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Abstract

Crowd counting is to estimate the number of objects

(e.g., people or vehicles) in an image of unconstrained con-

gested scenes. Designing a general crowd counting algo-

rithm applicable to a wide range of crowd images is chal-

lenging, mainly due to the possibly large variation in ob-

ject scales and the presence of many isolated small clus-

ters. Previous approaches based on convolution operations

with multi-branch architecture are effective for only some

narrow bands of scales, and have not captured the long-

range contextual relationship due to isolated clustering. To

address that, we propose SACANet, a novel scale-adaptive

long-range context-aware network for crowd counting.

SACANet consists of three major modules: the pyra-

mid contextual module which extracts long-range contex-

tual information and enlarges the receptive field, a scale-

adaptive self-attention multi-branch module to attain high

scale sensitivity and detection accuracy of isolated clus-

ters, and a hierarchical fusion module to fuse multi-level

self-attention features. With group normalization, SACANet

achieves better optimality in the training process. We have

conducted extensive experiments using the VisDrone2019

People dataset, the VisDrone2019 Vehicle dataset, and some

other challenging benchmarks. As compared with the state-

of-the-art methods, SACANet is shown to be effective, espe-

cially for extremely crowded conditions with diverse scales

and scattered clusters, and achieves much lower MAE as

compared with baselines.

1. Introduction

Crowd counting is to estimate the number of objects

(such as people or vehicles) in unconstrained congested en-

vironments, where the image is often taken by a surveil-

lance camera or unmanned aerial vehicle (UAV). Crowd

counting has attracted widespread attention due to its ap-

plication in public safety, congestion monitoring and traffic

management [30], [11].

A promising approach for crowd counting is to use den-

sity map regression-based Convolutional Neural Networks

(CNNs), which estimate the number of objects per unit pixel

instead of detecting, recognizing and counting objects in

the whole image. Despite recent advances, precise crowd

counting remains challenging. This is mainly due to the

following two factors:

• Large variation in object scale: Due to the perspec-

tive and distance of the camera with respective to an

object, two objects of the same physical size would

appear as different size (or scale) in an image, the so-

called “scale variation.” In a crowded scene, objects

may have large scale variation. Some works have stud-

ied this scale variation issue and achieved encouraging

results using multi-branch architecture with different

filter sizes [36, 26]. However, they are often based on

fixed kernel size, which is only sensitive within a few

narrow bands of receptive fields in the full spectrum,

and hence cannot generally support diverse scenarios.

• Isolated small clusters of objects: An image often has

isolated object clusters, i.e., some targets are located

far from the crowded mass. These isolated clusters

may be many but small in size, e.g., one or two ob-

jects in many scattered clusters. Convolutional oper-

ations with local receptive fields often cannot capture

properly long-range contextual information, and hence

have difficulty in modeling such isolated small clus-

ters. This leads to unsatisfactory results, especially for

many such small isolated clusters.

Crowd scenes captured by drones or surveillance cam-

eras exhibit a wide range of scale variations and object clus-

tering. We illustrate in Table 1 three typical images with

vehicles from the VisDrone2019 dataset [38]. We show the

original images in the first row; their corresponding density

maps in the second; and the scale (object size) distribution

of the objects in pixels, in terms of the average of its length

and height, in the third row. To understand the small cluster-

ing effect, we take the distances of the N closest neighbors

from an object and calculate their averages, for some small



Table 1. Illustration of scale variation and small isolated clusters based on three typical images from the VisDrone2019 Vehicle dataset.

Image A Image B Image C

Original

image

Density

map

Scale

distribution

Distance

distribution

N (say, 1-5). A high average means that the object is in

a small isolated cluster of size no more than Nk from the

mass, and vice versa. In the fourth row of Table 1, we hence

show the distribution of the average distance of the nearest

N neighbors of an object, for N = 2.

We measure the degree of scale variation by the coef-

ficient of variation (CV), defined as the ratio between the

standard deviation and the mean of the object scale [1].

