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Abstract

Due to better video quality and higher frame rate, the
performance of multiple object tracking issues has been
greatly improved in recent years. However, in real
application scenarios, camera motion and noisy per frame
detection results degrade the performance of trackers
significantly. High-speed and high-quality multiple object
trackers are still in urgent demand. In this paper, we
propose a new multiple object tracker following the popular
tracking-by-detection scheme. We tackle the camera motion
problem with an optical flow network and utilize an

auxiliary tracker to deal with the missing detection problem.

Besides, we use both the appearance and motion
information to improve the matching quality. The experi-
mental results on the VisDrone-MOT dataset show that our
approach can improve the performance of multiple object
tracking significantly while achieving a high efficiency.

1. Introduction

Computer vision is an important branch of artificial
intelligence, and multiple object tracking (MOT) has
become a research hotspot in the field of computer vision.
According to the review literature written by Luo et al. [1],
the task of MOT is mainly partitioned to locating multiple
objects, maintaining their identities, and yielding their
individual trajectories given an input video. Compared with
single object tracking (SOT), MOT pays more attention to
the determination of the individual trajectories of multiple
objects and it is a more complex issue due to interactions
among multiple objects. According to Micheloni et al. [2],
MOT has very important practical value in the fields of
video surveillance, automatic driving, robot navigation and
positioning, intelligent human-computer interaction, etc.

In recent years, with the rapid development of deep
neural network, the accuracy of object detection has risen
to a new level. As a result, tracking-by-detection has be-
come the most popular framework for multiple object
tracking (MOT). First of all, a detector is used to detect all
the objects in each frame. Then the data association method
is used to obtain the respective trajectory of each object.
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Figure 1. The main procedure of tracking-by-detection framework.

Figure 1 shows the main procedure of tracking-by-detection.
Under this process, the performance of MOT depends
largely on the quality of the object detection algorithm.

Simple tracking-by-detection method like ToU Tracker
proposed by Bochinski ef al. [3] can achieve a fine result
when the object detection results are good enough and there
is no dramatic camera motion in the video. However,
camera motion is very common and dramatic for videos
taken by drones, and the processing of videos taken by
drones is also in urgent demand. Not only that, when the
objects are crowded and there are a lot of interactions in the
scene, most object detectors are often difficult to deal with
it and many false-positive detections and missing detections
will occur at this time. These problems make multiple
object tracking a more complicated challenge.

So far, many methods have been proposed to response to
these problems. Wojke et al. [4] propose a deep association
metric considering both the motion information and the
deep appearance feature of the object while matching. Chen
et al. [5] further improve the appearance feature and handle
unreliable detection by collecting candidates from outputs
of both detection and tracking. Chu et al. [6] apply single
object tracking method to multiple object tracking issues
and propose a spatial-temporal attention mechanism to
handle the drift caused by occlusion and interaction among
targets. Tang et al. [7] propose a novel graph-based
formulation that links and clusters person hypotheses over
time by solving an instance of a minimum cost lifted
multicut problem.

In this paper, we mainly solve the problems of ID
switches and error detections in multiple object tracking
from three aspects and propose a new method of MOT
named Flow-Tracker. For frequent camera motion in videos
taken by drones, we use the optical flow network proposed
by Sun et al. [8] to eliminate its influence and estimate the
global motion of two adjacent frames. It also acts as a



tracker to predict the position of the object in the current
frame, which is more favorable for the subsequent data
association process. Second, we propose a cascade
matching strategy based on IoU and deep appearance
features, which has a good effect on reducing false matches.
In addition, we utilize the optical flow network as an
auxiliary tracker when the trajectory is broken due to the
missing detection. It has a great effect on alleviating the
problems of ID switches and fragmentations caused by
missing detection. The experiments on the VisDrone2019-
MOT dataset [9] show that our method can improve the
accuracy of multiple object tracking significantly. Further,
we can achieve a high speed of 100 FPS with performing
motion estimation by judging that each frame occurs
camera motion or not, which can achieve a trade-off
between the accuracy and the speed.

