26] P. Zhu, L. Wen, X. Bian, H. Ling, and Q. Hu. Vision meets

drones: A challenge. CoRR, abs/1804.07437, 2018.

[27] P. Zhu, L. Wen, et al. In The European Conference on Com-

puter Vision (ECCV) Workshops, September 2018.


