
VisDrone-DET2019: The Vision Meets Drone

Object Detection in Image Challenge Results

Dawei Du1, Pengfei Zhu2, Longyin Wen3, Xiao Bian4, Haibin Ling5, Qinghua Hu1,

Tao Peng2, Jiayu Zheng2, Xinyao Wang3, Yue Zhang3, Liefeng Bo3, Hailin Shi6,

Rui Zhu6, Aashish Kumar22, Aijin Li30, Almaz Zinollayev32, Anuar Askergaliyev32,

Arne Schumann33, Binjie Mao20, Byeongwon Lee15, Chang Liu23, Changrui Chen8,

Chunhong Pan20, Chunlei Huo20, Da Yu25, Dechun Cong24, Dening Zeng30,

Dheeraj Reddy Pailla13, Di Li30, Dong Wang23, Donghyeon Cho9, Dongyu Zhang31,

Furui Bai28, George Jose22, Guangyu Gao18, Guizhong Liu14, Haitao Xiong12, Hao Qi14,

Haoran Wang30, Heqian Qiu7, Hongliang Li7, Huchuan Lu23, Ildoo Kim29, Jaekyum Kim16,

Jane Shen28, Jihoon Lee29, Jing Ge18, Jingjing Xu24, Jingkai Zhou12, Jonas Meier33,

Jun Won Choi16, Junhao Hu11, Junyi Zhang31, Junying Huang31, Kaiqi Huang20, Keyang Wang17,

Lars Sommer33, Lei Jin11, Lei Zhang17, Lianghua Huang20, Lin Sun19, Lucas Steinmann33,

Meixia Jia30, Nuo Xu20, Pengyi Zhang18, Qiang Chen20, Qingxuan Lv8, Qiong Liu12,

Qishang Cheng7, Sai Saketh Chennamsetty13, Shuhao Chen23, Shuo Wei8, Srinivas S S Kruthiventi22,

Sungeun Hong9, Sungil Kang9, Tong Wu18, Tuo Feng30, Varghese Alex Kollerathu13, Wanqi Li14,

Wei Dai21, Weida Qin12, Weiyang Wang21, Xiaorui Wang8, Xiaoyu Chen7, Xin Chen23,

Xin Sun8, Xin Zhang20, Xin Zhao20, Xindi Zhang26, Xinyu Zhang23, Xuankun Chen31,

Xudong Wei14, Xuzhang Zhang27, Yanchao Li28, Yifu Chen10, Yu Heng Toh28, Yu Zhang8,

Yu Zhu20, Yunxin Zhong18, Zexin Wang30, Zhikang Wang28, Zichen Song7, Ziming Liu18

1University at Albany, SUNY, Albany, NY, USA
2Tianjin University, Tianjin, China

3JD Digits, Mountain View, CA, USA
4GE Global Research, Niskayuna, NY, USA

5Stony Brook University, New York, NY, USA
6JD AI research, Beijing, USA

7University of Electronic Science and Technology of China, Chengdu, China
8Ocean University of China, Qingdao, China

9SK T-Brain, Seoul, South Korea
10Harbin Institute of Technology, Shenzhen, China

11ShanghaiTech University, Shanghai, China
12South China University of Technology, Guangzhou, China

13Siemens Technology and Services Private Limited, Bengaluru, India
14Xi’an Jiaotong University, Xi’an, China
15SK Telecom, Seongnam-si, South Korea
16Hanyang University, Seoul, South Korea
17Chongqing University, Chongqing, China

18Beijing Institute of Technology, Beijing, China
19Samsung Inc., San Jose, CA, USA

20Institute of Automation, Chinese Academy of Sciences, Beijing, China
21Snowcloud.ai, Beijing, China

22Harman-Samsung, Bangalore, India
23Dalian University of Technology, Dalian, China

24Nanjing University of Posts and Telecommunications, Nanjing, China
25Harbin Institute of Technology, Harbin, China

26Queen Mary University of London, London, UK
27Huazhong University of Science and Technology, Wuhan, China

28Pensees Singapore Institute, Singapore
29Kakao Brain, Seongnam, South Korea

30Xidian University, Xi’an, China
31SUN YAT-SEN University, Guangzhou, China

32BTS Digital, Astana, Kazakhstan
33Fraunhofer IOSB, Karlsruhe, Germany



Abstract

Recently, automatic visual data understanding from

drone platforms becomes highly demanding. To facili-

tate the study, the Vision Meets Drone Object Detection

in Image Challenge is held the second time in conjunction

with the 17-th International Conference on Computer Vi-

sion (ICCV 2019), focuses on image object detection on

drones. Results of 33 object detection algorithms are pre-

sented. For each participating detector, a short description

is provided in the appendix. Our goal is to advance the

state-of-the-art detection algorithms and provide a compre-

hensive evaluation platform for them. The evaluation pro-

tocol of the VisDrone-DET2019 Challenge and the com-

parison results of all the submitted detectors on the re-

leased dataset are publicly available at the website: http:

//www.aiskyeye.com/. The results demonstrate that

there still remains a large room for improvement for object

detection algorithms on drones.

1. Introduction

Object detection is a basis of a wide range of many high-

level computer vision applications, such as autonomous

driving, face detection and recognition, and activity recog-

nition. Although significant progress has been achieved in

recent years, these algorithms usually focus on detection in

general scenarios instead of drone-captured scenes. This is

because the studies are seriously limited by the lack of pub-

lic large-scale benchmarks or datasets.

To advance state-of-the-art detection algorithms in

drone-based scenes, the first Vision Meets Drone Object

Detection in Images Challenge (VisDrone-DET2018) [49]

was held on September 8, 2018, in conjunction with the 15-

th European Conference on Computer Vision (ECCV 2018)

in Munich, Germany. Compared with the previous drone

based datasets [29, 15, 9], a larger scale drone based ob-

ject detection dataset [48] is proposed to evaluate detection

algorithms in real scenarios. Then, there were 34 object

detection methods submitted to this challenge, and we pro-

vided a comprehensive performance evaluation for them.

In this paper, researchers are encouraged to submit al-

gorithms to detect objects of ten predefined categories

(e.g., pedestrian and car) in the VisDrone-DET2019 dataset.

Specifically, there are 33 out 47 detection methods that per-

forms better than the baseline state-of-the-arts. Derived

from recently published top computer vision conferences

or journals, we believe this challenge is useful to further

promote the development of object detection algorithms on

drone platforms. The experiments can be found at our web-

site: http://www.aiskyeye.com/.

2. Related Work

2.1. Anchor based Detectors

The current state-of-the-art anchor based detectors can

be divided into two categories: (1) the two-stage meth-

ods [33, 25, 13] with high accuracy, and (2) the one-stage

methods [28, 32] with high efficiency.

Based on the previous works, Lin et al. [26] develop fo-

cal Loss to address the class imbalance issue in object detec-

tion by reshaping the standard cross entropy loss such that it

down-weights the loss assigned to well-classified examples.

To address the shortcoming in current two-stage methods,

Li et al. [23] propose a new two-stage detector to make the

head of network as light as possible, by using a thin feature

map and a cheap R-CNN subnet (pooling and single fully-

connected layer). To inherit the merits of both two-stage

and one-stage methods, Zhang et al. [45] propose a single-

shot detector formed by two inter-connected modules, i.e.,

the anchor refinement module and the object detection mod-

ule. Moreover, the Cascade R-CNN [2] is a multi-stage

object detection architecture. That is, a sequence of detec-

tors are trained with increasing IoU thresholds to be sequen-

tially more selective against close false positives. Recently,

Duan et al. [11] propose the channel-aware deconvolutional

network to detect small objects, especially for drone based

scenes. To keep the favourable performance independent to

the network architecture, Zhu et al. [50] train detectors from

scratch using BatchNorm with larger learning rate.