2. Related work

The research of multiple object tracking (MOT) problem
has been a long time. In recent years, the problems of object
detection and tracking under the UAV scenes has aroused
the attention of researchers. More and more large-scale
datasets based on drones are also appearing, such as
Stanford Drone Dataset (SDD) [10], DTB70 dataset [11],
VisDrone dataset [9] and so on. In order to tackle the
various challenges of MOT under drone scenes, we need to
consider the effective use of the motion and appearance
information, better data association strategy and more acc-
urate object detectors, etc. Many related works have
thoroughly studied about these issues.

2.1. Motion estimation

The task of object tracking is to predict the position of
the object. Due to the dramatic camera motion under the
drone scenes, the prediction becomes more complicated. In
some earlier works, the Kalman filter [12] is a commonly
used motion estimation method in MOT, predicting the
target state of the current moment from the target state at
the previous moment. Recently, with the development of
deep learning, the motion models [13, 14] based on RNN
and the Long Short Term Memory (LSTM) have achieved
better results.

The optical flow is an effective way to describe motion
between frames within a video. The traditional Lucas—
Kanade algorithm [15] gives a method for solving sparse
optical flow, which has been widely used. With the
explosive progress of convolutional neural network, the
method of estimating the optical flow directly by CNN has
also been proposed. Fischer and Ilg et al. successively
propose FlowNet [16] and FlowNet 2.0 [17], which can
predict the optical flow directly using a well-trained
encoder-decoder network and can be used for dense optical
flow estimation. Sun et al. propose PWC-Net [8], an optical
flow network fusing pyramidal processing, warping, and a

cost volume, which has achieved better and faster optical
flow estimation. Our algorithm takes it as the way of motion
estimation in the process of MOT.

2.2. Appearance feature

The appearance feature is a more discriminative repre-
sentation of the object, which can distinguish between
objects effectively when they are similar. It is very helpful
for crowded objects and scenes where there are lots of inter-
actions among objects. In earlier works, the color histo-
grams [18, 19] and some hand-crafted features [20, 21] are
commonly used as descriptors of the appearance of objects.

With the popularity of deep neural network, deep feature
based appearance representations are increasingly used to
enhance the discriminative power of appearance features.
Wojke et al. [4] employ a wide residual network to extract
the features of objects and measure the similarity of objects
with cosine distance. Chen et al. [5] utilize the network
architecture proposed by Zhao et al. [22] and train the
network on a combination of several large-scale person re-
identification datasets to extract the features of objects,
which takes Euclidean distance as the metric of similarity
of objects. Leal-Taixé et al. [23] extensively use Siamese
network to learn discriminative features from detected
objects. In this paper, we extract the appearance features of
the detected objects using a residual network trained on
large-scale re-identification datasets and distinguish them
by calculating the cosine distance between two objects.

2.3. Data association

Data association is a key step in tracking-by-detection
based MOT methods. Many offline MOT methods [24, 25,
26] treat data associations as graph-based optimization
problems. Hungarian algorithm [27] is another commonly
used data association optimization method. Xu ef al. [28]
further introduce a differentiable operator to build a deep
Hungarian network.

We simply replace the greedy data association way in
IoU Tracker [3] with the Hungarian algorithm. In addition,
we design a cascade data matching method by repeatedly
utilizing the motion information and appearance features of
the objects.

2.4. Object detection

As a part of tracking-by-detection based MOT algorithm,
object detection has a great impact on the performance of
the trackers. Both false positives and missing detections
directly affect the evaluation metric of MOT, and indirectly
lead to ID switches, so a better detector can greatly improve
the accuracy of MOT. In earlier times, pedestrian or vehicle
detectors based on DPM [29] played an important role in
MOT. Recently, deep learning based object detection
methods have far surpassed those traditional ones. Faster R-
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Figure 2. The overview of the proposed Flow-Tracker, which mainly contains three modules proposed in this paper. We employ an optical
flow network for motion estimation to eliminate camera motion. A cascade matching policy is introduced to make full use of the motion
and appearance information of the objects. And an auxiliary tracker is used to reduce mismatching caused by missing detections.