The larger the CV is, the more challenging the scale vari-

ation problem is. Furthermore, we measure the level of

small clustering by the Dunn Validity Index (DVI) using

the distance distribution [21] after applying K-means algo-

rithms [7] (K = 2 in our case) on it. The larger the DVI,

the more small-size scattered clusters there are.

We show in Table 1 the CV for scale variation and DVI

for distance distribution for the three images. The scale dis-

tribution of Image A is wide, while its distance plot is rather

continuous. Therefore, it is an image mainly characterized

by scale variation without severe isolated clustering. This is

validated with its relatively high CV on the scale (0.7592)

and low DVI value (0.0205), and is clearly shown on its

density map. On the other hand, the scale plot of Image

B shows a rather narrow distribution, while its distance plot

contains some outliers (separate bars). It is an image mainly

with small isolated clusters, as validated with a low CV of

scale (0.2054) and high DVI value (1.5871). Image C is in-

termediate between the two images: the size plot has a wide

range and the distance plot has outliers (separate bars). It

has both scale variation and isolated clustering, with its CV

of scale and DVI value between Images A and B. This is

clearly shown by its original image and density map.

To tackle diverse scale variation and capture long-range

contextual information in isolated small clusters, we pro-

pose SACANet, a scale-adaptive long-range context-aware



network for accurate crowd estimation and high-quality

density map generation. SACANet fully extracts the long-

range contextual features in an image via a pyramid encoder

by adaptively enlarging its receptive field. Using a novel

scale-adaptive self-attention module with multi-branch ar-

chitecture, it attains high scale sensitivity and much bet-

ter accuracy in detecting isolated small clusters (based on

the extracted long-range contextual information). Finally,

it employs an efficient hierarchical fusion module to com-

bine the multi-level scale and contextual features to gen-

erate a highly accurate density map. SACANet also uses

group normalization to achieve higher optimality and better

convergence by reducing small batch size influence.

We have conducted extensive experiments on both

drone-based and surveillance camera-based crowd datasets

for unconstrained crowd counting. We use the images from

the four datasets: VisDrone2019 People & Vehicle, Shang-

haiTech A & ShanghaiTech B. As compared with the state-

of-the-art approaches, SACANet achieves superior perfor-

mance on all of the four challenging benchmarks.

The rest of the paper is organized as follows. In Sec-

tion 2, we review the related work. Then we present the

details of SACANet in Section 3, in terms of its pyramid

contextual module, scale-adaptive self-attention module, hi-

erarchical fusion, group normalization, and objective func-

tion. We discuss the experimental setting and illustrate the

results in Section 4, and conclude in Section 5.

2. Related Work

In this section, we discuss the related work of crowd

counting methods in three main directions: traditional

crowd counting algorithms (Section 2.1), deep learning-

based approaches (Section 2.2), and crowd counting for

drone-based scenes (Section 2.3).

2.1. Traditional Approaches

Early approaches for crowd counting are often based on

detection models with hand-crafted features, i.e., they lever-

age pedestrian or body-part detectors to detect individual

objects and count the number in the whole image [25], [17].

However, the performance of these detection-based meth-

ods degrades seriously in highly crowded scenes. Some

researchers have attempted to use regression-based ap-

proaches with low-level features like HOG and SIFT to cal-

culate the global number [4]. Even though relying on low-

level features, these approaches achieve better results for

the global count estimation. To incorporate spatial informa-

tion, researchers have proposed the density map regression-

based approaches, that is, measuring the number of people

per unit pixel of an area in a crowd scene. As has been dis-

cussed in [14], the work is the first one to provide a density

map regression-based crowd counting approach with linear

mapping algorithms. And then, another work improves it

with random forest regression to learn non-linear mapping

and achieves much better performance [23].

2.2. Deep Learning-based Approaches

Recently, researchers have adopted deep learning-based

methods instead of relying on hand-crafted features to gen-

erate high-quality density maps and achieve accurate crowd

counting [3], [27]. These approaches can be applied to

count different kinds of objects (i.e., vehicles and cells) in-

stead of people [15], [9].

