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Abstract

Context information on each corner of the whole image

is useful for visual tracking. However, some trackers may

not be able to model such information, this will result in

suboptimal performance. To directly model fully context

information is intractable since first the region of the fore-

ground is relatively small, the structure of foreground is lost

for some part by straightforwardly aware. Second, the tar-

get may share a similar structure of the surrounding dis-

tractors. To this end, we propose a cascaded context-aware

framework based on two networks that progressively model

the foreground and background of the various targets over

time. The first network pays attention to the most discrim-

inative information within the whole context and coarser

structure of the target, the second network focuses on the

self-structure information of the target. Depending on the

output of these two networks—the final context-aware map,

we can generate the bounding box of the target flexibly. Ex-

tensive experiments on 3 popular benchmarks demonstrate

the robustness of the proposed CAT tracker.

1. Introduction

With the powerful representation of the Convolutional

Neural Networks (CNNs), many CNNs-based trackers have

been proposed. Among them, most trackers use a rectan-

gle bounding box to label the position of the target. In such

cases, the target own model will contain the context infor-

mation more or less with the rectangle bounding box la-

beled result. Meanwhile, ignoring the context information

may have a drastic impact on tracking performance. First,

learning from a limited search area may lead to over-fitting

which is not robust to rapid deformation. Second, lack-

ing of real negative training examples can drastically crip-

ple the robustness of such trackers against clustered back-

ground, which will increase the risk of tracking drift specif-

ically when the target and context display similar visual

cues. Third, the trackers may be ambiguous to distinguish

the target from occlusion when the context information is

inadequately considered.

Figure 1: The examples of three categories of the context in-

formation. The target and distractors are labeled with green

ellipse and blue ellipse, respectively.

To minimize interference from the background, our main

idea is to pay attention to the context information on each

corner of the whole image. In our observations, the context

information can be divided into three categories broadly:

low difficulty, medium difficulty, and high difficulty. To

illustrate the basis of such classification, we give an exam-

ple in Figure 1. For the low difficulty level, i.e. smoothly

changing context with no/low difficulty distractors. As

shown in Figure 1(a), the whole context changes little. Al-

though the distractor (car) has the same texture as the tar-

get, the two have very different semantic information. It is

relatively easy to model context information in such cases.

For the medium difficulty level, i.e. uniformly changing

context with medium difficulty distractors. The whole con-

text in (b) is more complex than (a), but distractors (run-

ner) share the same semantic as the target. On this occa-

sion, the information with full context and all distractors

are helpful for improving the discriminative of the learned

features. For the high difficulty level, i.e. fast-changing

context with high difficult distractors. The context in (c) is

changing quickly, and the surrounding distractors (faces of

other players) share not only the same semantic but also the

same attributes (color, pose and so on) as the target. More-



Figure 2: An overview of the proposed CAT. The proposed framework consists of an image-based context-aware network and

a patch-based context-aware network. Depending on the output of these two networks, we use different strategies to generate

the bounding box of the target in location model. Best viewed in color.

over, all three categories have the same characteristic: the

target only accounts for a small region of the whole image,

which is intractable to model the full context directly. Moti-

vated by this, we propose a context-aware framework which

consists of two networks for modeling the foreground and

background in a cascaded way. Given a frame of a video,

our goal is to capture the full context of the whole image

and produce a clean context map for locating the target.

A few algorithms have been proposed to tackle the com-

plex context information. For person head detection task,

two context-aware CNNs were proposed to jointly model

the local, global and pairwise information within the whole

image [32]. For density estimation task, Wang et al. [33]

proposed a dual deep neural network (i.e. DNN-L and

DNN-G) to estimate the saliency region by the local and

global search. For crowd counting task, Sam et al. [28] put

forward switching CNNs that leverage different receptive

fields to improve the accuracy and localization of the pre-

dicted crowd count. For visual tracking task, Galoogahi et

al. [12] discovered a fundamental drawback of Correlation

Filters (CFs), and fused the background information to CFs.

Choi et al. [4] proposed a context-aware CFs for collecting

the context information in a local region. And Li et al. [19]

used static background information to help track the target

instead of only focusing on the target itself.