2.2. Anchor-free Detectors

Although anchor based detectors have achieved much

progress in object detection, it is still difficult to select opti-

mal parameters of anchors. To guarantee high recall, more

anchors are essential but introduce high computational-

complexity. Moreover, different datasets correspond to dif-

ferent optimal anchors. To solve these issues, anchor-free

detectors attract much research and have achieved signifi-

cant advances with complex backbone networks recently.

Law and Deng [18] propose the CornerNet to detect an

object bounding box as a pair of keypoints, the top-left cor-

ner and the bottom-right corner, using a single convolution

neural network. To decrease the high processing cost, they

further introduce CornerNet-Lite. It is a combination of two

efficient variants of CornerNet: CornerNet-Saccade with an

attention mechanism and CornerNet-Squeeze with a new

compact backbone architecture [19]. Moreover, Duan et

al. [10] detect the object as a triplet, rather than a pair,

of keypoints, which improves both precision and recall.

Zhou et al. [46] further model an object as the center point

of its bounding box, and regress to all other object proper-

ties, such as size, 3D location, orientation, and even pose.

On the other hand, Kong et al. [17] propose an accurate,

flexible and completely anchor-free framework, which pre-



dicts category-sensitive semantic maps for the object exist-

ing possibility and category-agnostic bounding box for each

position that potentially contains an object. Tian et al. [37]

solve object detection in a per-pixel prediction fashion, ana-

logue to semantic segmentation.

3. The VisDrone-DET2019 Challenge

Similar to the VisDrone-DET2018 Challenge [49], we

mainly focus on human and vehicles in our daily life, and

detect ten object categories of interest including pedes-

trian, person1, car, van, bus, truck, motor, bicycle, awning-

tricycle, and tricycle.

To obtain results on the VisDrone-DET2019 test-

challenge set, the participators must generate the results in

defined format and then upload to the evaluation server. If

the results of the submitted method are above the perfor-

mance of Cascade R-CNN [2], it will be automatically pub-

lished in the ICCV 2019 workshop proceeding. Moreover,

only the algorithms with detailed description (e.g., speed,

GPU and CPU information) have the the right of author-

ship.

3.1. The VisDrone-DET2019 Dataset

The VisDrone-DET2019 Dataset uses the same data in

The VisDrone-DET2018 Dataset [49], namely 8, 599 im-

ages captured by drone platforms in different places at dif-

ferent heights. Moreover, more than 540k bounding boxes

of targets are annotated with ten predefined categories. The

dataset is divided into training, validation and testing sub-

sets (6, 471 for training, 548 for validation, 1, 580 for test-

ing), which are collected from different locations but similar

environments.

Furthermore, we use the evaluation protocol in MS

COCO [27] to evaluate the results of detection algorithms,

including AP, AP50, AP75, AR1, AR10, AR100 and AR50
metrics. Specifically, AP is computed by averaging over

all 10 Intersection over Union (IoU) thresholds (i.e., in the

range [0.50 : 0.95] with the uniform step size 0.05) of all

categories, which is used as the primary metric for ranking.

AP50 and AP75 are computed at the single IoU thresholds

0.5 and 0.75 over all categories. The AR1, AR10, AR100
and AR500 scores are the maximum recalls given 1, 10, 100
and 500 detections per image respectively, averaged over all

categories and IoU thresholds. Note that these criteria pe-

nalize missing detection of objects as well as duplicate de-

tections (two detection results for the same object instance).

Please refer to [27] for more details.

3.2. Submitted Detectors

There are 47 different object detection methods submit-

ted to the VisDrone-DET2019 challenge, 33 of which per-

1If a human maintains standing pose or walking, we classify it as a

pedestrian; otherwise, it is classified as a person.

forms better than the state-of-the-art object detector Cas-

cade R-CNN [2]. Except Cascade R-CNN [2], The Vis-

Drone team also gives the results of another 6 baseline

methods, i.e., CornerNet [18], Light-RCNN [23], Det-

Net59 [24], RefineDet [45], RetinaNet [26] and FPN [25].

For these baselines, the default parameters are used or set

to reasonable values. Thus, there are 39 algorithms in total

included in the report of VisDrone-DET2019 Challenge.

Nine submitted detectors improve the Cascade R-

CNN [2], namely Airia-GA-Cascade (A.2), Cascade R-

CNN+ (A.4), Cascade R-CNN++ (A.5), DCRCNN (A.13),

DPN (A.14), DPNet-ensemble (A.15), MSCRDet (A.25),

SAMFR-Cascade RCNN (A.29), and SGE-cascade R-CNN

(A.30). Six detectors are based on CenterNet, including

CenterNet (A.6), CenterNet-Hourglass (A.7), CN-DhVaSa

(A.9), ConstraintNet (A.10), GravityNet (A.20) and RRNet

(A.28). Five detectors are derived from RetinaNet [26],

i.e., DA-RetinaNet (A.11), EHR-RetinaNet (A.16), FS-

Retinanet (A.19), MOD-RETINANET (A.24) and reti-

naplus (A.27). Three detectors employ FPN representa-

tion [25], ACM-OD (A.1), BetterFPN (A.3) and ODAC

(A.26). Three detectors (i.e., DBCL (A.12), HTC-drone

(A.22) and S+D (A.31)) conduct segmentation of the ob-

jects to restrain the background noise. Four algorithms

use ensemble of state-of-the-art detectors. Specifically,

EnDet (A.17) combines YOLO and Faster R-CNN, while

TSEN (A.33) use ensembles of 3 two-stage methods: Faster

R-CNN, Guided Anchoring and Libra R-CNN. ERCNNs

(A.18) is generated by Faster R-CNN and Cascade R-

CNN with different backbones. Libra-HBR (A.23) con-

sider SNIPER, Libra R-CNN, and cascade R-CNN. Dif-

ferent from FPN model, more multi-scale fusion strategies

are proposed. CNAnet (A.8) use the multi-neighbor lay-

ers fusion modules to fuse the current layer with its multi-

neighbor higher layers. HRDet+ (A.21) maintains high-

resolution representation by connecting high-to-low con-

volutions in parallel. TridentNet (A.32) construct a paral-

lel multi-branch architecture where each branch shares the

same transformation parameters but with different receptive

fields. More description can be found in Table 1.