Researchers propose multi-column convolutional neu-

ral networks with different kernel sizes for each column

to address the scale variation problem [36]. Switching-

CNN attaches a patch-based switching block to the multi-

column structure, and better handles the particular range

of scale for each column [26]. HydraCNN utilizes a pyra-

mid of image patches with multiple scales for crowd esti-

mation [22]. However, the counting networks with inap-

propriate receptive field size will give an unbalanced focus

to multi-scale targets. In addition, these methods only rely

on static receptive field size, which cannot be extended to

tackle wide-scale variation in a crowd scene. Besides, cur-

rent approaches cannot fully leverage the long-range con-

textual information and have difficulty in modeling isolated

small clusters.

2.3. Drone-based Scenarios

Drone sensors and surveillance cameras both can capture

crowd scenes, but crowd analysis for drone-based scenar-

ios is more flexible for smart city applications [19]. How-

ever, previous works focus more on surveillance camera-

based crowd counting. To the best of our knowledge, drone-

based crowd counting has not yet been fully explored, and

it also lacks publicly large-scale diversified datasets. Be-

sides, compared with images taken by surveillance cam-

eras, the isolated small clusters problem is more severe for

drone-based crowd images [24]. In this paper, we modified

the VisDrone2019 challenging dataset [37] into two large-

scale diversified drone-based crowd counting datasets, and

these newly split datasets can promote the field. Besides, we

tackle the two main challenging scale variation and the iso-

lated small clusters problem for unconstrained crowd count-

ing within an end-to-end framework.

3. SACANet for Crowds with Scale Variation

and Isolated Clusters

In this section, we present the details of SACANet, a

novel scale-adaptive long-range context-aware network for

crowd counting. SACANet consists of three components:

the pyramid contextual module (Section 3.1), the scale-

adaptive self-attention module (Section 3.2), and the hier-

archical fusion module (Section 3.3). Besides, we describe



Figure 1. The architecture of SACANet for crowd counting. It contains three main components: the pyramid contextual module, the

scale-adaptive self-attention module, and the hierarchical fusion module.

how to utilize group normalization to facilitate convergence

and achieve better optimality in Section 3.4. The details of

the objective function is discussed in Section 3.5.

In Figure 1, we show the architecture of SACANet. The

upper part presents the three components of SACANet,

and we describe the scale-adaptive self-attention module in

more details in the bottom part (under the yellow arrow).

3.1. Pyramid Contextual Module

The pyramid contextual module aims to extract long-

range contextual information and enlarge the receptive field.

For fair comparison with previous works [15] [5] [20], our

approach incorporates truncated VGG-16 [28] with excel-

lent transferability as the backbone. We extract the first ten

layers of VGG-16 with only three pooling layers to balance

the large valid receptive field and density map resolution.

Besides, adopting multi-branch only for the higher layers

can benefit memory efficiency during training.

The pyramid contextual module is composed of a feature

extractor and contextual fusion. We downsample the input

image to 1/4 of the original resolution and then feed these

two kinds of inputs to the VGG-16 front-end with shared

weights. We shuffle the channels of the generated feature

maps before feeding them into the second scale-adaptive

self-attention module. This component can enlarge the re-

ceptive field and capture long-range contextual information.

The encoder part is also designed to facilitate the down-

stream scale-adaptive self-attention processing.

3.2. Scale-Adaptive Self-Attention Module

The scale-adaptive self-attention module is to accommo-

date wide scales and detect isolated clusters via the long-

range contextual information. This part consists of three

branches with the same filter size (3 × 3), but different di-

lated ratios [35] (1×1, 2×2, 3×3). We also add a separate

convolution layer with a filter size 1× 1 at the beginning of

each branch in order to reduce the numbers of channels to

1/4 of its input. This can help to reduce memory require-

ments without sacrificing performance [31]. Besides, the

scale-adaptive self-attention module is one of the key ele-

ments of each branch after the dilated convolutional layer.

The simplest way to use multi-branch features is to con-

catenate them [36]. However, the features with different

receptive fields would be quite large and may contain re-

dundant information. Inspired by [32], we utilize a scale-

adaptive self-attention module to capture long-range depen-

dencies, which computes a weighted sum of values and as-

signs weights to measure the importance of this branch.