In contrast to [12], we utilize two deep networks

to model the foreground and background simultaneously,

rather than the hand-crafted features which are not ro-

bust to coping with the complex context. Different from

[4, 19], we aim to capture adaptive context for every cor-

ner of the whole image. An image-based context-aware

map (ICA map) derived from image-based context-aware

network (ICANet) captures the discriminative features de-

pending on the whole image and the coarser structure of

the target region. And this map is produced by a recur-

rent network consisting of feature extractor (conv1-conv5
of VGG-M) combined with multi convolutional LSTM units

[38] and a few convolution (deconvolution) layers. Mean-

while, A patch-based context-aware map (PCA map) gener-

ated from a patch-based context-aware network (PCANet)

is proposed to pay attention to the self-structure of the tar-

get to suppress the surrounding distractors. The PCA map is

generated by a graph-based RNN with several convolution

(deconvolution) layers. After that, the final context-aware

map (FCA map) is constructed by injecting the PCA map

to the ICA map. In the end, different strategies are used for

estimating the location of the target depending on the FCA

map (see Figure 2).

The contributions of this work are summarized as fol-

lows:

I, We propose a context-aware framework which consists

of an ICANet and a PCANet. The final context-aware map

generated from this framework is robust to complex back-

grounds throughout the whole scene.

II, We prove that the final context-aware map can be flex-

ibly embedded in two tracking frameworks.

III, Quantitative and qualitative evaluations demonstrate

the outstanding performance of our tracking algorithm com-

pared to the state-of-the-art techniques in OTB100 [37],

TC128 [21] and VOT2016 [17] benchmark.

The rest of the paper is organized as follows. We first

review the related work in Section 2. The detailed config-

uration of the proposed algorithm is described in Section

3. Section 4 illustrates the experimental results on three

large tracking benchmarks. Finally, conclusions are drawn

in Section 5.



2. Related Work

2.1. Visual Object Tracking

By considering the sampling strategy, recently published

trackers can be divided into two categories: two-stage [14,

16, 30, 10, 24] and one-stage trackers [7, 8, 6, 34, 29, 22].

The two-stage tracking framework consists of a sampling

stage and a classification stage. In practice, a large number

of candidate samples are drawn by a sampling strategy in

the sampling stage. The purpose of the classification stage

is to compute the positive probability of each candidate. By

the outstanding representation power of Convolutional Neu-

ral Networks (CNNs), some two-stage trackers have been

proposed [14, 16, 30, 10, 24]. CNN-SVM [14] employed an

online support vector machine (SVM), which discriminates

the target object from the background by learning target-

specific information in the CNNs features. However, the

feature learning and classification are implemented in a sep-

arate way which limits the performance of the CNN-SVM.

To overcome the separate strategy in CNN-SVM, Hyeon-

seob Nam et al. [24] proposed to learn the feature and clas-

sifier jointly, which is referred to as MDNet. The MDNet

was composed of shared layers and domain-specific lay-

ers, where each domain was formulated as a binary clas-

sification to identify the target object from the background.

SANet [10] was proposed to use the Recurrent Neural Net-

work (RNN) to model object structure, and incorporated the

RNN into MDNet to improve the robustness of similar dis-

tractors. Meanwhile, to solve the problem of appearance

variations and class imbalance in MDNet, Yibing Song et

al. [30] used adversarial learning to obtain the most robust

features of the objects over a long period and proposed a

high-order cost sensitive loss to decrease the effect of class

imbalance. Inspire by Fast R-CNN, Ilchae Jung et al. [16]

proposed a tracker named RT-MDNet to speed up the MD-

Net by an improved RoIAlign technology. Nevertheless,

RT-MDNet took little advantage of ROI pooling [13] as it

cannot encode the difference between highly spatial over-

lapped candidates.