3.3. Results and Analysis

The overall results of the submissions are presented in

Table 2. We find that DPNet-ensemble (A.15) achieves

the best performance among all submitted methods, i.e.,

29.62% AP score. It follows the idea of FPN [25] and

improve Cascade-RCNN [2] with global context module

(GC) [3] and deformable convolution (DC) [7] into the

backbone network. RRNet (A.28) and ACM-OD (A.1) rank

in the second place with more than 29% AP score. RR-

Net (A.28) is an anchor-free detector based on [46], where

the re-regression module can predict the bias between the

coarse bounding boxes and the ground-truth. ACM-OD



Table 1. The descriptions of the submitted algorithms in the VisDrone-DET2019 Challenge. GPU/CPUs for training, implementation

details, the tracking speed (in FPS), and references are reported.
Method GPU CPU Code Speed Reference

DPNet ensemble (A.15) TITAN Xp Xeon E5-2620v4 C++,P 6 Cascade R-CNN [2]

RRNet (A.28) RTX 2080ti Xeon E5-2620v4 P 1.5 CenterNet [46]

ACM-OD (A.1) Tesla V100 Xeon 6150 P 0.6 FPN [25]

S+D (A.31) RTX 2080Ti i7-7800X P 10 DeepLab [43]+Cascade RCNN [2]

BetterFPN (A.3) Tesla M40 Xeon E5-2680v4@2.40GHz P 4.2 FPN [25]

HRDet+ (A.21) RTX 2080Ti E5-2650v4 P 5 HRNet [36]

CN-DhVaSa (A.9) Tesla P-100 Xeon Silver 4110 p 0.3 CenterNet [46]

SGE-Cascade R-CNN (A.30) GTX 1080Ti E5-1620 P 4.3 Cascade R-CNN [2]

EHR-RetinaNet (A.16) Tesla V-100 Xeon E5-2698v4@2.20GHz P 0.5 RetinaNet [26]

CNAnet (A.8) TITAN Xp E5-1620 P 15 Cascade R-CNN [2]

FS-RetinaNet (A.19) GTX 1080Ti Intel i7-5930K C++,P 4 RetinaNet [26]

CenterNet (A.6) GTX 1080Ti ES-2603 P 50 CenterNet [46]

Airia-GA-Cascade (A.2) Tesla V100 Gold 6130 P 6.1 Cascade R-CNN [2]

MSCRDet (A.25) GTX 1080 i7-7700 P 1.3 FPN [25]

DPN (A.14) TITAN Xp Xeon E5-2680v4@2.40GHz P 3 FPN [25]

HTC-drone (A.22) GeForce 1060 Intel i7-7700K@4.20GHz P 1.7 HTC [4]

TridentNet (A.32) RTX 2080Ti Intel E5-2620v4@2.10GHz C++,P 0.2 TridentNet [22]

CenterNet-Hourglass (A.7) TITAN Xp E5-2650v4 P 7.8 CenterNet [46]

ERCNNs (A.18) Tesla V100 Intel XEON@2.20GHz P 2 Cascade R-CNN [2]

SAMFR-Cascade RCNN (A.29) Tesla V100 Gold 6130 P 7 Cascade R-CNN [2]

EnDet (A.17) GTX 1080Ti Xeon E5-2683v3@2.00GHz P 2.3 YOLOv3 [32]+Faster R-CNN [33]

DCRCNN (A.13) GTX 1080Ti Xeon Gold 6126 P 3 Cacade-RCNN [2]

Cascade R-CNN+ (A.4) Tesla P40 E5-2650v4 C++,P 5.2 Cascade R-CNN [2]

ODAC (A.26) TITAN Xp Xeon E5-2678v3@2.50GHz P 2.5 Faster R-CNN [33]

(A.1) employs the framework of FPN [25] and active learn-

ing scheme to operate jointly with object augmentation.

Among the 7 baseline methods provided by the VisDrone

Team, CornerNet [18] achieves the best performance, while

RetinaNet [26] performs the worst.

We also report the detection results of each object cate-

gory in Table 3. We observe that all the best results of dif-

ferent kinds of objects are produced by the detectors with

top 6 AP scores. However, they do not achieve good detec-

tion results in terms of person and awning-tricycle. This is

because person does not maintain standing pose and usually

involves other kinds of objects such as tricycle and bicycle,

while awning-tricycle lacks of training data.

3.4. Discussion

In summary, the best detector DPNet-ensemble (A.15)

achieves less than 30% AP score, which is still far from sat-

isfactory in real applications. As shown in Figure 1, we re-

port top 10 detection methods in both VisDrone-DET2018

and VisDrone-DET2019 challenges. We can conclude that

DPNet-ensemble (A.15) is slightly inferior than the win-

ner of VisDrone-DET2018 Challenge HAL-Retina-Net in

terms of the AP metric. However, 33 detectors perform

better than all the baseline methods. That means that the

average performance in this year is better than that in the

previous year.

Moreover, given the detection results of DPNet-

ensemble (A.15) in Figure 2, we discuss some critical issues

in object detection on drone platforms.

Figure 1. Comparison between the top 10 performer of VisDrone-

DET2019 (blue) and VisDrone-DET2018 (red).

Small object detection. Objects are usually very small

in drone based scenes. As shown in Figure 2, DPNet-

ensemble (A.15) performs well in large scale objects (e.g.,

cars) but introduce many false positives of detections with

small scale (see the third row of the figure). This is because

there are designed small anchors in the Cascade-RCNN [2]

framework for small object detection. To achieve better per-

formance, it is necessary to extract more contextual seman-

tic information for discriminative representation of small

objects.

Occlusion. Occlusion is another critical issue that limits

the detection performance, especially in drone based scenes



Table 2. Object detection results on the VisDrone-DET2019 testing set. The submitted algorithms are ranked based on the AP score. ∗

indicates that the detection algorithm is submitted by the committee.

Method AP[%] AP50[%] AP75[%] AR1[%] AR10[%] AR100[%] AR500[%]