Crowd analysis suffers from scale variations. A single

multi-branch structure only possesses the same weight for

each branch, and inappropriate filter size has a bad effect on

the estimation. Our scale-adaptive self-attention module is

able to decide for itself which to focus.

The scale-adaptive self-attention module first transfers

input x to query Qx, key Kx and value Vx:

Qx = f(x),Kx = g(x), Vx = h(x). (1)

The output weighted density map Y is computed by two

kinds of matrix multiplications:

Y = softmax
(

QxK
T
x

)

Vx. (2)

Therefore, our scale-adaptive self-attention module can

automatically choose the most suitable branches and en-

large the receptive field with limited extra parameters.



3.3. Hierarchical Fusion Module

The hierarchical fusion module integrates multi-level

self-attention features to achieve accurate crowd counting

estimation. It can take advantage of autofocusing branches

with different receptive fields and generate high-quality

density maps. We need long-range contextual information

from the deeper layers with a large receptive field and se-

mantic information. At the same time, we also require

short-range contextual information for each unit. Therefore,

our method can accurately model multi-level contextual in-

formation and recognize isolated small clusters.

Inspired by ResNet [8] for recognition and Re-

fineNet [16] for semantic segmentation, we gradually refine

all the details of the generated density maps from the previ-

ous layers. Besides, there is a fully convolutional network

backbone in the end to recover the spatial information. Fi-

nally, an output convolutional layer is used to predict the

density map value for each pixel. Note that ReLU opera-

tions are added after each convolutional layer [6], and the

entire network can be efficiently trained end-to-end.

3.4. Group Normalization for Better Convergence

When directly training the entire network, we find that

the model cannot converge well due to a gradient vanishing

problem. We tried batch normalization [10] but the result

is not ideal because the error increases when the batch size

becomes smaller. Our task cannot use a large batch size due

to large image resolution and limited computation memory.

Inspired by [34], we utilize group normalization instead of

batch normalization in our approach for better convergence.

GN separates the channels into different groups and cal-

culates the mean µ and standard deviation σ within each

group. This has no relation to batch size and enables our

network to converge. The formulation for the mean and

standard deviation are as follows: µi =
1
m

∑

k∈Si
xk, σi =

√

1
m

∑

k ∈ Si(xk − µi)2 + ǫ, where ǫ is a small con-

stant, and m is the size of the set. Si is the set of pix-

els where the mean and standard deviation are computed.

For group normalization, set Si can be defined as, Si =
k|kN = iN , ⌊ kC

C/G⌋ = ⌊ iC
C/G⌋, where G is the number of

groups, which is a hyper-parameter we need to decide. C/G
is the number of channels for each group, and ⌊·⌋ is the floor

operation. In our experiment, we set the channels per group

at 16 if the total number of channels is larger than 16, or we

let G be the same as the number of channels.

3.5. Objective Function

Most of the recent works use Euclidean loss to optimize

their models for crowd counting [36], we also use it to op-

timize the aforementioned network. The Euclidean loss is a

pixel-wise estimation error, which is defined as:

LE =
1

N
||F (X;α)− Y | |22, (3)

where α indicates the model parameters, N means the num-

ber of pixels, X denotes the input image and Y is its ground

truth and F (X;α) is the generated density map. We can

predict the crowd counting result by summarizing over the

estimated crowd density map.

4. Experiments and Illustrative Results

In this section, we describe the evaluation metrics and

comparison schemes in Section 4.1. The description of the

four datasets and ground truth generation method is pre-

sented in Section 4.2. Section 4.3 shows our training details.

Qualitative and quantitative analysis of both people and ve-

hicle datasets are detailed in Section 4.4. Besides, we con-

duct ablation study in Section 4.5 and compare SACANet

on unconstrained scenarios in Section 4.6.

