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Abstract

Due to the complementarity of RGB and thermal data,

RGBT tracking has received more and more attention in

recent years because it can effectively solve the degrada-

tion of tracking performance in dark environments and bad

weather conditions. How to effectively fuse the information

from RGB and thermal modality is the key to give full play

to their complementarity for effective RGBT tracking. In

this paper, we propose a high performance RGBT tracking

framework based on a novel deep adaptive fusion network,

named DAFNet. Our DAFNet consists of a recursive fusion

chain that could adaptively integrate all layer features in an

end-to-end manner. Due to simple yet effective operations

in DAFNet, our tracker is able to reach the near-real-time

speed. Comparing with the state-of-the-art trackers on two

public datasets, our DAFNet tracker achieves the outstand-

ing performance and yields a new state-of-the-art in RGBT

tracking.

1. Introduction

RGBT (visible light and thermal infrared spectrums)

tracking is a basic research topic in the field of computer

vision, and it aim at estimating the state of a target ob-

ject in a RGBT video pair given the initial ground truth

bounding box. It draws more and more research interests

with the popularity and affordability of thermal infrared

sensors, which could provide many complementary bene-

fits to RGB cameras [17, 20]. Although much progress has

been achieved in RGBT tracking, how to fully explore and

employ the complementary information of these two modal-

ities is still a very challenging problem.

Existing RGBT tracking algorithms [17, 22, 23, 15, 21,

24, 39] mainly focus on the following two aspects. First,

how to design suitable representation learning frameworks

for RGBT tracking. For example, Li et al. [24] propose

a cross modal ranking algorithm to calculate importance

weight of each patch, and then construct robust RGBT fea-

ture descriptions of target objects. However, this method re-

lies handcraft features and is thus difficult to adapt to com-

plex tracking scenarios. In [21], a two-stream convolutional

neural network (CNN) is proposed, in which the features

of RGB and thermal data are extracted using two branch

networks respectively, and then fused in the last layer. Se-

mantic information is rich in deep layers, but lacks of spa-

tial details [28], which plays critical role in target local-

ization. Second, how to achieve adaptive fusion of differ-

ent modalities for RGBT tracking. Early works [17, 23]

base on the collaborative sparse representation in Bayesian

filtering framework, in which the fusion is performed on-

line by optimizing a reliability weight for each modality.

While Lan et al. [15] optimize the modality weights using

the max-margin principle according to classification scores.

However, these approaches would be fail when sparse rep-

resentations or classification scores are insufficient to reflect

modality reliabilities. It also should be noted that most ex-

isting RGBT tracking methods have long delay due to com-

plex optimization procedures.

To solve the above issues, we propose a novel deep adap-

tive fusion network for high performance RGBT tracking,

by taking both robust feature learning and adaptive modality

fusion into account in an end-to-end deep learning frame-

work. Our network architecture is shown in Figure 1 (a). In

general, low level features contain abundant spatial infor-

mation but lack of semantic information, while high-level

features are the opposite [5, 16]. Therefore, we design a

recursive chain of the adaptive fusion module (AFM) to

integrate all modalities and layer features in a unified net-

work. Herein, each AFM block takes features from differ-



ent modalities and previous layer a inputs and outputs the

fused features. To suppress feature noises and redundan-

cies introduced by the above aggregation, we calculate the

channel weights for all feature maps using the global aver-

age pooling method. The details can be seen in Figure 1 (b).

Given the feature maps outputted from the AFM chain, we

extract features of each candidate directly on these feature

maps and use the RoIAlign operation to keep accurate of

feature extraction [12]. Then, the three fully-connected lay-

ers are adopted to adapt appearance and temporal variations

of each instance [30]. The status of the target object is fi-

nally estimated through classification and regression layers.

In summary, this work has made the following three ma-

jor contributions.

• We propose a novel end-to-end deep framework for

near-real-time RGBT tracking. Our framework is able

to efficiently, adaptively and recursively aggregating

features from all layers of RGB and thermal modali-

ties for robust RGBT representations.