CNN [30] has become a commonly used object detector
which can make good performance. Some recent object
detection algorithms [31, 32, 33, 34, 35] continuously
refresh the accuracy of object detection. Furthermore, some
methods of pedestrian detection [36, 37] are also usually
used as benchmark detectors for MOT.

Since the objects under drone shooting are small and
crowded, we need realize better object detectors to improve
the poor performance of MOT. We compare the tracking
results of Faster R-CNN and several improved algorithms
in this paper, showing the big impact of object detector on
MOT.

3. Method

As mentioned above, camera motion and noisy detection
results are main problems to be solved of high quality
multiple object tracker, and our Flow-Tracker is designed
to deal with these two challenges. It uses IoU Tracker as the
baseline tracker and handles global motion problems
caused by camera with an optical flow network, which
reduces the amount of ID switches obviously. Against
mismatching caused by missing detections, an auxiliary
tracker and a better cascade matching strategy can effect-
tively deal with it. Besides, we utilize more accurate
detector to eliminate the effects of false alarms and missing
detections. Figure 2 gives the overall framework and proce-
dure of our proposed Flow-Tracker.

3.1. IoU Tracker

We use IoU Tracker as the baseline due to its simplicity
and high efficiency. The IoU Tracker takes advantages of
the high quality and high frame rate of videos. It only uses
IoU as the matching criteria of objects in two adjacent
frames, which is defined as:

bbox1nbbox2

IoU(bbox1,bbox2) = ——— (1)
bbox1Ubbox2
IoU Tracker simply continues a track by associating the

detection with the highest IoU to the tracked object in the
previous frame if a threshold oy, is met, which is a greedy
way. All detections not assigned will be created as new
tracks. If a track does not have any detections to assign, it
will be finished. In order to reduce the impact of false-
positive detections, all finished tracks with a length shorter
than t,,;, and without at least one detection score above oy,
are filtered. Figure 3 shows the main principle of IoU
Tracker.

The whole tracking process is lightweight and efficient.
When there is no camera motion in video sequences, loU
Tracker is a good multiple object tracker. However, camera
motion will cause lots of errors in IoU-based matching
method, further leading to ID switches. In addition, missing
detections and false-positive detections are also two factors
affecting the accuracy of association.

3.2. Global motion estimation

With the widespread use of drones, more and more
videos are under the drone scenes. Therefore, camera
motion has become a big challenge to MOT. When there is
a large amount of camera motion in video sequences, large
offsets will occur in the objects of two adjacent frames,
which affects the accuracy of matching results.

In order to eliminate the effects of the camera motion, we
need to compensate for the motion of two adjacent frames.
We use the optical flow network (PWC-Net) proposed by
Sun et al. [8] to estimate the amount of motion at each
position from the previous frame f;_; to the current frame
ft- For each track in the previous frame f;_;, we use the
estimated offset from PWC-Net to calculate its exact
position in the current frame f;:

bbox'(xy,y,) = bbox(x; +uy,y; + vy) 2)
bbox'(x5,y,) = bbox(x, + Uy, y, + V) 3)
where bbox and bbox' are the bounding boxes of the same
object in the previous frame and the current frame,
respectively. (x4, y;) and (x,,y,) are the coordinates of
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Figure 3. The main process of loU Tracker. It takes IoU as the
criterion for matching objects of adjacent frames, simple and
efficient.

the top left and bottom right corners of the object. (uy, v;)
and (u,, v,) are respectively the horizontal and vertical
optical flow values at the top left and bottom right corners
of the object.