4.1. Evaluation Metrics and Comparison Schemes

We use the coefficient of variation (CV) to measure the

degree scale variation [1]. For the level of isolated small

clusters, we leverage the Dunn Validity Index (DVI) to cal-

culate the distance distribution after applying K-means al-

gorithms on it [21]. The two evaluation metrics are defined

as follows: CV = σ/µ, where σ is the standard deviation,

and µ is the mean,

DVI =

min
0<m �=n<K

{ min
∀xi∈Ωm,∀xj∈Ωn

{||xi − xj ||}}

max
0<m �=n≤K

max
∀xi,xj∈Ωm

{||xi − xj ||}
. (4)

DVI calculates the shortest inter-cluster distance divided

by the maximum inner-cluster distance. In our experiments,

we apply the K-means algorithm [7] (K = 2 in our exper-

iment) to preprocess the average N = 2 nearest distance

data, and then calculate the DVI value. The larger the DVI

value, the larger the inter-cluster distance and the shorter

the inner-cluster distance, and the more isolated small-size

clusters there are.

For overall crowd counting results, two metrics are used

for evaluation [33], Mean Absolute Error (MAE) and Mean

Squared Error (MSE), which are defined as follows:

MAE =
1

N

N
∑

i=1

|Ci − Ĉi|,MSE =

√

√

√

√

1

N

N
∑

i=1

|Ci − Ĉi|2,

(5)where N is the total number of test images, Ci means the

ground truth count of the i-th image , and Ĉi represents the

estimated count.

We compare our approach with three schemes on the Vis-

Drone2019 datasets: VGG-16 [28], MCNN [36] and CSR-

Net [15]. VGG-16 is a strong backbone, and we directly

modify it into a crowd counting network. Multi-Column

Convolutional Neural Network (MCNN) is a well-known

crowd counting approach with multi-branch architecture.

We implement it in our framework with three branches,

which is the same as ours for a fair comparison. CSRNet



Table 2. Statistics of different datasets in our experiment.

Dataset Average Resolution Images Max Min Total

VisDrone2019 People [37] 969×1482 3347 289 10 108,464

VisDrone2019 Vehicle [37] 991×1511 5303 349 10 198,984

ShanghaiTech A [36] 589×868 482 313 33 241,677

ShanghaiTech B [36] 768×1024 716 578 9 88,488

is one of the state-of-the-art methods for congested scenes

understanding, which leverages dilated convolution to en-

large the receptive field. We implement it with the same

experiment settings as ours.

4.2. Datasets and Ground Truth Generation

We evaluate our method on four challenging crowd

counting datasets: VisDrone2019 People & Vehicle, and

ShanghaiTech A & B. The statistics of the four datasets are

presented in Table 2.

VisDrone2019 People [38]. We modify the original

VisDrone2019 object detection dataset [37] with bounding

boxes of targets to crowd counting annotations. The origi-

nal VisDrone2019 dataset contains 11 categories. Category

0 (pedestrian) and category 1 (people) are combined into

one dataset for people crowd counting, and the new annota-

tion location is the head point of the original bounding box.

We rearrange the data split and filter out the cases whose

number of annotated target objects is less than 10. Finally,

this dataset consists of 2392 training samples, 329 valida-

tion samples, and 626 test samples.

VisDrone2019 Vehicle [38]. Following the similar mod-

ification and rearranging step for the VisDrone2019 People

dataset, we combine category 4 (car), category 5 (van), cat-

egory 6 (truck) and category 9 (bus) into one dataset for

vehicle crowd counting. We get 3953 training samples, 364

validation samples, and 986 test samples. The new vehicle

annotation location is the center point of the original bound-

ing box. These two kinds of new annotation operations are

defined as follows:

People[cols, rows] = [bbleft +
bbwidth

2
, bbtop],

Vehicle[cols, rows] = [bbleft +
bbwidth

2
, bbtop +

bbheight
2

].

(6)
ShanghaiTech A [36]. The ShanghaiTech A dataset in-

cludes 482 crowd images with a total number of 241, 677

persons. The counts for each image vary from 33 to 3139.

This dataset is randomly crawled from the Internet and has

unfixed resolutions.

ShanghaiTech B [36]. The ShanghaiTech B dataset has

716 images with fixed resolutions, which were taken from

busy shopping streets by fixed cameras. The counts for each

image vary from 12 to 578.