• A lightweight adaptive fusion module is designed to

integrate features from different modalities and previ-

ous layer while suppressing feature noises and redun-

dancies.

• Extensive experiments on two public datasets,

GTOT [17] and RGBT234 [20], are conducted to

demonstrate the excellent performance in terms of

both accuracy and speed of the proposed method

against the state-of-the-art RGB and RGBT trackers.

2. Related Work

RGBT tracking has received more and more attention,

and many algorithms are emerging [17, 22, 23, 15, 21, 24,

39].

In [22, 17], the authors use the reconstruction residues or

coefficients to guide a learning a weight for each modality

for adaptive fusion RGB and thermal information. While

Lan et al. [15] employ the classification scores to guide

the generation of fusion weights in a max-margin princi-

ple. However classification scores, reconstruction residues

or coefficients sometimes are not reliable to represent modal

information. There are also some work that focuses on

how to construct robust RGBT feature representations [23,

24].In [23], a weighted sparse representation regularized

graph is proposed to learn a robust RGBT target representa-

tion. The weights of image patches in the optimized graph

are applied to construct robust weighted feature representa-

tions and the target is located by the structured SVM algo-

rithm. In [24], a cross-modal manifold ranking algorithm is

presented to compute patch weights, where the soft cross-

modality consistency is used to explain the different prop-

erties between the two modes and a optimal query learning

method is used to process seed noises.

Recently, the better algorithms are to apply deep learn-

ing techniques to RGBT tracking mainly include [21, 39].

In [21], a two-stream convolutional neural network is pro-

posed to effectively fuse the two modalities information,

and the target position is predicted effectively by multi-

channel correlation filter. The most advanced algorithms

such as DAPNet [39] are used for RGBT tracking through

multi-layer feature fusion and collaborative feature prun-

ing. This method achieves very high RGBT tracking per-

formance. However, DAPNet does not consider the contri-

butions of different layer and different modal features, but

directly aggregates the features of all modal layers, which

would introduce more redundant information and noise. In

addition, the large number of parameters is harmful to the

efficiency of tracking. By means of modal adaptive fusion

module, We can effectively suppress noise and reduce the

influence of redundant information, so as to realize RGBT

tracking more accurately and efficiently.

3. Proposed Tracking Methodology

In this section, we describe the proposed tracker in de-

tail, including network architecture, training and tracking

details. Figure 1 gives an overview of the tracking frame-

work.

3.1. Overall Network Architecture

As shown in Figure 1 (a), we adopt VGG-M [33] as the

backbone network to extract the features of RGB and ther-

mal images respectively. Considering the efficiency and

effectiveness, we adopt the addition operation for the fu-

sion of different layers and modalities, and the spatial sizes

and channel numbers should thus be same. First, we add a

max pooling operation in each layer and modality to down-

sample feature maps, and fuse feature maps outputted from

each layer of RGB and thermal modalities using an adaptive

fusion module (AFM). We will present the details of AFM

in next section. Second, the features outputted from AFM

are passed through a convolution layer with the size of 1×1

to increase the channel dimension.

Note that the AFM structures of the first layer and other

layers are different due to different inputs. The inputs of

AFM in the first layer are the features extracted from RGB

and thermal modalities, while the inputs of other layers ad-

ditionally include the features outputted from the previous

layer, as shown in Figure 1 (a). These AFM blocks com-

pose a recursive aggregation chain. The fusion chain can be

expressed simply by the following formula:

Xi
o =

{

m(Xi
rgb, X

i
t), i = 1

m(Xi
rgb, X

i
t , X

i−1

o ), i > 1
(1)



Figure 1. Illustration of the proposed network. (a) Details of the overall network. The orange and light green blocks represent the features

extracted from thermal and RGB modalities respectively. (b) Details of the adaptive fusion module (AFM). Xrgb and Xt represent the

features of RGB and thermal modalities respectively. Xo represents the features outputted from previous AFM. GAP denotes the global

average pooling, and Fconv represent the convolution operations.

where Xi
rgb and Xi

t represent the features extracted from

RGB and thermal images in the i-th layer. Xi
o represents

the outputted features of the i-th layer. m(·) denotes the

function of AFM.