DPNet-ensemble (A.15) 29.62 54.00 28.70 0.58 3.69 17.10 42.37

RRNet (A.28) 29.13 55.82 27.23 1.02 8.50 35.19 46.05

ACM-OD (A.1) 29.13 54.07 27.38 0.32 1.48 9.46 44.53

S+D (A.31) 28.59 50.97 28.29 0.50 3.38 15.95 42.72

BetterFPN (A.3) 28.55 53.63 26.68 0.86 7.56 33.81 44.02

HRDet+ (A.21) 28.39 54.53 26.06 0.11 0.94 12.95 43.34

CN-DhVaSa (A.9) 27.83 50.73 26.77 0.00 0.18 7.78 46.81

SGE-cascade R-CNN (A.30) 27.33 49.56 26.55 0.48 3.19 11.01 45.23

EHR-RetinaNet (A.16) 26.46 48.34 25.38 0.87 7.87 32.06 38.42

CNAnet (A.8) 26.35 47.98 25.45 0.94 7.69 32.98 42.28

FS-Retinanet (A.19) 26.31 50.52 24.07 0.43 3.01 10.23 42.88

CenterNet (A.6) 26.03 48.69 24.29 0.97 7.91 33.40 43.14

Airia-GA-Cascade (A.2) 25.99 45.41 26.18 0.47 3.06 10.94 41.30

GravityNet (A.20) 25.66 47.96 23.94 1.04 7.99 33.10 42.79

Libra-HBR (A.23) 25.57 48.32 24.02 0.83 7.32 33.16 38.53

MSCRDet (A.25) 25.13 46.02 24.25 0.47 3.25 14.91 38.53

DPN (A.14) 25.09 50.61 21.83 0.89 7.79 31.44 39.62

TSEN (A.33) 23.83 48.27 20.49 0.14 0.81 9.99 37.64

HTC-drone (A.22) 22.61 45.16 19.94 0.42 2.84 17.10 35.27

TridentNet (A.32) 22.51 43.29 20.50 1.17 8.30 28.98 39.84

CenterNet-Hourglass (A.7) 22.36 41.76 20.87 0.43 2.96 11.15 40.57

retinaplus (A.27) 20.57 40.57 18.09 0.77 7.08 26.75 31.25

ERCNNs (A.18) 20.45 41.20 17.84 0.93 7.57 27.61 34.29

SAMFR-Cascade RCNN (A.29) 20.18 40.03 18.42 0.46 3.49 21.60 30.82

Cascade R-CNN++ (A.5) 18.33 33.50 17.72 0.93 7.48 26.06 26.06

EnDet (A.17) 17.81 37.27 14.95 0.31 2.49 24.47 29.06

DCRCNN (A.13) 17.79 42.03 12.26 0.34 2.44 12.58 29.25

Cascade R-CNN+ (A.4) 17.67 34.89 15.83 0.91 6.59 24.21 27.06

ODAC (A.26) 17.42 40.55 12.44 0.30 1.94 11.77 27.96

DA-RetinaNet (A.11) 17.05 35.93 14.32 0.70 6.29 24.81 31.77

MOD-RETINANET (A.24) 16.96 33.77 14.90 0.69 6.03 24.27 32.47

DBCL (A.12) 16.78 31.08 16.02 0.73 6.96 22.99 22.99

ConstraintNet (A.10) 16.09 30.72 14.84 0.44 3.97 21.23 24.12

CornerNet∗ [18] 17.41 34.12 15.78 0.39 3.32 24.37 26.11

Light-RCNN∗ [23] 16.53 32.78 15.13 0.35 3.16 23.09 25.07

FPN∗ [25] 16.51 32.20 14.91 0.33 3.03 20.72 24.93

Cascade R-CNN∗ [2] 16.09 31.91 15.01 0.28 2.79 21.37 28.43

DetNet59∗ [24] 15.26 29.23 14.34 0.26 2.57 20.87 22.28

RefineDet∗ [45] 14.90 28.76 14.08 0.24 2.41 18.13 25.69

RetinaNet∗ [26] 11.81 21.37 11.62 0.21 1.21 5.31 19.29

where objects are often occluded by other objects or back-

ground obstacle. As shown in the second row of Figure 2,

DPNet-ensemble (A.15) tends to generate duplicate detec-

tions when occlusion occurs. It is essential to handle occlu-

sions by context or semantic information.

Data augmentation. The VisDrone data has imbalanced

categories of objects. As presented in Table 3, every de-

tection method achieves inferior performance in awning-

tricycle and bicycle than that in the car and pedestrian. For

example, DPNet-ensemble (A.15) produces 51.53% and

32.31% APs on the car and pedestrian classes, while only

produces 18.41% and 12.86% APs on the awning-tricycle

and bicycle. To deal with this issue, the detection methods

can adjust the weights of different object classes in the loss

function or perform data augmentation for the category with

small data.

4. Conclusion

This paper reviews the VisDrone-DET2019 Challenge

and its results. A set of 47 detectors have been evaluated

on the released dataset, 33 of which perform better than the

strong baseline Cascade-RCNN [2] detector. The top three



Table 3. The AP scores on the VisDrone-DET2019 testing set of each object category. ∗ indicates the detection algorithms submitted

by the VisDrone Team. The top three results are highlighted in red, green and blue fonts.

Method ped. person bicycle car van truck tricycle awn. bus motor

DPNet-ensemble (A.15) 32.31 15.97 12.86 51.53 39.80 30.66 30.66 18.41 38.45 28.03

RRNet (A.28) 30.44 14.85 13.72 51.43 36.14 35.22 28.02 19.00 44.20 25.85

ACM-OD (A.1) 30.75 15.50 10.26 52.69 38.93 33.19 26.96 21.88 41.39 24.91

S+D (A.31) 31.01 14.54 9.27 52.51 40.36 31.90 25.77 21.78 39.91 22.31

BetterFPN (A.3) 30.23 16.45 10.01 51.45 38.85 31.57 26.73 17.79 41.75 24.83

HRDet+ (A.21) 28.60 14.58 11.71 49.46 37.13 35.20 28.85 21.93 43.30 23.55

CN-DhVaSa (A.9) 31.50 13.00 9.08 51.93 38.33 31.15 24.24 21.07 40.94 20.36

SGE-cascade R-CNN (A.30) 29.00 13.51 8.44 51.82 38.00 29.83 25.49 20.67 39.15 22.04

EHR-RetinaNet (A.16) 30.82 13.54 8.10 50.00 29.00 30.64 25.39 16.42 41.03 23.52

CNAnet (A.8) 26.19 12.22 6.45 52.15 38.29 30.43 22.94 19.55 42.13 21.22

FS-Retinanet (A.19) 28.44 14.72 7.20 49.38 36.18 27.97 23.06 18.12 38.97 22.08

CenterNet (A.6) 27.99 11.61 9.02 51.03 36.52 27.88 20.09 19.88 37.71 20.96

Airia-GA-Cascade (A.2) 26.22 12.45 8.67 50.54 38.32 30.62 28.08 19.84 35.97 15.50

GravityNet (A.20) 27.76 11.72 7.97 50.72 36.38 28.04 19.61 18.50 35.23 21.28

Libra-HBR (A.23) 28.53 13.38 6.95 49.58 33.80 25.19 22.86 18.76 37.75 21.24

MSCRDet (A.25) 26.68 11.11 7.28 49.35 34.60 29.20 21.12 19.20 40.44 18.67

DPN (A.14) 23.94 12.80 10.03 43.89 32.43 29.02 28.45 20.30 42.56 21.90

TSEN (A.33) 24.36 12.36 8.72 45.08 33.03 28.09 23.35 18.25 36.52 15.08

HTC-drone (A.22) 21.80 11.16 6.23 41.23 32.43 25.52 25.60 18.71 37.17 18.19

TridentNet (A.32) 22.92 9.01 5.24 46.15 30.66 26.70 20.30 16.04 38.93 17.92

CenterNet-Hourglass (A.7) 25.65 9.17 4.54 48.92 30.31 24.64 16.83 14.98 30.46 16.09

retinaplus (A.27) 24.11 9.07 3.49 45.86 24.25 21.30 17.48 12.14 30.12 17.10

ERCNNs (A.18) 18.31 8.28 6.96 41.46 29.00 24.65 18.54 15.43 38.72 15.54

SAMFR-Cascade RCNN (A.29) 23.67 9.75 4.41 41.74 24.22 22.18 16.26 15.01 27.34 15.92