We generate the ground truth by way of blurring each

head or center of vehicle annotation with a Gaussian kernel

(which is normalized to 1) and taking the spatial distribution

of all images into consideration from each dataset. For the

sparse crowd dataset VisDrone2019 People, VisDrone2019

Vehicle, and ShanghaiTech B, we use fixed kernel σ = 15

as the generating method. For ShanghaiTech A crowded

datasets, we adopt the geometry-adaptive kernels method to

generate the ground truth [36].

4.3. Training Details

In our experiment, we use the VGG-16 backbone with

pretrained weights from the ImageNet classification chal-

lenge dataset [13]. For the other layers, we initialize

with random weights from Gaussian distributions with zero

mean and a standard deviation of 1. We use the Adam op-

timizer [12] with an initial learning rate of 1e-4. For the

ShanghaiTech B dataset, we randomly flip some of the sam-

ples to augment the original training data. For datasets with

much higher resolutions, we resize the input image to no

more than 768× 1024 but maintain the same aspect ratio.

In the test step, we directly test the full images for the

ShanghaiTech B dataset with fixed resolutions. For the

other datasets with unfixed resolutions, we resize the im-

ages before feeding them into our network. The estimated

total count for each image is given by summing the whole

image. We implement SACANet based on PyTorch.

4.4. Experiments on the VisDrone2019 Datasets

We modify the original VisDrone2019 challenge dataset

into two crowd counting datasets (VisDrone2019 Vehicle &

People) and conduct extensive experiments on the two new

datasets. Details are presented in Table 2. We implement a

strong VGG-16 network and the state-of-the-art approaches

MCNN [36], and CSRNet [15] and compare with SACANet

on the same dataset. SACANet achieves much better per-

formance on both the VisDrone2019 People and the Vis-

Drone2019 Vehicle datasets, and the quantitative results are

presented in Table 3.

Figure 2 shows the qualitative results on both the Vis-

Drone2019 Vehicle and the VisDrone2019 People datasets.

The first three rows are the results for vehicle crowd count-

ing, and the last three rows are results for people crowd

counting. For each part, the first row shows the original im-

age of the VisDrone2019 dataset, the second row presents

the ground truth, and the third row is our generated den-

sity map. Besides, the total number of ground truth and our

estimated counting results are shown below each part.

Furthermore, we split the VisDrone2019 Vehicle & Peo-

ple datasets based on the different levels of scale variation

and object separation problem distribution. In Figure 3, we



Figure 2. Qualitative results of SACANet on the VisDrone2019 Vehicle & People dataset.

Table 3. Quantitative results on the VisDrone2019 Datasets.

Method Dataset People Dataset Vehicle

MAE MSE MAE MSE

VGG-16 [28] 22.0 44.8 21.4 29.3

MCNN [36] 16.4 39.1 14.9 21.6

CSRNet [15] 12.1 36.7 10.9 16.6

SACANet(ours) 10.5 35.1 8.6 12.9

Table 4. Ablation study on the VisDrone2019 dataset.

Method Dataset People Dataset Vehicle

MAE MSE MAE MSE

baseline 14.5 40.8 12.5 19.1

baseline+context 13.8 39.2 11.0 16.4

baseline+context+SASA 11.7 36.1 9.1 13.6

SACANet(ours) 10.5 35.1 8.6 12.9

plot perception vs. the evaluation metrics (i.e., Coefficient

of Variation for object size distribution and Dunn Valid-

ity Index for distance distribution). Figure 3 (a) and (b)

presents the scale distribution measured by CV. (c) and (d)

shows the distance distribution measured by DVI.

For the scale variation problem, we divided the test

dataset into five parts based on the value of CV. Thus, we

get a five-level scale variation problem setting with differ-

ent CV ranges: [0.0, 0.2), [0.2, 0.4), [0.4, 0.6), [0.6, 0.8),

[0.8, ∞). The higher the scale split set level, the more dif-

ficult the scale variation problem. Besides, for the isolated

small clusters problem, the test dataset is decomposed into

four subsets based on the DVI value, which indicates four

levels of the isolated clusters problem: [0.0, 1.0), [1.0, 2.0),

[2.0, 3.0), [3.0, ∞). The higher the distance split sets the

level, the more small-size isolated clusters there are.