In fact, the optical flow network estimates the amount of
global motion between two adjacent frames, taking into
account the effects of camera motion. We can also consider
it as a predictor of the object position, predicting the object
position in the current frame from the global motion amount
estimated by the optical flow given the object position in
the previous frame. As a result, we associate predicted
objects by optical flow and the detected objects in the
current frame, which is a more precise way.

Because camera motion does not occur in each frame of
the whole video, we propose another method of motion
estimation. We count the number of unmatched objects in
the current frame, and if it exceeds half of the matched
objects, we think this is caused by camera motion, so we
need use optical flow estimation to predict the positions of
objects at this time. The experiments show that it is a more
efficient method which can reach a high speed of 100 FPS.

3.3. Auxiliary tracker

Another drawback of ToU Tracker is that the previous
track cannot continue when there is missing detection in a
certain frame. In this case, it will create a new track in the
subsequent frames, which causes a large number of ID
switches and fragmentations.

When the object disappears due to missing detection in a
frame f;, it may reappear in subsequent frames, so we
cannot simply terminate this track. Instead, we utilize an
auxiliary tracker which is actually a position predictor to
predict the position of the object in subsequent several
frames.

Specifically, we use the optical flow network mentioned
in the previous section to predict the location of unmatched
objects, which also saves lots of computational overhead.
In order to prevent errors of prediction in more frames, we
only limit the use of auxiliary tracker to a maximum of .,
frames. Within these t,,,, frames, the previous track is
continued with the object bounding box predicted by the
auxiliary tracker. If the track can be successfully matched
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Figure 4. Overview of the deep appearance feature network, which
is based on ResNet [39]. The feature of each detected object is
repre-sented by a 128-dimensional vector.
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Figure 5. The procedure of cascade matching policy.

with a new detection within these t,,4, frames, it is con-
sidered that a missing detection has occurred before and the
track will continue. Otherwise, we believe that the object
has disappeared and this track will be terminated.

The auxiliary tracker is very helpful for reducing missing
detections and fragmentations, which improves the match-
ing quality effectively. And the experimental results con-
firm its effectiveness.

3.4. Cascade matching policy

IoU Tracker only takes the IoU distance as the criterion
for associating objects between adjacent frames. This may
be inaccurate when there are crowded objects and a lot of
false-positive detections in the scene, so we think we should
utilize both IoU and the appearance feature to improve the
accuracy of data association. We extract the appearance
features of the detected objects using a residual network
trained on large-scale re-identification datasets and
distinguish two objects by calculating the cosine distance
between them. Based on these, we further propose a cas-
cade matching policy. Figure 4 and Figure 5 demonstrate
our appearance feature extractor and the procedure of
cascade matching policy respectively.

The specific matching process can be divided into three
steps. First of all, we use optical flow network to predict the
motion between two adjacent frames and derive the object
position on the current frame. Then we calculate the loU
between the tracked object and the detected object. If it is
above the defined threshold o0;,y,, we think they are
matched. Second, we extract the appearance features of
unmatched tracks and detections. Then we compute the
appearance distance and loU between unmatched tracks and



Method AP APy 55 APy 5 APy 75 APy APpys  APyy APpeq AP,
Deep Sort [42] 4.27 7.14 4.05 1.62 12.17 0 1.04 7.22 0.9
IoU Tracker [3] 10.18 15.04 9.34 6.17 34.05 0 0 7.69 9.17

Flow-Tracker(ours) 15.12 26.03 11.60 6.25 32.82 6.08 9.72 7.65 9.84

Table 1. The performance of multiple object tracking on VisDrone2019-MOT validation set based on AP metric.