Given the feature maps outputted from the AFM chain,

we extract features of each candidate directly on these fea-

ture maps and use the RoIAlign operation to keep accurate

of feature extraction [12]. Then, the three fully-connected

layers are adopted to adapt appearance and temporal varia-

tions of each instance [30]. The status of the target object is

finally estimated through classification and regression lay-

ers.

3.2. Adaptive Fusion Module

In this section, we describe the details of the adaptive

fusion module (AFM). As shown in Figure 1 (b), inspired

by[25] we design a set of weighting operations to make the

network focusing on more advantageous areas for effective

fusion of different modalities. The AFM includes modality

aggregation and adaptive weighting, which are described in

detail below.

Information aggregation. At this stage, the network ag-

gregates the information from multiple branches from the

global view. Note that the additive operation is one of

the most commonly used feature fusion method, which is

simple and efficient. Moreover, the direct addition of fea-

ture maps with similar semantic information can not only

fuse complementary information and but also save a lot of

parameters to improve tracking efficiency. Therefore, we

fuse features from two or three branches using a method of

element-wise addition:

Xi
fuse =

{

Xi
rgb +Xi

t , i = 1

Xi
rgb +Xi

t +Xi−1

o , i > 1
(2)

where Xi
rgb and Xi

t represent the features extracted from

RGB and thermal images in the i-th layer. Xi
o represents

the outputted features of the i-th layer. The global average

pooling method is used to generate channel weights g ∈

R
C , and the c-th element of g is obtained by the following

formula:

gc =
1

H ×W

H
∑

i=1

W
∑

j=1

Xc
o(i, j) (3)

To soften the information of g representing global informa-

tion, we compress it through a 1×1 convolution operation,

and obtain p ∈ R
d:

p = φ(ψ(Fconv(g))) (4)

where φ and ψ represent the ReLU function [29] and Batch

Normalization [10], respectively. d is set to 32 in our exper-

iments.

Adaptive weighting. To make full use of aggregate infor-

mation while suppressing feature noises and redundancies,

we generate adaptive weights for fusing all branches. First,

we use the vector p to represent the comprehensive informa-

tion, and then use the softmax activation function to com-

pute the final weights of different branches:

wrgb = softmax(F rgb
conv(p)), w

t = softmax(F t
conv(p)),

(5)



where softmax denotes the softmax activation function.

When the adaptive weighting module is applied to other lay-

ers besides the first layer, the following formula is required,

similar to the above formula:

wo = softmax(F o
conv(p)). (6)

As shown in Figure 1 (b), the AFM block can be described

by the following formula:

Xi
o =

{

wi
rgb ∗X

i
rgb + wi

t ∗X
i
t , i = 1

wi
rgb ∗X

i
rgb + wi

t ∗X
i
t + wi−1

o ∗Xi−1

o , i > 1

(7)

where ∗ denotes the element-wise product, and other expla-

nations are found in the above formula (2).

3.3. Training Details

The entire network is trained end-to-end. The param-

eters of the backbone VGG-M are initialized by the pre-

trained model on the ImageNet dataset [33]. We adopt

the Adam algorithm [14] to optimize the network, and set

the learning rates to 0.0001 and 0.001 for convolution and

fully-connected layers respectively. For each training itera-

tion, we first randomly obtain 8 frames of image and corre-

sponding tracking target location coordinates from a video

sequence. Then 512 positive samples and 1568 negative

samples are obtained from the above 8 frames by Gaussian

sampling, where 64 positive samples and 196 negative sam-

ples are required for each image frame. When the overlap

rate between the candidate box obtained by Gaussian sam-

pling and the ground truth value is in the range of [0.7,1], it

is regarded as a positive sample. When the range is [0,0.5],

it is regarded as a negative sample. We train the network

with 146 epoch iterations. It is worth noting that we train on

the GTOT dataset to evaluate our tracker on the RGBT234

dataset, and train it on the RGBT234 to evaluate on the

GTOT.