Different from the two-stage trackers, the one-stage

trackers formulate visual tracking as a specific object

searching problem and directly calculate a response map

through a regression model. One-stage trackers can be

broadly classified into two categories: correlation filters

(CFs) based trackers [7, 8, 6] and deep regression networks

(DRNs) based trackers [34, 29, 22]. CFs trackers achieve

fast speed by taking advantage of computing the correlation

in the Fourier domain. [7] attempted to use activations from

the convolutional layer of CNNs in a discriminative corre-

lation filter, rather than the deep features in fully connected

layers. As the features from different CNNs layers charac-

terize different attributes of an object, [8] proposed to uti-

lize different convolutional layers to learn multiple CFs and

fuse multiple correlation maps to obtain the location of the

object. To reduce the number of parameters and memory,

the channel of features was reduced to speed up learning

correlation filters in [6]. Although the CFs based trackers

achieve the top performance, the features and correlation fil-

ters are optimized independently. As opposed to CFs based

trackers, DRNs have the potential opportunity to take full

advantage of end-to-end learning. Among the DRNs based

trackers, the FCNT [34] was proposed to use an SNet and a

GNet to compute a confidence map for predicting the loca-

tion of the object. CREST [29] fused the outputs of baseline

and another two residuals to estimate the location of the tar-

get object. Besides, DSLT [22] proposed a shrinkage loss

and an ensemble strategy to improve the performance of the

DRNs based trackers.

2.2. Context Modeling For Tracking

Lacking of context information modeling will lead to

poor discrimination against a cluttered background, and

thereby, the risk of spurious detection will be increased

when the target and its surrounding background shares sim-

ilar visual cues. There exists a piece of strong discrim-

inative information on the whole scenes of the consecu-

tive frames [40]. Several trackers have been proposed to

employ context information for visual tracking. [39] was

the first attempt to use segmented regions surrounding the

object as auxiliary objects for collaborative tracking. Key

points surrounding the object are first extracted to help lo-

cate the object location, and hand-crafted features i.e. SIFT

or SURF were then used to represent these consistent re-

gions. However, representing and finding consistent re-

gions was computationally expensive. To solve this prob-

lem, STC [40] computed the spatio-temporal context model

by Fast Fourier Transform (FFT). For better generalization,

Matthias Mueller et al. [23] proposed a generalized frame-

work CACF for Correlation Filters (CFs) based trackers.

In CACF, more context (i.e. another 4 orientational con-

texts) was extracted to improve the discriminative capacity

of the filters. More context will increase the feature dimen-

sionality, TRACA [4] was proposed to compress deep fea-

ture that is achieved by a context-aware scheme and utilize

multiple expert auto-encoders for accelerating the tracking

speed. However, we discover that such trackers rarely con-

sidering the comprehensive discriminative information on

the whole scenes of the successive frames. To this end, we

learn a cascaded context-aware framework for visual object

tracking.

2.3. Cascaded Structure

Cascaded structures have been proposed for improving

performance. Yilun Chen et al. [3] proposed a cascaded

pyramid network (CPN), which integrates the global pyra-

mid network (GlobalNet) and pyramid refined network (Re-



Figure 3: The architecture of our proposed ICANet.

fineNet) for multi-person pose estimation. Yicheng Wang

et al. [36] presented a cascaded WConv structure to ex-

tract the comparison features of two images for person re-

identification. Cai et al. [1] proposed a multi-stage ob-

ject detection framework, cascade R-CNN, aiming at high-

quality detection by sequentially increasing IoU thresholds.

Fan et al. [11] utilized a sequence of RPNs cascaded from

deep high-level to shallow low-level layers for robust vi-

sual tracking. By taking advantage of the cascaded struc-

ture, we propose a cascaded context-aware framework for

visual tracking. In our framework, an image-based context-

aware map (ICA map) derived from image-based context-

aware network (ICANet) is utilized to capture the discrim-

inative features depending on the whole image and the

coarser structure of the target region. Then, a patch-based

context-aware map (PCA map) generated from the patch-

based context-aware network (PCANet) is proposed to pay

attention to suppress the surrounding distractors in a local

context. After that, the final context-aware map (FCA map)

is constructed by mapping the PCA map to the ICA map.

3. Proposed tracking method

The details of the proposed ICANet and PCANet are

illustrated in 3.1 and 3.2. The tracking and updating are

shown in section 3.3, 3.4, respectively. And then, the train-

ing details of the model are illustrated in section 3.5.

3.1. Image-based Context-Aware Network

In our opinion, we argue that recurrent architecture to be

important for generating object-free context images, since

it allows the network to know where the object is in the se-

quential frames. As shown in Figure 3, the recurrent archi-

tecture is employed to generate image-based context-aware

map (ICA map) in a recurrent way. The whole network con-

sists of a feature extractor (five convolutional layer in VGG-

M) and five blocks. Each block is composed of a convo-

lutional layer that encodes features from the corresponding

output of feature extractor and an average pooling layer, a

convolutional LSTM unit and a deconvolution layer for gen-

erating the ICA map.