Method MOTA MOTP  IDF; MT ML FP FN IDS FM

Deep Sort [42] 10.1 74.7 38.3 106 245 21172 42826 590 1101
IoU Tracker [3] 12.6 75.7 383 113 248 19979 42236 576 1093
Flow-Tracker(ours) 264 78.1 41.9 115 246 9987 43766 127 428

Table 2. The performance of multiple object tracking on VisDrone2019-MOT validation set based on MOTA metric.

detections. If they meet the matching criteria at the same
time, we think they are matched. Finally, for those
mismatched tracks, we use the auxiliary tracker to continue
predicting their positions in subsequent several frames. If
they match successfully within these frames, we believe
these tracks can continue. Otherwise, we think these objects
have disappeared and these tracks will be terminated. We
set a higher threshold of IoU in the first step and introduce
the appearance features of the objects in the second step,
combining together for a more accurate matching. Besides,
the use of auxiliary trackers can reduce the impact of
missing detections.

4. Experiments

We perform a lot of experiments on the VisDrone2019-
MOT dataset and evaluate the performance of the proposed
Flow-Tracker. We mainly compare with the baseline me-
thod using two different evaluation metrics and the expe-
rimental results confirm the effectiveness of our method.

4.1. Experiment setup

VisDrone datasets. VisDrone [9] is a large-scale bench-
mark under drone scenes, which contains four tasks of DET,
VID, SOT and MOT. VisDrone2019-MOT dataset consists
of 63 videos captured by drone platforms in different places,
annotating the bounding boxes of ten categories (i.e.,
pedestrian, person, car, van, bus, truck, motor, bicycle,
awning-tricycle, and tricycle) of objects in each video
frame. The training set, validation set and test set contain
56, 7 and 16 videos respectively. All experiments in this
paper are trained on the training set and we report the results
on the validation set and the test set.

Implementation details. We employ PWC-Net trained
on FlyingChairs [16] and FlyingThings3D [38] datasets as
our motion estimation network and take it as the auxiliary
tracker simultaneously when there is missing detection. Our
appearance feature extractor is based on ResNet [39], which
is pretrained on a combination of Marketl1501 [40] and
MARS [41] datasets. We use three object detection
algorithms: Faster R-CNN, Cascade R-CNN and improved

Cascade R-CNN. For the object detector, we use a
GTX1080Ti GPU to train it on all the images in the training
set. And all the hyper-parameters in the experiments are
obtained by grid search on the validation set.

Evaluation metrics. To evaluate the performance of
different methods on MOT task, we adopt two evaluation
ways.

1). Each algorithm outputs a list of bounding boxes with
confidence scores and the corresponding identities. We sort
the tracklets (formed by the bounding box detections with
the same identity) according to the average confidence of
their bounding box detections. A tracklet is considered
correct if the IoU with ground truth tracklet is larger than a
threshold. We use three thresholds in evaluation, i.e., 0.25,
0.50, and 0.75. The performance of an algorithm is
evaluated by averaging the mean average precision (mAP)
across object classes over different thresholds.

2). We also adopt the most commonly used metrics in
MOT, including multiple object tracking accuracy (MOTA),
multiple object tracking precision (MOTP), identification
F1 score (IDF1), the number of mostly tracked targets (MT, >
80% recovered), the number of mostly lost targets (ML, <
20% recovered), false positives (FP), false negatives (FN)
and identity switches (IDS). Besides, we also consider the
processing speed of the algorithm and use frames per
second (FPS) to measure it.

4.2. Results and analysis on validation set

We first use Faster R-CNN as the object detector and
compare our method with Deep Sort [4] and IoU Tracker
[3]. The results are shown in Table 1 and Table 2.

Specifically, we first perform a class-agnostic non-
maximum suppression (NMS) with a threshold g;,,,,¢ for all
the detection results of each image. Then we employ the
proposed improvements to our tracker. From the results of
Table 1, we find the mean average precision (mAP) has a
significant improvement than the baseline method and the
accuracy of most categories has been improved, which
proves the effectiveness of our method. Further, from Table
2, the MOTA of our method has a substantial increase com-
pared to Deep Sort and IoU Tracker. Not only that, we can



Method AP APyss  APys  APyys | APy  APhys APy APpeq APy
ToU Tracker [3] 10.18 | 15.04 934 6.17 | 34.05 0 0 7.69 9.17