3.4. Online Tracking

In the tracking phase, first, as most trackers adopted, we

use the first frame of a sequence and the location of the tar-

get to initialize the tracker. Gaussian sampling is used to

obtain 500 positive samples of different scales around the

target in the first frame, and the details are discussed above.

At the same time, 1000 samples are taken to train the re-

gressor. The regressor is used to modify the coordinates of

the tracking results in the follow-up tracking, so as to obtain

more accurate tracking results. It is worth noting that in the

online tracking phase we only update the parameters of the

fully-connected layers, the same strategy with [30]. When

tracking the target in the t-th frame, we base the tracking re-

sult in the t−1-th frame combined with Gaussian sampling

to obtain 256 samples in the current frame. We employ the

trained model to calculate the scores of 256 samples, and

take the 5 samples with the highest scores at present to cal-

culate the mean value, and then refine the target position

using the trained regressor. Similar to [30], the short-time

updates used in tracking failures and long-time update Set-

tings are adopted to ensure robustness of our algorithm.

4. Experiments

We evaluate the performance of our proposed approach

on two public datasets, GTOT [17] and RGBT234 [20], Ab-

lation study is used to verify the effectiveness of the major

components in our method.

4.1. Dataset and Evaluation Metric

Datasets. The popular datasets, GTOT [17] and

RGBT234 [20], in the RGBT tracking field are used in

this paper. The GTOT dataset consists of 50 pairs of

RGBT video pairs captured in different environments. The

challenges are divided into seven categories based on the

weather and time of the shoot and the status of the tar-

get. The RGBT234 dataset is extended from the RGBT210

dataset [23]. It contains 234 video pairs that are strictly

aligned in two modalities. There are 234,000 images in to-

tal, where the longest video reaching 4,000 frames. The

dataset contains more target occlusion, motion, and camera

movement, as well as the tracking challenges posed by bad

weather and insufficient light.

Evaluation metrics. We use two widely used metrics, Pre-

cision rate (PR) and success rate (SR) to evaluate the perfor-

mance of the tracker. PR is the percentage of frames whose

output position is within a given threshold distance. We

employ the PR score with the threshold as 5 (GTOT) and

20 (RGBT234) pixels to define the representative PR. SR is

the ratio of the number of successful frames whose overlaps

are larger the predefined threshold. And we employ the area

under the curves of success rate as the representative SR for

quantitative performance evaluation.

4.2. Effectiveness of Deep Fusion Scheme

The feature maps in different layers shows different em-

phases, where the visual details at lower level are finer,

and the semantics at deeper level are richer. To fully un-

derstand the effects of different fusion schemes on track-

ing performance, we design three fusion structures based

on RT-MDNet [12], namely Early Fusion, Halfway Fusion,

and Late Fusion. In a specific, Early Fusion directly con-

catenates two modal images form a six channel image and

then input it into the network. Halfway Fusion refers to con-

catenating the convolution features of two modalities after

the first layer. And Late Fusion concatenates the two modal

feature maps from the last convolution layer. The experi-

mental results are shown in Table 1, which suggests that our



Table 1. PR(%) and SR(%) scores of our algorithm on GTOT and RGBT234 comparing with different fusion stages.

RT-MDNet Early Fusion Halfway Fusion Late Fusion DAFNet

GTOT PR 74.5 84.6 79.4 82.9 89.1

SR 61.3 68.3 67.2 66.7 71.2

RGBT234 PR 71.4 73.7 72.2 73.4 79.6

SR 50.0 50.0 49.3 48.3 54.4

Figure 2. Evaluation curves on GTOT dataset. PR(%) and SR(%) curves are used to evaluate the performance of trackers. (a) and (b)

represent the comparison with RGBT trackers and RGB trackers, respectively.