For the ICANet, the target and background are formu-

lated as a binary classification problem. And in most cases,

there exists contrast information between the target and its

context. In order to capture such contrast information, we

propose a contrast layer which is calculated by subtracting

the mean value of the features from the features themselves.

The mean value is implemented by an average pooling layer

with a kernel size of 3×3.

Compared with the appearance variation of the target,

the variation of context is relatively slower in most cases.

To this end, LSTM is selected to handle this long-term de-

pendency. As shown in Figure 3, the convolutional LSTM

unit (the pink rectangle) consists of an input gate It, a forget

gate Ft, a cell state Ct and an output gate Ot. Through the

time dimension, the relationships between gates and states

are expressed as:

It = σ(WxI∗Xt +WhI∗Ht−1 +WcI⊙Ct−1 + bI),

Ft = σ(WxF∗Xt +WhF∗Ht−1 +WcF⊙Ct−1 + bF),

Ct = Ft⊙Ct−1 + It⊙tanh(WxC∗Xt +WhC∗Ht−1 + bC),

Ot = σ(WxO∗Xt +WhO∗Ht−1 +WcO⊙Ct + bO),

Ht = Ot⊙tanh(Ct).

(1)

Where Xt is the feature generated by the contrast layer. The

cell state Ct will be fed into the next LSTM. The hidden

output features are represented by Ht. And ∗ is the con-

volution operation. The output features of the LSTM are

concatenated with the contrast features, which will be fed

into a deconvolution layer. After five blocks, the features

maps with different scales are integrated and up-sampled to

the input size. At last, a convolution layer with a kernel size

of 1×1 is operated on the output of the last deconvolution



Figure 4: The architecture of our proposed PCANet.

Figure 5: (a) is the groundtruth. (b) is the visualization of

the PCA map without LBoundary. (c) is the visualization of

the PCA map with LBoundary.

layer to produce a score layer which contains one channel.

For the loss function, we consider the output as the like-

lihood probability and the distribution of target/background

pixels is heavily biased, and hence the class-balancing cross

entropy loss function is used for training:

LICANet = −
1

K

K
∑

k=1

[QklogPk + (1−Qk)log(1−Pk)]

(2)

where K is the total number of training pixels, Qk is the

Gaussian shape label of the groundtruth, Pk is the predicted

target probability.

3.2. Patch-based Context-Aware Network

The architecture of ICANet is depending on the 2D

CNNs and convolutional LSTM, which is usually focused

on capturing coarser and long-term temporal structure.

However, such architecture may lack of the capacity of rep-

resenting finer temporal relation in a local spatiotemporal

window. Besides, the output labeled as a Gaussian shape

map, we find in some cases, the output cannot describe ac-

curate contour of the target.

Figure 4 illustrates the architecture of PCANet. We crop

a patch from the frame, which is centered at the highest re-

sponse area of the ICA map. The proposed PCANet consists

of a feature extractor (the first three convolutional layers in

ICANet) for constructing feature maps, and three blocks for

generating the patch-based context-aware PCA map. Each

block is composed of a convolutional layer for reducing

the dimension of features, an RNN unit for modeling self-

structure, and a deconvolution layer for incrementally en-

larging the features to the size of the input.

Our PCANet aims to obtain the structure of the target

itself from the feature extractor constructed from an image

patch. While the resolution of the target feature is low, the

target only accounts for a small part of an image. To cap-

ture the full structure of the target, we need to construct a

feature map with a high resolution. We address this require-

ment by enlarging the receptive field of each activation. To

these ends, the max-pooling layers followed by conv1 and

conv2 layers in VGG-M network are removed. Followed

by this operation, the output feature map of conv3 is four

times larger than the original conv3 in VGG-M network.

It allows us to extract high-resolution features and improve

the quality of the constructed structure.

The technique of constructing the structure of the target

itself is referred to as the RNN unit [10]. In each RNN

unit, we use several directed RNNs to model self-structure

of the target, i.e., we approximate the topology of an undi-

rected graph by the combination of some directed graphs.