+ Cascade R-CNN 1668 | 2938  13.72 6.93 | 31.84 1111 2188 779  10.79
+ motion estimation 1759 | 3050 1432 726 | 3395 1111 21.88 899  12.04
+ auxiliary tracker 1946 | 2872  19.10  12.87 | 4214 1111 21.81 1116  19.75
+ cascade matching 20.58 | 29.83 1921  13.70 | 4473 11.11 2500  12.89  20.29
Flow-Tracker 2170 | 3030 2009 1572 | 4678 11.11 25.00 13.94  22.69

Table 3. Comparison of multiple object tracking results on VisDrone2019-MOT validation set based on AP metric. From top to bottom,
each row indicates the result of adding different modules proposed in this paper to the baseline tracker.

Method MOTA  MOTP  IDF; MT ML FP FN IDS FM

IoU Tracker [3] 12.6 75.7 38.3 113 248 19979 42236 576 1093

+ Cascade R-CNN 26.7 78.3 41.8 117 248 10179 42151 338 630

+ motion estimation 29.0 78.3 42.8 121 246 9316 41608 290 574
+ auxiliary tracker 31.2 78.6 45.7 136 253 9123 40334 221 542

+ cascade matching 31.5 78.5 46.0 137 247 9547 39474 125 489
Flow-Tracker 32.1 78.7 50.1 141 240 9242 39423 112 475

Table 4. Comparison of multiple object tracking results on VisDrone2019-MOT validation set based on MOTA metric. From top to bottom,

each row indicates the result of adding different modules proposed in this paper to the baseline tracker.

Table 5. Comparison of accuracy and speed of the proposed two
methods on the validation set of VisDrone2019-MOT. Flow-
Tracker-fast is a way that we do not estimate the optical flow per
frame.

find the number of false positives has been greatly reduced.
The number of ID switches and fragments are also greatly
reduced, confirming that our proposed motion estimation
module, auxiliary tracker and cascade matching strategy
have improved the accuracy of matching.

Because the detection results of Faster R-CNN on the
VisDrone dataset are not very good and there are still a lot
of false positives and missing detections, which have
influenced the correct association of objects. We use im-
proved detection methods to improve the performance of
tracker. The experimental results are presented in Table 3
and Table 4, and we analyze the role of different modules
proposed in this paper.

Effect of motion estimation. We add a motion estima-
tion module to predict the position of the object in the
current frame before the object matching process. The
results in Table 3 show that the overall AP has some
improvement after adding it. In Table 4, we can see that the
amount of false positives, missing detections and ID
switches reduce significantly with our motion estimation

Method AP MOTA | Speed (FPS) module, which confirms that eliminating camera motion by
Flow-Tracker 21.7 32.1 5 using optical flow information has great help in reducing
Flow-Tracker-fast 20.9 31.6 100 false matches.

Effect of auxiliary tracker. The overall AP can be
raised from 17.59 to 19.46 by adding an auxiliary. Further,
the false positives and missing detections reduce greatly
thanks to the auxiliary tracker. Besides, the introduction of
the auxiliary tracker significantly reduces the number of ID
switches caused by missing detections, which also makes
the fragmentations in a complete trajectory less. In general,
it raises the MOTA by 2.2 points.

Effect of cascade matching policy. Our matching stra-
tegy not only considers IoU between objects, but also
introduces appearance features to enhance the discrimina-
tion of the objects. The overall AP has already risen to
20.58 by using cascade matching strategy and the accuracy
of each category has increased more or less. For another
evaluation metric, the MOTA has a minor improvement
which also states the effectiveness of our matching method.
We can also find that the number of ID switches is reduced
by up to 45% from Table 4. At the same time, the number
of fragments in the trajectory is also significantly reduced,
proving the importance of data association and matching in
multiple object tracking.

Effect of object detector. We first use Faster R-CNN as
the object detector of the original IoU Tracker. Then we
train a Cascade R-CNN detector on the VisDrone2019-
MOT training set and replace the original object detector.