Table 2. Evaluation results of our method with its variants on

GTOT and RGBT234 datasets.

DAFNet-noAFM DAFNet-noAW DAFNet

GTOT PR 84.6 87.3 89.1

SR 68.3 69.6 71.2

RGBT234 PR 73.7 76.2 79.6

SR 50.0 50.8 54.4

Table 3. PR(%) and SR(%) scores and Speed of our DAFNet com-

paring with DAPNet [39] on RGBT234 and GTOT datasets.

SGT DAPNet DAFNet

GTOT Speed 5fps 2fps 23fps

PR/SR 85.1/62.8 88.2/70.7 89.1/71.2

RGBT234 Speed 5fps 2fps 20fps

PR/SR 72.0/47.2 76.6/53.7 79.6/54.4

DAFNet significantly outperforms other baseline methods,

demonstrating the effectiveness of our deep fusion scheme.

4.3. Ablation Study

To verify the effectiveness of the main components of

our proposed approach, we conduct an ablation study on

GTOT and RGBT234 datasets. We implement two variants

namely DAFNet-noAFM and DAFNet-noAW in this exper-

iment. 1) DAFNet-noAFM, in this model we remove the

adaptive fusion modules and it is the same with Early Fu-

sion in Table 1. 2) DAFNet-noAW, here we remove the

adaptive weighting operations for all layers. As can be seen

from the experimental results in Table 2, RGBT tracking

performance can be significantly improved through multi-

layer adaptive feature fusion. This is mainly because the fu-

sion of multi-layer features can not only ensure the aggrega-

tion of information at each scale of the two modalities, but

also integrate the complementary advantages of low-level

and high-level features. In addition, after adding the adap-

tive weighting operations, the performance is further im-

proved, with the increase of PR and SR by 1.5% and 2.2%

respectively. It is perhaps because that when aggregating

multi-layer and multi-modal information, a large amount of

redundant information and noises would inevitably be in-

troduced, and thus we introduce channel weights to achieve

the further improvement of tracker performance.

4.4. Efficiency Analysis

We implement the proposed method based on the plat-

forms of Pytorch 0.4.0, an Intel(R) Xeon(R) CPU E5-2620

with a single CPU core (2.10GHz), 64GB RAM and a

NVIDIA GeForce RTX 2080Ti GPU with 11GB of mem-

ory. Due to the operational efficiency of our network,

the tracking speed can reach 23 FPS on average. Com-

pared with the current best RGBT tracking algorithm DAP-

Net [39], we can achieve the current best performance in

terms of both accuracy and speed. See table 3 for detailed

comparison.

4.5. Comparison with State-of-the-art Methods

Evaluation on GTOT. We compare the RGBT tracker

proposed in this paper with some of the state-of-the-art

trackers available recently, including DAPNet [39], MD-

Net [30]+RGBT1, MDNet+RGBT2, DAT+RGBT [31],

SiamDW+RGBT [38], CSR [17], L1-PF [36], SGT [23]

and JSR [34]. Several of these are RGBT trackers [19, 18,

23, 39].The rest is to extend RGB trackers to RGBT ones,

mainly by concatenating directly along the channel through



Table 4. PR(%) and SR(%) scores of the challenge-based performance comparison on the RGBT234 dataset. The best and second best

results are marked in red and green, respectively.