In our RNN unit, the undirected graph is decomposed into

four directed graphs, i.e., right (G1), left (G2), up (G3)

and down (G4). By performing RNN, the hidden state

hn(n = 1, 2, 3, 4) is obtained by the corresponding Gn.

And the summation of all hidden layers is fed into the out-

put layer. The process can be expressed as:

h(vi)
n = φ(Unx

(vi) +
∑

vj∈PGn (vi)

Wnh
(vj)
n + bn),

y(vi) = σ(
∑

Gn∈Gu

Vnh
(vi)
n + c).

(3)

Where Un, Wn and Vn are the matrix parameters for cor-

responding Gn. bn and c are the bias terms. PGn
(vi) is the

predecessor of vi. After that, the output RNN unit is fed into

a deconvolution layer to enlarge the features. In the end, the

final output is a one-channel score map with the same size

as the input patch.

To emphasize the boundaries of objects, we utilized an

auxiliary loss called Boundary Loss LBoundary. The total

loss consists of the class-balancing cross entropy loss and

the Boundary Loss LBoundary which are summed. To com-

pute the Boundary Loss LBoundary, we first need to extract

the boundaries of the predict and groundtruth. In details,

the Sobel filters are selected as a convolution with a 3× 3
kernel to detect boundaries. Mathematically, the Sobel fil-

ters can be expressed as:

Sh =

⎡

⎣

1 0 −1
2 0 −2
1 0 −1

⎤

⎦, Sv =

⎡

⎣

1 2 1
0 0 0
−1 −2 −1

⎤

⎦ (4)



which encodes the horizontal and the vertical gradient re-

spectively. Then, the Sobel filters are constructed by con-

catenating the above filters. The LBoundary is calculated by

the mean square error between the groundtruth qk and the

prediction pk. Afterward, the whole loss function for train-

ing the proposed PCANet is calculated by:

LPCANet =−
1

K

K
∑

k=1

[qklogpk + (1− qk)log(1− pk)]

+ LBoundary

(5)

Figure 5 shows the visualization of the PCA map. Ac-

cording to Figure 5, our PCANet focuses more on the finer

structure of the target.

3.3. Target location determination

To estimate the location of a target, the final context-

aware map (FCA map) is first constructed by the projec-

tion of two results, e.g. the result of PCANet is mapped

to the result of the ICANet by the way of pixel value map-

ping. Then, we consider two different strategies to generate

a bounding box from the FCA map:

(1) Given the FCA map, we apply a per-pixel sigmoid

on the FCA map. Then, a binary mask is obtained by bina-

rization of the FCA map with a threshold of 0.5. Depending

on the binary mask, we generate the bounding box by axis-

aligned bounding rectangle. (denote as Seg)

(2) We embed the FCA map into the Bayesian frame-

work in which the maximum posterior estimate is com-

puted based on the likelihood of the candidate belonging

to the target. To capture more clear and robust description

of the target after obtaining the FCA map, the independent

component analysis (ICA) is utilized to describe the de-

tailed information of a target. (denote as ICA)

The ICA is developed to extract the desired signal among

source components guided by references. To get the refer-

ence, we first convolve the input frame with a Laplacian of

Gaussian filter and output a boundary map. Then, the ref-

erence mr generated by the boundary map takes element-

wise multiplication with the FCA map. Given the reference

mr and ms (e.g. the FCA map) as the signal, the desired

signal is separated by a projection space s = wTms. And

the goal is to maximize the negentropy J(s):

J(s) ≈ ρ‖E[Q(s)]− E[Q(ǫ)]‖
2

(6)

ε(s,mr)≤ξ (7)

where Q(s) is the non-quadratic function, ρ is a constant, ǫ

is g Uniform variable, ε(·) is a norm function and E[·] is the

expectation. And the result of ICA is fed into the observa-

tion model in the Bayesian framework for visual tracking.

In this framework, the location of the target is denoted as

lt = (x, y, σ), where x, y and σ represent the center coor-

dinates and scale of the bounding box, respectively. And

the candidate samples are normalized to the canonical size

maps {CC
(r)
t } with v

(r)
t (i, j) being the value derived from

Eq.7 at location (i, j) of the r-th candidate at time t.