Cascade RCNN+ (A.4) 17.75 5.08 3.54 42.01 26.50 22.58 15.96 12.71 33.28 12.31

EnDet (A.17) 17.19 7.45 2.73 40.16 26.31 18.08 15.42 14.19 31.98 11.50

DCRCNN (A.13) 15.21 8.88 7.06 32.51 25.94 20.40 19.15 15.72 35.65 11.79

Cascade R-CNN++ (A.5) 20.96 7.53 3.05 41.92 21.11 15.34 13.78 10.04 22.38 15.88

ODAC (A.26) 14.24 7.84 4.76 32.37 25.55 21.56 18.27 16.30 37.56 12.83

DA-RetinaNet (A.11) 19.63 7.22 2.76 40.47 22.15 16.95 11.53 9.47 23.74 13.19

MOD-RETINANET (A.24) 17.76 6.79 2.78 40.20 25.87 16.24 12.82 10.08 25.64 11.44

DBCL (A.12) 16.44 5.76 2.45 39.02 22.58 19.86 15.25 10.77 30.66 12.18

ConstraintNet (A.10) 17.49 6.81 2.59 39.17 25.17 14.41 11.02 8.64 18.11 11.84

CornerNet∗ [18] 20.43 6.55 4.56 40.94 20.23 20.54 14.03 9.25 24.39 12.10

Light-RCNN∗ [23] 17.02 4.83 5.73 32.29 22.12 18.39 16.63 11.91 29.02 11.93

DetNet59∗ [24] 15.26 4.07 3.13 36.12 17.29 20.87 13.52 10.45 26.01 10.92

RefineDet∗ [45] 14.90 3.67 2.02 30.14 16.33 18.13 9.03 10.25 21.93 8.38

RetinaNet∗ [26] 9.91 2.92 1.32 28.99 17.82 11.35 10.93 8.02 22.21 7.03

FPN∗ [25] 15.69 5.02 4.93 38.47 20.82 18.82 15.03 10.84 26.72 12.83

Cascade R-CNN∗ [2] 16.28 6.16 4.18 37.29 20.38 17.11 14.48 12.37 24.31 14.85

detectors are DPNet-ensemble (A.15), RRNet (A.28) and

ACM-OD (A.1), achieving 29.62%, 29.13%, and 29.13%
APs, respectively. The state-of-the-art detection frame-

work in this challenge can be concluded as “Cascade-

RCNN [2]+FPN [25]+Attention Modules”. However, it is

still far from satisfactory in real applications. We hope

our workshop challenge can provide a community-based

common platform for evaluation of detection algorithms on

drones.
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Figure 2. The detection results of the winner of the VisDrone-DET2019 Challenge DPNet-ensemble (A.15). The ground-truth and estimated

bounding boxes of objects are shown in red and green colors, respectively. Only the categories of some objects are shown for clarity.

A. Submitted Detectors

In the appendix, we summarize the top 33 detectors sub-

mitted in the VisDrone2019-DET Challenge, which are or-

dered alphabetically.

A.1. Augmented Chip Mining for Object Detection
(ACM-OD)

Sungeun Hong, Sungil Kang and Donghyeon Cho

{csehong,sung1.kang,cdh12242}@sktbrain.com

ACM-OD is based on Faster R-CNN with FPN [25]

in which backbone is ResNet-101 pre-trained on MS

COCO [27]. The key distinction of the proposed method

is augmented chip mining, which actively utilizes hard ex-

amples for training. As the first step, to efficiently localize

small objects, we train our model from chip areas [35],

i.e., sub-region in which ground truth samples are located

densely. We then perform patch-level augmentation to

reduce class imbalance issue and high false positive rate.

As a result, patch-level augmented object instances, as well

as whole images, are used to construct chips consisting

of hard examples; and we train our model again by using

them. ACM-OD progressively evolves as the training,

augmentation, and inference processes are performed itera-

tively. In addition to active learning with data augmentation

scheme, change of scales and aspect radios considering

VisDrone dataset improves the accuracy. Masking “ignored

regions” or “others” objects during training also helped to

improve performance. Furthermore, the post-processing

steps including box voting [12] are helpful for accurate

localization. Our final resultsare based on the ensemble

of the slightly different models. The detector is trained on

VisDrone2019 train/val set, DOTA train/val set [42, 8] and

MS COCO [27]. More details can be found in the 2019

ICCV workshop paper titled “Patch-level Augmentation

for Object Detection in Aerial Images.”

A.2. Guided Anchor based Cascade R-CNN (Airia-
GA-Cascade)

Yu Zhu and Qiang Chen

zhuyu@airia.cn, qiang.chen@nlpr.ia.ac.cn

Airia-GA-Cascade is Guided Anchor based Cascade

R-CNN [2]. It is a multi-stage extension of the popular

two-stage R-CNN object detection framework. The goal

is to obtain high quality object detection, which can

effectively reject close false positives. It consists of a se-

quence of detectors trained end-to-end with increasing IoU

thresholds, to be sequentially more selective against close

false positives. The output of a previous stage detector

is forwarded to a later stage detector, and the detection

results will be improved stage by stage. Our network is

based on FPN detector with ResNeXt-101-64 × 4d back-

bone and Guided Anchor [38], while adding deformable



convolution [51] in backbone.

A.3. FPN-based Faster R-CNN with Better Training
and Testing for Drones (BetterFPN)

Junhao Hu and Lei Jin

{hujh,jinlei}@shanghaitech.edu.cn

BetterFPN uses FPN [25] with ResNet-50 as the backbone

of our Faster R-CNN. We use Mask R-CNN [13] pre-

trained model (on COCO [27]). We use random cropping

and image pyramid in training besides to horizontal flip-

ping. Also, we enlarge every patch by 4 times in training,

as well as in testing. We use a better crowd region handling

in training. We lower the IoU threshold for matching to

crowd region (label ignore) when determine an anchor or

proposal as negative sample. Also, we do not optimize

the score or bounding box regression when an anchor or

proposal matching to crowd region.

A.4. Modified Cascade R-CNN (Cascade R-CNN+)

Jonas Meier, Lars Sommer, Lucas Steinmann and Arne

Schumann

{jonas.meier,lars.sommer,lucas.steinmann,

arne.schumann}@iosb.fraunhofer.de

Cascade R-CNN+ is based on Cascade R-CNN [2],

which consists of a sequence of detectors trained with

increasing IoU thresholds. Thus, the detector becomes

sequentially more selective against close false positive

detections. Feature Pyramid Network (FPN) [25] is used

as base detector to account for different object scales. As

backbone architecture, we employ SEResNeXt-50 [16].

Furthermore, we employ focal loss as loss function [26].

The anchor box priors are halved compared to the default

settings of Cascade R-CNN to account for smaller objects.

For testing, the tiled images are scaled by a factor of about

1.25 yielding in tiles of size 736× 736 pixels.

A.5. Deformable Cascade R-CNN (Cascade R-
CNN++)

Haocheng Han and Jiaqi Fan

hhchyer@gmail.com, garyfan@connect.hku.hk

Cascade R-CNN++ is based on Cascade R-CNN [2],

using ResNeXt-101 64 × 4d as backbone and FPN [25]

as feature extractor. We use deformable convolution to

enhance our feature extractor. We do not use external data

except pre-trained model on COCO dataset. Other tech-

niques like multi-scale training and soft-nms are involved

in our method. We use VisDrone train set and fine tune on

COCO pre-trained model. The model is trained with four

K40 GPUs and mmdetection [5] framework.

A.6. Objects as Points (CenterNet)

Yanchao Li, Zhikang Wang, Yu Heng Toh, Furui Bai and

Jane Shen

yanchao.li@u.nus.edu, zkwang00@gmail.com,

tohyuheng-@hotmail.com, frbai@stu.xidian.edu.cn,

jane.shen@pensees.ai

CenterNet [46] is end-to-end differentiable, simpler,

faster, and more accurate than corresponding bounding

box based detectors. Firstly, two stack hourglass networks,

which are pre-trained models for human pose estimation,

are adopted for generating the heat maps. Then, three

branches convolutional layers are adopted for generating

the center points, offsets and height-width for the proposals.

Focal loss and L1 label smoothing loss are used for objects

classification and regression respectively. Specifically, we

set the image size as 1024 × 1024 while training and input

the original images without resizing for testing.