SOWP+RGBT CFNet+RGBT KCF+RGBT L1-PF CSR-DCF+RGBT MEEM+RGBT SGT Early Fusion Halfway Fusion DAPNet DAFNet

NO 86.8/53.7 76.4/56.3 57.1/37.1 56.5/37.9 82.6/60.0 74.1/47.4 87.7/55.5 86.7/61.1 86.1/61.1 90.0/64.4 90.0/63.6

PO 74.7/48.4 59.7/41.7 52.6/34.4 47.5/31.4 73.7/52.2 68.3/42.9 77.9/51.3 81.3/55.2 75.8/51.5 82.1/57.4 85.9/58.8

HO 57.0/37.9 41.7/29.0 35.6/23.9 33.2/22.2 59.3/40.9 54.0/34.9 59.2/39.4 60.3/39.7 62.4/42.0 66.0/45.7 68.6/45.9

LI 72.3/46.8 52.3/36.9 51.8/34.0 40.1/26.0 69.1/47.4 67.1/42.1 70.5/46.2 71.3/47.4 72.6/49.3 77.5/53.0 81.2/54.2

LR 72.5/46.2 55.1/36.5 49.2/31.3 46.9/27.4 72.0/47.6 60.8/37.3 75.1/47.6 74.6/48.8 73.3/47.9 75.0/51.0 81.8/53.8

TC 70.1/44.2 45.7/32.7 38.7/25.0 37.5/23.8 66.8/46.2 61.2/40.8 76.0/47.0 72.1/50.2 73.8/51.6 76.8/54.3 81.1/58.3

DEF 65.0/46.0 52.3/36.7 41.0/29.6 36.4/24.4 63.0/46.2 61.7/41.3 68.5/47.4 64.8/46.2 66.9/47.1 71.7/51.8 74.1/51.5

FM 63.7/38.7 37.6/25.0 37.9/22.3 32.0/19.6 52.9/35.8 59.7/36.5 67.7/40.2 64.6/39.6 61.8/38.8 67.0/44.3 74.0/46.5

SV 66.4/40.4 59.8/43.3 44.1/28.7 45.5/30.6 70.7/49.9 61.6/37.6 69.2/43.4 73.9/50.5 73.9/50.5 78.0/54.2 79.1/54.4

MB 63.9/42.1 35.7/27.1 32.3/22.1 28.6/20.6 58.0/42.5 55.1/36.7 64.7/43.6 63.5/45.1 63.6/44.6 65.3/46.7 70.8/50.0

CM 65.2/43.0 41.7/31.8 40.1/27.8 31.6/22.5 61.1/44.5 58.5/38.3 66.7/45.2 64.6/44.7 63.7/44.8 66.8/47.4 72.3/50.6

BC 64.7/41.9 46.3/30.8 42.9/27.5 34.2/22.0 61.8/41.0 62.9/38.3 65.8/41.8 64.2/40.5 64.2/41.0 71.7/48.4 79.1/49.3

ALL 69.6/45.1 55.1/39.0 46.3/30.5 43.l1/28.7 69.5/49.0 63.6/40.5 72.0/47.2 73.7/50.0 72.2/49.3 76.6/53.7 79.6/54.4

Figure 3. Evaluation curves on RGBT234 dataset. PR(%) and SR(%) curves are used to evaluate the performance of trackers. (a) and (b)

represent the comparison with RGBT trackers and RGB trackers, respectively.

two modalities, or by using thermal information as an ad-

ditional channel, including, MDNet+RGBT1(concatenate

two modes of data to form 6 channels of input data),

DAT+RGBT, SiamDW+RGBT, CFnet+RGBT and MD-

Net+RGBT2(concatenate the feature maps of the two

modes at conv3). From the result curves in Figure 2 (a), we

can see that our tracker has significant performance gains

over others. Note that DAPNet is the second best tracker,

but the tracking speed of DAPNet is too slow ,it’s only a

tenth of our speed.

We also compare our tracker with some popular RGB

trackers to justify the importance of thermal information

in visual tracking, includes DAT [31], RT-MDNet [12],

SiamDW [38], ACT [2], MDNet [30], ECO [4], BACF [8],

SRDCF [7], ACFN [3], SiameseFC [1], CFnet [35] and

KCF [9]. It can be seen from Figure 2(b) that our algorithm

achieves clear improvement over RGB trackers, justifying

the importance of thermal information in visual tracking.