We compared SACANet with MCNN [36] on the split

subsets. In Figure 4 (a) and (c), we plot the value of MAE

and MSE vs. scale (CV) ranges. For (b) and (d), we plot the

value MAE and MSE vs. distance (DVI) ranges. The results

of SACANet are always better than MCNN on most of the

subsets. Our method achieves much lower MAE on the Vis-

Drone2019 Vehicle than on the people dataset as the vehi-

cle dataset is relatively more crowded, which indicates that

SACANet is more effective for extremely crowded scenes.

4.5. Ablation Study

In this section, we perform ablation studies on the Vis-

Drone2019 People & Vehicle datasets and analyze the re-

sults, which shows the effectiveness of our approach.

Effectiveness of the baseline: Our baseline network con-

sists of three parts: a truncated VGG-16, multi-branch sub-

net, and the backend. For a given input image, we feed it

to our baseline network and get its generated density map.

And then, we sum all the pixel values to get the total count.

Effectiveness of the pyramid context module: After

the operations mentioned above, we use our context-aware

front-end instead of one column VGG-16 backbone to train

our model, and we find that the error decreased.

Effectiveness of the Scale-Adaptive Self-Attention

(SASA): We enrich the baseline with our novel scale-

adaptive attention scheme to each branch. The results show



Figure 3. Distribution of scale variation and object separation problem on the VisDrone2019 Vehicle & People datasets.

Figure 4. Comparison via different distributions on the VisDrone2019 Vehicle & People datasets.

Table 5. Results of our approaches on two challenging people

counting datasets. ShanghaiTech A & B.

Method Dataset A Dataset B

MAE MSE MAE MSE

MCNN [36] 110.2 173.2 26.4 41.3

Switching-CNN [26] 90.4 135.0 21.6 33.4

CP-CNN [29] 73.6 106.4 20.1 30.1

ACSCP [27] 75.7 102.7 17.2 27.4

IG-CNN [2] 72.5 118.2 13.6 21.1

CSRNet [15] 68.2 115.0 10.6 16.0

DRSAN [18] 69.3 96.4 11.1 18.2

SANet [3] 67.0 104.5 8.4 13.6

Baseline 68.3 107.5 11.9 18.7

SACANet(ours) 64.4 95.9 7.8 13.5

a significant improvement in terms of MAE and MAE.

Effectiveness of the hierarchical fusion: We add the hier-

archical fusion module and retrain the model. This module

also brings improvement to the performance, and we get our

final results in Table 4.

4.6. Evaluation on Unconstrained Scenarios

We compare SACANet with other approaches in the lit-

erature on two challenging people crowd counting datasets

with unconstrained scenarios. The results are proposed

in Table 5. Our methods always show a better perfor-

mance than the baseline, which demonstrates the impor-

tance of the pyramid contextual module and scale-adaptive

self-attention mechanism. Besides, we see that our ap-

proach surpasses the state-of-the-art methods CSRNet [15]

and SANet [3] for both the ShanghaiTech A and the

ShanghaiTech B datasets. Compared with SANet [3], our

SACANet reduces the MAE by over 7% on the Shang-

haiTech A dataset and reduces the MAE by about 4% on

the ShanghaiTech B dataset. These results further demon-

strate the effectiveness of our SACANet.

5. Conclusion

In this work, we tackle two main challenges in crowd

counting: large scale variation and isolated small clus-

ters. We propose SACANet, a novel Scale-Adaptive long-

range Context-Aware network for accurate crowd counting

in unconstrained crowded scenes. A pyramid contextual

module can fully encode the contextual information. We

present a scale-adaptive self-attention scheme to automat-

ically choose the most appropriate branches and naturally

enlarge the receptive field. By utilizing the hierarchical fu-

sion module, our method can fuse multi-level contextual in-

formation in crowded scenes.

Extensive experiments show that our approach achieves

compelling results on the VisDrone2019 Vehicle & Peo-

ple datasets and two other challenging people crowd count-

ing benchmarks. As compared with prior arts, SACANet

achieves much better performance in terms of MAE and

MSE, especially when the image exhibits large variation in

object scales and many isolated small clusters.
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