A.7. Objects as Points (CenterNet-Hourglass)

Da Yu, Lianghua Huang, Xin Zhao and Kaiqi Huang

yuda@hit.edu.cn, huanglianghua2017@ia.ac.cn,

{xzhao,kaiqi.huang}@nlpr.ia.ac.cn

CenterNet-Hourglass is based on CenterNet [46]. Due to

the large number of objects in each image in the VisDrone

dataset, we increase the maximum of instances that per

image can be detected.

A.8. Convolution Neighbor Aggregation Detector
for multi-scale detection (CNAnet)

Keyang Wang and Lei Zhang

{wangkeyang,leizhang}@cqu.edu.cn

CNAnet uses the Convolution Neighbors Aggregation

Detector for multi-scale detection. Specifically, we use the

Multi-neighbor layers fusion modules to fuse the current

layer with its Multi-neighbor higher layers, we call this

process as backward augmentation. Then we forward

propagate the enhanced feature to high-level layers, we

call this process as forward augmentation. In order to

improve the accuracy with multi-scale instances, we use

the multi-scale test for the final inference. But we use the

single network.

A.9. CenterNet-Hourglass-104 (CN-DhVaSa)

Dheeraj Reddy Pailla, Varghese Alex Kollerathu and Sai

Saketh Chennamsetty

dheerajreddy.p@students.iiit.ac.in,

varghese.kollerathu@siemens.com,

sai.chennamsetty@siemens.com



CN-DhVaSa is derived from the original CenterNet [46].

During the training phase, images are resized to 1024×1024
and the batch size was set to 8. During inference, the multi-

scale strategy is used to increase the performance. An

image with dimension of 2048 × 2048 is resized based on

different scales factors, i.e., 0.5, 0.75, 1, 1.25, 1.5. After

that, a confidence threshold of 0.25 is used to weed out the

false detections.

A.10. Constraint Keypoint Triplets for Object De-
tection (ConstraintNet)

Dening Zeng, Di Li

dnzeng@stu.xidian.edu.cn

ConstraintNet is buit upon a one-stage keypoint-based

detector named CenterNet. Our approach detects each

object by restricting their width and height, which improves

both precision and recall. First, we design a customized

modules named constraint corner pooling, which convo-

lution kernel is depending on constrain boundary of each

object. Constraint corner pooling play the roles of extract-

ing features around the target rather than the whole image.

Second, the prediction box which boundary is greater than

constrain boundary will be abandoned. Last, observing that

the corner localization accuracy is gradually refined during

multi-stage, we adopt a coarse-to-fine supervision strategy

in accordance [20]. Overview of ConstrainNet. A covolu-

tional backbone network applies three corners prediction

modules to output heatmaps, embeddings and offsets,

respectively. Similar to CenterNet, a triplet of corners and

the similar embeddings used to detect a potential bounding

box. Then the constrain boundary is used to determine the

final bounding boxes.

A.11. RetinaNet with Convolutional Block Atten-
tion Module (DA-RetinaNet)

Jingjing Xu and Dechun Cong

{1017010628,1017010643}@njupt.edu.cn

DA-RetinaNet is based on the Focal Loss for Dense

Object Detection [26]. The main changes we made are

concluded as follows: (1) We use more scales of smaller

anchors to detect low-resolution objects; (2) A RetinaNet

with ResNet-101 pre-trained weights on ImageNet as

the backbone is used, specifically, the features from

Conv2 x are also used to detect objects. (3) To further

improve the detection accuracy, we add the dual attention

mechanism. That is, we use additional channel attention

module and spatial attention module from Convolutional

Block Attention Module (CBAM) [39] to learn channel

attention and spatial attention. However, different from the

original CBAM, our method uses both attention modules in

parallel, and the output feature vectors are merged by using

element-wise summation.

A.12. Detection based on coarse-to-fine labeling
(DBCL)

Wei Dai and Weiyang Wang

daiwei@co-mall.com, weiyang.wang@snowcloud.ai

DBCL is based on Segmentation Is All You Need [40],

which uses weakly supervised multimodal annotation seg-

mentation (WSMA-Seg) to achieve an accurate and robust

object detection without NMS. In WSMA-Seg, multimodal

annotations are proposed to achieve an instance-aware

segmentation using weakly supervised bounding boxes;

we also develop a run-data-based following algorithm

to trace contours of objects. In addition, we propose

a multi-scale pooling segmentation (MSP-Seg) as the

underlying segmentation model of WSMA-Seg to achieve

a more accurate segmentation and to enhance the detection

accuracy of WSMA-Seg.

A.13. Deformable Cascade-RCNN (DCRCNN)

Almaz Zinollayev and Anuar Askergaliyev

{almaz.zinollayev,anuar.askergaliyev}@btsdigital.kz

DCRCNN adopts Cacade-RCNN [2] as the baseline,

and builds additional blocks on top of it. We add

deformable convolutional neural networks, as well as

attention mechanisms to our backbone. We trained using

SyncBN for batch normalizaiton. We use random cropping

and color jittering augmentation for our training. For infer-

ence we ensebmle best checkpoints of trained network. We

also use TTA and Soft-NMS for inference.

A.14. Double Pyramid Network (DPN)

Nuo Xu, Xin Zhang, Binjie Mao, Chunlei Huo and

Chunhong Pan

{nuo.xu,xin.zhang2018,binjie.mao,clhuo,

chpan}@nlpr.ia.ac.cn

DPN is a double pyramid network model based on

Cascade R-CNN [2], which consists of image pyramid and

feature pyramid. Because of the downsampling operation

in the network, the information loss of most small targets is

serious. Image pyramids are used to generate input images

of different scales, and normalize each object scale to a

fixed range to reduce the missed detection rate of minimal

and maximal objects. Feature pyramids are used to generate

feature maps of different scales. Multi-scale feature fusion

technology enhances the features of feature maps at each

level. The obtained feature pyramid is used as the learned

image feature to detect the objects in Cascade R-CNN.

Multi stage boundary box regression and classification with

Cascade R-CNN make the detection results more accurate.



A.15. Drone Pyramid Networks-ensemble (DPNet
ensemble)

Hongliang Li, Qishang Cheng, Heqian Qiu, Zichen

Song and Xiaoyu Chen

{hlli,cqs,hqqiu,}@std.uestc.edu.cn, szc.uestc@gmail.com,

xychen9459@gmail.com

DPNet-ensemble trains only two object detectors based

on Cascade-RCNN [2] by mmdetection [5] deep learning

framework. The design of our detectors follows the idea

of FPN [25], whose feature extractors are ResNet-50 and

ResNet-101 [14] which are pre-trained on ImageNet. In

order to make full use of the ability of feature extraction,

we introduce the global context module (GC) [3] and de-

formable convolution (DC) [7] into the backbone network.

To make the most of the data, we train Cascade-RCNN with

FPN using multiple scales (1000, 800, 600 for the short

edge) to naturally handle objects of various sizes. We use

nms to select predicted boxes. We changed RoIPooling to

RoIAlign [13] to do feature quantification. In the training

phase, we use multi-scale training and the balance strategy

used in Libra R-CNN [30]. In the inference phase, we use

Multi-scale testing.

A.16. Enhanced High Resolution RetinaNet (EHR-
RetinaNet)

Jaekyum Kim, Byeongwon Lee and Jun Won Choi

jkkim@spa.hanyang.ac.kr, bwon.lee@sk.com,

junwchoi@hanyang.ac.kr

RetinaNet+ is improved from the RetinaNet [26]. We

use the most powerful SE-ResNeXt-101 [16] as the back-

bone network and change the anchor boxes to detect the

tiny objects. Furthermore, we use the many data augmenta-

tion strategies including distortion, sample crop, mirror and

expansion. The training input size is 1728 × 3072 and the

test input size 2160× 3840.