Evaluation on RGBT234. To further verify the effective-

ness of our method, we used a larger dataset RGBT234,

so as to comprehensively verify the generalization ability

of our tracker. As shown in Figure 3, we compare the

proposed algorithm with 12 RGB algorithms (DAT [31],

RT-MDNet [12], SiamDW [38], ACT [2], MDNet [30],

ECO [4], SOWP [13], SRDCF [7], CSR-DCF [27],

DSST [6], CFnet [35] and SAMF [26]) and 12 RGBT

algorithms(MDNet+RGBT1, MDNet+RGBT2, SGT [23],

SOWP+RGBT, CSR-DCF+RGBT, MEEM [37]+RGBT,

CFnet+RGBT, KCF [9]+RGBT, JSR [34] and L1-PF [36]).

After reviewing the results, we can find that our method

is superior to all existing RGB algorithms in all evaluation

metrics. In the comparison of the results of RGBT tracking

algorithm, the precision rate (PR) of our algorithm is 3.0%

higher than that of the recently proposed DAPNet [39], and

the success rate (SR) is 0.7% higher than DAPNet. Note

that we also achieve faster performance than DAPNet.

The following challenges are presented in the RGBT234

dataset based on weather, occlusion, camera shake, and tar-

get scale variations to comprehensively evaluate the perfor-

mance of the tracker. The challenges include, no occlusion

(NO), partial occlusion (PO), heavy occlusion (HO), low

illumination (LI), low resolution (LR), thermal crossover

(TC), deformation (DEF), fast motion (FM), scale varia-

tion (SV), motion blur (MB), camera moving (CM) and

background clutter (BC). As shown in Table 4, we evalu-

ate some of the most recent advanced tracking algorithms



Figure 4. Visual results in complex scenarios comparing with the four advanced tracking algorithms, including DAPNet [39], SGT [23]

and ECO [4].

based on these challenges comparing to our proposed al-

gorithms. The comparison of tracking algorithms includes,

L1-PF, KCF+RGBT, MEEM+RGBT, SOWP+RGBT, CSR-

DCF+RGBT, CFNet+RGBT, SGT, MDNet+RGBT1 and

DAPNet. As we can see from Table 4, our tracker achieves

state-of-the-art performance in PR on all challenges. SR

scores of our DAFNet are slightly lower than DAPNet in

the deformation (DEF) and fast motion (FM) challenges.

You can also see that in the LI challenge, our performance

gains over DAPNet are significant. The main reason is

that the information of RGB images will become fuzzy un-

der low lighting conditions and the thermal information be-

comes very important. Our DAFNet employs a deep adap-

tive fusion scheme to incorporate more useful information

and mitigate effects of noisy ones. In addition, on the TC

challenge, our tracking results are 4.3% higher in the PR

score and 4% higher in the SR score than the second best

algorithm. It fully demonstrates that our adaptive weighting

operation can adaptively integrate different feature maps.

Some qualitative results are shown in Figure 4, where

some video sequences with different challenging factors are

presented. By comparing it to the best recent tracker re-

sults, the approach we’ve come up with can better address

the challenges of low illumination, thermal crossover, and

bad weather, etc.

5. Conclusion

In this paper, we propose a robust RGBT tracking

method based on a deep adaptive fusion network, in which

we make full use of the complementary advantages of shal-

low and deep modal features and also introduce adaptive



weighting operations to effectively reduce feature noises

and redundant information. Extensive experiments show

that our method can effectively solve RGBT tracking chal-

lenges in difficult environments such as insufficient light,

severe weather and occlusion. The state-of-the-art per-

formance is achieved on public RGBT tracking datasets.

In the future, we will develop an effective scale handling

method in our framework to improve the robustness of

tracking, similar to the Iou-Net algorithm [11] and RPN al-

gorithm [32] in the field of object detection.
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