Method AP APy 55 APy 5 APy 75 AP, APpys APy APyeq AP, o
CEM [42] 5.7 9.22 4.89 2.99 6.51 10.58 8.33 0.7 2.38
H?T [43] 4.93 8.93 4.73 1.12 12.9 5.99 2.27 2.18 1.29

THTLS [44] 4.72 8.6 4.34 1.22 12.07 2.38 5.82 1.94 1.4
TBD [45] 5.92 10.77 5 1.99 12.75 6.55 5.9 2.62 1.79
GOG [24] 6.16 11.03 5.3 2.14 17.05 1.8 5.67 3.7 2.55

CMOT [46] 1422 | 22.11 14.58 5.98 27.72 17.95 7.79 9.95 7.71

Flow-Tracker 30.87 | 41.84 31 19.77 48.44 26.19 29.5 18.65 31.56

Table 6. The experimental results on VisDrone2019-MOT test set.

The overall AP increases by 6.5 points and the detection
accuracy has a significant improvement. From the compa-
rison in Table 4, we can also get the same conclusion. The
number of false alarms drops from 19979 to 10179 and
there is also a certain reduction in the number of missing
detections. The improvement of the detection results is also
beneficial for obtaining better matching results, so the
number of ID switches is also greatly reduced. Because the
MOTA is closely related to false positives, missing
detections and ID switches, so we see that the MOTA has
risen from 12.6 to 26.7 in Table 4. The last row of Table 3
and Table 4 shows that we further improve the object
detector by using Soft-NMS, deformable convolution and
other tricks and it forms our Flow-Tracker eventually. The
AP and MOTA have reached the highest level of 21.7 and
32.1 respectively, and almost all the other metrics have
certain improvements compared with baseline.

Speed comparison. For tracking algorithms, speed is
also an important factor we should consider. It is a time
consuming process to calculate the optical flow amount of
two adjacent frames due to the high resolution of the image,
so we employ another method of motion estimation to save
time. Specifically, we count the number of unmatched
objects in the current frame, and if it exceeds half of the
matched objects, we use optical flow estimation to predict
the positions of objects at this time. We compare the accu-
racy and speed of the two methods in Table 5. We can see
that the method performing motion estimation per frame
has a higher accuracy (AP and MOTA), but its speed is only
5 FPS which cannot achieve real time. Conversely, the
other way is much faster, but at the expense of a little
accuracy. We can therefore achieve a trade-off between
accuracy and speed.

4.3. Results on test set

We also report the performance of our method on the
VisDrone2019-MOT test set, which is shown in Table 6.
We use the improved Cascade R-CNN mentioned above as
the detector. The main evaluation metric on test set is the
mean average precision (mAP) across object classes over
different thresholds. Our Flow-Tracker achieves an AP of
30.87, which far exceeds all the baseline methods and the
running speed can reach 5 FPS. What’s more, our method

achieves the highest accuracy in all categories, which
proves the effectiveness of our method strongly. More
experimental results and analysis on test set can refer to
VisDrone-VDT2018 [47] and VisDrone-MOT2019 [48].

5. Conclusion

In this paper, we propose a new multiple object tracking
framework based on IoU Tracker, integrating three our
proposed modules. In order to solve the mismatch problem
caused by dramatic camera motion, we employ an optical
flow network to estimate the global motion between
adjacent frames, which can also be considered as a predictor
of the object position. We tackle the missing detection
problem by introducing an auxiliary tracker, which has a
good effect on alleviating the problems of ID switches and
fragmentations caused by missing detection. Besides, we
construct a cascade matching policy using IoU and appear-
ance feature extracted by a residual network, which
improves the matching accuracy significantly. We further
compare the effects of several object detection algorithms
on the tracking results of MOT. The experimental results on
the VisDrone2019-MOT dataset confirm the effectiveness
of our method. The proposed tracker can also achieve a
trade-off between the accuracy and speed.
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