A.17. Ensemble deep object detector based on
graph clique for VisDrone2019 Challenge
(EnDet)

Pengyi Zhang and Yunxin Zhong

zhangpybit@gmail.com, bityunxinz@gmail.com

EnDet is an ensemble of two yolov3-based [32] net-

works and two faster R-CNN [33] based networks. First,

we modify yolov3 network with spatial pyramid pooling

(spp) module. Specifically, we add one spp module to

the first yolo branch network of yolov3 to implement

yolov3-spp1 and one spp module to each of the three yolo

branch networks to get yolov3-spp3. Second, we add resid-

ual attention module to feature pyramid network (FPN)

(called ra-fpn) in faster R-CNN. Finally, we built EnDet

by combining yolov3-spp1, yolov3-spp3, faster R-CNN

with resnet101-fpn backbone and modify faster R-CNN

with resnet101-ra-fpn backbone through an ensemble

method [44] based on graph clique.

A.18. Ensemble of RCNNs (ERCNNs)

Jihoon Lee

jihoon.lee@kakaobrain.com

ERCNNs is generated by ensemble of the following

object detection models: Cascade R-CNN with ResNeXt-

101, Faster R-CNN with ResNeXt-101, Faster R-CNN with

ResNet-50 and deformable convolution, Faster R-CNN

with resNet-50 and spatial attention mechanism, Faster

R-CNN with ResNet-50, deformable convolution and

spatial attention mechanism.

A.19. Feature Selected RetinaNet (FS-Retinanet)

Ziming Liu, Jing Ge, Tong Wu, Lin Sun and Guangyu

Gao

liuziming.email@gmail.com,

{398817430,547636024}@qq.com,

lin1.sun@samsung.com, guangyugao@bit.edu.cn

FS-Retinanet is improved from RetinaNet [26], using

the ResNeXt as backbone [14]. There are several differ-

ences compared with the original RetinaNet. 1) To reduce

GPU memory, we only use P2,P4,P6 of Feature Pyramid

Network (FPN) [25]. 2) We add feature selected anchor-

free head (FSAF) [47] into RetinaNet, which improves

the performance significantly. Thus there are one anchor

head and one anchor free head in our model. Next, we will

describe some details of the proposed detection pipeline.

Most importantly, we perform several data augmentations

before model training. Firstly, each original Images is

cropped into 4 patches, while each patch is rescaled to

1920 × 1080, and we also propose an online algorithm to

obtain sub-images. Secondly, the Generative Adversarial

Network is used to transform the image of the day into

the night, which reduces the unbalance of day and night

samples. After that, the overall model is composed of 4
parts, including the ResNet backbone, the FPN network,

and the FSAF module as well as the retina head. Finally,

we train the model with an end-to-end way and test on

multi-scales data to obtain better results. In addition, we

also fuse multi-models to improve performance.

A.20. Gravitational Centroid Points based Network
(GravityNet)

Toh Yu Heng and Harry Nguyen

tohyuheng@hotmail.com, harry.nguyen@glasgow.ac.uk

GravityNet is derived from CenterNet [46] which uses the



center of mass of each object to produce key points for

detection. Our algorithm includes the occlusion details

of bounding boxes from the VisDrone2019 dataset during

training. Category-specific heat maps are produced by gen-

erating gravitational centroid points to capture necessary

details of objects for better performance.

A.21. Improved high resolution detector (HRDet+)

Jingkai Zhou, Weida Qin, Qiong Liu and Haitao Xiong

{201510105876,201530061442}@mail.scut.edu.cn,

liuqiong@scut.edu.cn, 201821038528@mail.scut.edu.cn

HRDet+ is improved from HRNet [36]. The model

maintains high-resolution representations through the

whole process by connecting high-to-low resolution con-

volutions in parallel and produces strong high-resolution

representations by repeatedly conducting fusions across

parallel convolutions. The code and models have been

publicly available at https://github.com/HRNet.

Beyond this, we modify HRNet by introducing a guided

attention neck and propose a harmonized online hard

example mining strategy to sample data. At last, HRDet+

is trained on multi-scale data, and the model assemble is

also adopted.

A.22. Hybrid Task Cascade for Drone Object De-
tection (HTC-drone)

Xindi Zhang

xindi.zhang@qmul.ac.uk

HTC-drone is improved from the Hybrid Task Cas-

cade (HTC) model [4]. The changes are: (1) Each training

images are cropped into four small parts. (2) One model

is trained based on pedestrian, person and car class, and

another model is trained based on other classes. They are

combined at testing time. (3) The NMS is replaced by

soft-NMS. We use ResNet50 as backbone with COCO

pre-trained model. (4) The testing set is cropped, and the

final result is the combination of different cropped images

with NMS.

A.23. Hybrid model based on Improved SNIPER,
Libra R-CNN and Cascade R-CNN (Libra-
HBR)

Chunfang Deng, Shuting He, Qinghong Zeng, Zhizhao

Duan and Bolun Zhang

{dengcf,shuting he,zqhzju,21825106}@zju.edu.cn,

zh98ang@163.com

Libra-HBR is an ensemble of improved SNIPER [35],

Libra R-CNN [30] and Cascade R-CNN [2]. It is proved to

generalize very well in various weather and light conditions

in real-world drone images, especially for small objects.

SNIPER presents an algorithm for performing efficient

multi-scale training in instance level visual recognition

tasks. We replace Faster-RCNN detection framework

in SNIPER with deformable ResNet-101 FPN structure,

which introduce additional context in object detection and

improve accuracy in small objects. We use the max-out

operation for classification, to kill false positive proposals

brought by dense small anchors. On the other hand, we

apply Cascade R-CNN to solve IoU threshold selection

problem. We use ResNext-101 as the backbone network

and use Libra R-CNN to get the better performance.

Moreover, we add deformable convolutional network [7],

attention mechanism [3], weight standardization [31] and

group normalization [41]. In the above mentioned models,

we use balanced-data-augmentation, and adapt the anchor

size during training time. To further boost the performance,

We add bag of tricks during testing steps, including

Soft-NMS, multi-scale detection, flip detection and crop

detection. Finally, we use bounding box voting to integrate

above two novel models to obtain higher performance.

A.24. Modified Retinanet (MOD-RETINANET)

Aashish Kumar, George Jose and Srinivas S S

Kruthiventi

{aashish.kumar,george.jose,srinivas.sai}@harman.com

MOD-RETINANET is a modified version of Reti-

naNet [26] with the ResNet-50 backbone. We have adapted

the algorithm for small objects which is required for drone

Images. We add additional TAPs to the FPN [25]. We

use a modified version of RetinaNet with additional TAPs

to detect small objects. We trained multiple models by

varying learning rate, batch-size, prior-box (size & stride)

and also varying the complexity of the backbone as well as

the regression and classification sub-models.