To this end, the confidence of the r-th candidate is com-

puted as the sum of all the heat map values within the canon-

ical size maps: c(r) =
∑

(i,j)∈CC(r) v(r)(i, j). The final lo-

calization is computed as:

c∗t = argmax
r

c
(r)
t (8)

where ∗ corresponds to the best candidate state l∗t in the

current frame.

3.4. Online Updating

The online updating strategy plays an important role in

the process of tracking. For the ICANet, we feed the net-

work with an entire frame. Since the ICANet is trained

on sequences with a maximum length of 16 frames, we

reset the LSTM state after every 16 frames. The state of

the LSTM is set to the output from the first forward pass,

which maintains an encoding of the tracked object. For the

PCANet, we incrementally update our network frame-by-

frame with the estimated binary mask.

3.5. Training Details

For the ICANet, the layers in feature extractor from

VGG-M are initialized with the pre-trained weights, the

other parameters are initialized randomly with a truncated

normal distribution. The AdamOptimizer method is used

for updating with a learning rate of 10−4. The ICANet is

trained with two stages. During the first stage, the ICANet

is trained for 300 epochs with a batch size of 16 frames from

the CDnet2014 dataset. Then, the ICANet is fine-tuned on

the DAVIS2016 dataset for 200 epoch with a batch size of

16 frames. For the PCANet, the feature extractor is initial-

ized with the first three convolutional layers of the ICANet.

We use an initial learning rate of 10−5, which continues

for approximately 300 iterations. We set all the parameters

fixed throughout the experiments and datasets.

4. Experimental Results and Analysis

To evaluate the performance of our CAT, we follow the

standard metrics. In the OTB100 [37] dataset, we utilize the

popular one-pass evaluation (OPE) with precision and suc-

cess plots metrics. For the precision metric, the estimated

locations are measured within a certain threshold distance

from groundtruth locations. In general, the threshold dis-

tance is set as 20 pixels. The success plot metric focuses



Table 1: Ablation study on the contribution of different

components.

PCANet Seg ICA LBoundary Precision Success

ICANet � 0.774 0.525

ICANet � 0.851 0.627

ICANet � � 0.814 0.602

ICANet � � 0.903 0.695

ICANet � � � 0.818 0.608

ICANet � � � 0.909 0.697

on the overlap ratio between the predicted bounding box

and the groundtruth bounding box. The precision and suc-

cess plots are also utilized in TC128 dataset [21]. In the

VOT2016 dataset [17], each tracker is measured by the met-

rics of Accuracy Ranks (A), Robustness Ranks (R) and Ex-

pected Average Overlap (EAO).

4.1. Implementation Details

The proposed algorithm is implemented in MATLAB

with Matconvnet toolbox, runs on a PC with an Intel(R)

Core(TM) i7-4790k CPU and an NVIDIA Tesla K40c GPU.

The input size of ICANet and PCANet is 300× 300 and

100× 100, respectively. The LSTM layers have 1024 units

each. We initialize all new layers with the MSRA initial-

ization method. The label of the ICANet is generated using

a two-dimensional Gaussian function with a peak value of

1.0. The state of the target in the first frame is initialized by

the GrabCut [27] for the PCANet. The dimension of hidden

layers of RNNs is set to 512, 256 and 128. For the track-

ing strategy of the Bayesian framework, a Gaussian distri-

bution model is used to generate 600 candidates for each

frame. The variance of candidate location parameters are

set to {10, 10, 0.01} for translation and scale, respectively.

4.2. Ablation study

To investigate the effectiveness of the components of

CAT, we conducted six variants of CAT and evaluated them

using OTB100. The gray lines represent the variants of the

ICANet with the Seg strategy. The White lines exhibit the

variants of the ICANet with the ICA strategy. The precision

and success scores of the ablation study are illustrated in the

last two columns of Table 1. For the Seg strategy, “ICANet

+ PCANet” and “ICANet + PCANet +LBoundary” achieved

4% and 4.4% improvement in precision performance, re-

spectively. For the ICA strategy, “ICANet + PCANet” and

“ICANet + PCANet + LBoundary” achieved 5.2% and 5.8%

improvement in precision performance, respectively. The

results show that the proposed framework can improve per-

formance with considering fully context and boundary in-

formation. The architecture of “ICANet + PCANet + ICA
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Figure 6: (a) and (b) are the precision and success plots on

OTB100, respectively.
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Figure 7: (a) and (b) are the precision and success plots on

TC128, respectively.