A.25. Multi-Scale Object Detector Based on Cas-
cade R-CNN (MSCRDet)

Xin Chen, Chang Liu, Shuhao Chen, Xinyu Zhang, Dong

Wang, Huchuan Lu

{chenxin3131,lcqctk0914,shuhaochn,

zhangxy71102}@mail.dlut.edu.cn,

{wdice, lhchuan}@dlut.edu.cn

MSCRDet uses Cascade R-CNN [2] with three stages

as the basic structure. We add FPN [25] to deal with

the various object scales, especially for small object

detection. We use P3 tp P6 feature maps for RPN. In

addition to this, taking account into the fact that the

scene taken by drone has lots of small objects and dense

object distribution, we replace the RoIPooling [33] with

RoIAlign [13], for RoIPooling [33] performs coarse spatial

quantization for feature extraction while RoIAlign [13]



preserves more accurate spatial location information. We

use Soft-NMS [1] rather than NMS for better recall in the

scene of dense object distribution. Moreover, we adopt

ResNeXt-101(64× 4d) as the strong backbone.

A.26. Object Detection in Aerial Images Using
Adaptive Cropping (ODAC)

Junyi Zhang, Junying Huang, Xuankun Chen and

Dongyu Zhang

{zhangjy329,huangjy229,chenxk3}@mail2.sysu.edu.cn,

zhangdy27@mail.sysu.edu.cn

ODAC is a simple and effective framework based on

Faster RCNN [33] and FPN [25]. First, based on the prior

knowledge of the preliminary trained object detection

model, we propose an adaptive cropping method based

on an difficult region estimation network to enhance the

detection of the difficult targets, which allows the detection

model to fully exploit its performance. Second, we use

the well-trained adaptive region estimation network to

generate more diverse and representative images, which

is effective in enhancing the training data. In addition, in

order to alleviate the imbalance problem during training,

we adopted the IoU-balanced sampling method [30] and

the balanced L1 loss [30] as the box regression loss in our

framework. At the time of the test, we selected the top 5
difficult regions with the highest scores predicted as the

final difficulty regions and tested them again, then merged

the results.

A.27. Retinanet Plus (retinaplus)

Zikai Zhang and Peng Wang

andychang@mail.nwpu.edu.cn, peng.wang@nwpu.edu.cn

The retinaplus detector is based on RetinaNet [26]. For

small target detection, it is improved by data enhancement,

multi-scale training and multi-scale testing.

A.28. Re-RegressionNet (RRNet)

Changrui Chen, Yu Zhang, Qingxuan Lv, Xiaorui Wang,

Shuo Wei and Xin Sun

{ccr,zhangyu9520,lqx,recyclerblacat,

weishuo}@stu.ouc.edu.cn,sunxin@ouc.edu.cn

RRNet is inspired by [46], which uses a convolutional

neural network to predict the center point and the size of

the object of each class. We use these points and size pre-

dictions to generate the coarse bounding boxes. After that,

we send these coarse bounding boxes to a Re-Regression

Module (RR), which consists of a ROIAlign module [13]

and some convolution layers. The RR Module predicts

the bias between the coarse bounding boxes and the GT. It

only refines the position of these coarse bounding boxes.

Finally, we use the soft-nms to generate the final bounding

boxes.

A.29. Spatial Attention for Multi-scale Fea-
ture Refinement Based on Cascade RCNN
(SAMFR-Cascade RCNN)

Haoran Wang, Zexin Wang, Meixia Jia, Aijin Li and Tuo

Feng

wanghaoran@stu.xidian.edu.cn,

zexinwang2016@gmail.com,

{mxjia,aijinli,fengt}@stu.xidian.edu.cn

SAMFR-Cascade RCNN uses Cascade R-CNN [2] as

the base network to continuously optimize the prediction

results by cascading several detection networks. Different

from normal cascade, several detection networks of Cas-

cade R-CNN are trained on positive and negative samples

determined by different IOU thresholds. On the basis of

this model, we add the deformable convolution (DCN)

layer, which can actively learn the object area under the

guidance of ground truth, so as to change the sampling

location of convolution filter to achieve more accurate

position of the target, and obtain more representative

characteristics. For high-level features, we point that the

neural network gets more and more information of the

central parts of the object, but the edge information of the

object has a great influence on object locating. For this

problem, we design a novel Spatial-Refinement Module

based on the attention mechanism to repair the edge details

in the multi-scale features. Meanwhile, downsampling

serves well in classification task, which is, however, not

necessarily beneficial for object detection because local-

ization may suffer from the absence of the global location

information, and the proposed RFEB tries to address the

problem. In the end, we adopt contour detection algorithm

and multi-model fusion for post processing.

A.30. cascade R-CNN with SGE backbone (SGE-
cascade R-CNN)

Xudong Wei, Hao Qi, Wanqi Li and Guizhong Liu

{wxd6994,qihao456,wanqili,liugz}@stu.xjtu.edu.cn

SGE-cascade R-CNN is improved from cascade R-

CNN [2]. What we change is that we use SGE [21] block

and ResNet50 [5] as our backbone. SGE makes each set

of features robust and well-distributed over the space, and

models a spatial enhance mechanism inside each feature

group, by scaling the feature vectors over all the locations

with an attention mask.

A.31. Segmentation + Detection (S+D)

Yifu Chen

chenyifu@stu.hit.edu.cn



S+D consists of two steps, segmentation and detec-

tion. In the segmentation step, the model outputs low

accuracy heat map (smaller size than original images),

which is used to generate several regions that might exist

objects. In the detection step, common detection model is

used to detect objects in the regions cropped from original

images. After these two main steps, some post-processings

are needed to merge boxes from regions to the full image.

In the first step, ASPP module in DeepLab [43] was used

to predict the class agnostic heatmap of the image. Pixel

level segmentation heat map is far beyond the need of low

accuracy region generation. Several modifications are made

in ASPP including reducing branches in ASPP module

and out channels of the last convolution layer. MobileNet

v2 [34] is used as the model backbone because this step

very low demand for model capacity and speed is also

important in region generation. Hierarchical clustering and

image morphology method are respectively used to deal

with the small regions and big regions. In the second step,

Cascade RCNN [2] with HRNet [36] as backbone from

Open MMLab Detection Toolbox was used as the detection

model and no modifications were made. After detection per

region, NMS is also needed because there is overlapping in

regions.

A.32. Scale-Aware Trident Networks for Object De-
tection (TridentNet)

Xuzhang Zhang

shantan@hust.edu.cn

TridentNet [22] aims to generate scale-specific feature

maps with a uniform representational power. We use a

parallel multi-branch architecture in which each branch

shares the same transformation parameters but with differ-

ent receptive fields. Then, we use a scale-aware training

scheme to specialize each branch by sampling object

instances of proper scales for training. Other techniques

like multi-scale training and soft-nms are involved in our

method. The model is trained with one 2080Ti GPU and

SimpleDet [6] framework.

A.33. TwoStage ENsembles (TSEN)

Zhifan Zhu and Zechao Li

{zhifanzhu,zechao.li}@njust.edu.cn

TSEN uses ensembles of 3 two-stage methods: vanilla

Faster R-CNN [33], Guided Anchoring [38] and Libra-

RCNN [30]. Note that all the backbones are ResNeXt101

with deformable convolution from C2 to C5. We replace

classification cross-entropy loss with bootstrap loss in

Libra-RCNN, which increases AP about 1% in validation.

For vanilla Faster R-CNN with FPN [25], we add anchor

with aspect ratio 0.8 to each FPN level. We train the

model on random cropped patch with 640 × 640 pixels,

and the image is scaled to 1024 × 1024 during training.

During inference, we use multi-crop patches on test images

(640, 768, 896, 1024 pixels), and merge the result with

NMS (0.33 threshold).
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