+ LBoundary” is selected to compare with other state-of-the-

art trackers on the following 3 benchmarks.

4.3. Experiments on OTB100 Dataset

We compare the proposed CAT tracker on OTB100

dataset with the following recent published 16 trackers:

SiamRPN++ [18], DSLT [22], DAT [26], DaSiamRPN [42],

MCPF [41], TADT [20], ACT [2], meta crest [25], PTAV

[9], CREST [29], TRACA [4], CNN-SVM [15], BACF

[12], ACFN [5], cfnet [31] and UDT [35]. The tracking

performance was measured by conducting a one-pass evalu-

ation (OPE) based on two metrics: center location error and

overlap ratio. The results are shown in Figure 6. Accord-

ing to Figure 6, the CAT tracker achieves competitive per-

formance among the state-of-the-arts on this dataset. The

values of the precision plot and the success plot are 0.909

and 0.697 on OTB100, respectively.

4.4. Experiments on TC128 Dataset

For experiments on the TC128 [21] dataset containing

128 videos, a comparison with 12 state-of-the-art track-

ers is shown in Figure 7. Among the compared methods,

our approach improves the precision score from 0.8073 of

the state-of-the-art tracker to 0.8153. Figure 7 (b) shows

the success plot overall 128 videos in TC128 dataset. The



Table 2: Comparisons with the state-of-the-art trackers on the VOT2016 dataset. The results are presented in terms of

expected average overlap (EAO), accuracy and robustness. (The first and second best results are shown in color.)

Trackers CAT ECO C-COT Staple MDNet CREST SiamFC ECO-hc

EAO 0.332 0.367 0.331 0.295 0.257 0.283 0.235 0.322

A 0.57 0.55 0.54 0.54 0.54 0.51 0.53 0.54

R 0.23 0.20 0.24 0.38 0.34 0.25 0.46 0.30

Figure 8: Some results of the proposed CAT tracker on a subset of challenging sequences.

CAT tracker outperforms state-of-the-art approaches with

an AUC score of 0.6138. The top rank verifies the robust-

ness of the proposed CAT.

4.5. Experiments on VOT2016 Dataset

Finally, we evaluate our CAT on Visual Object Tracking

(VOT2016) benchmark [17]. VOT2016 report shows that

the strict state-of-the-art bound is 0.251 under the EAO met-

ric. Trackers whose EAO value exceeds this bound is de-

fined as state-of-the-art. We compare the CAT tracker with

7 state-of-the-art trackers including ECO, C-COT, Staple,

MDNet, CREST, SiamFC and ECO-hc. As illustrated in

Table 2, the CAT tracker achieves competitive results with

higher ranking within all the compared trackers.

4.6. Analysis and Discussion

Qualitative results of the proposed CAT tracker on a

subset of challenging sequences are shown in Figure 8.

The proposed CAT handles large appearance variations well

caused by deformation, in-plane and out-of-plane rotations.

The ICA map generated via ICANet captures more dis-

criminative features for separating the foreground and back-

ground, i.e. it maintains the most robust features over a long

temporal span. The advantage of exploiting the temporally

robust features by recurrent units in PCANet is proved when

the target deals with occlusion. Moreover, our PCANet

effectively captures a variety of self-structure variations.

Compared to [12, 42], our CAT achieves leading perfor-

mance in the presence of illumination variation and back-

ground clutter. This is because of our extracted context in-

formation for every corner within the whole image. Mean-

while, the FCA map is capturing the coarse and fine-grained

information of the target, our tracker performs better than

[12] even the target size of these sequences is small.

5. Conclusions

In this paper, we propose an effective context-aware

framework for visual tracking. This framework consists

of an ICANet and a PCANet. The ICA map derived from

ICANet can delineate a coarse map of the target object. To

separate the target from surrounding distractors, the PCA

map captures the self-structure of target by PCANet. After

that, both maps are fused to form the final context-aware

map (FCA map). Depending on the FCA map, we use dif-

ferent strategies to generate the bounding box of the target

flexibly. Quantitative and qualitative experiments demon-

strate the robustness of the proposed method.
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