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Abstract

Visual understanding tasks on the drone platform have

gained considerable attention recently due to the rapid de-

velopment of drones. In this paper, we present a hierarchi-

cal multi-target tracker (HMTT) for visual data taken from

drones. Our approach is specifically directed against se-

quences shot from drone’s view with several stages hierar-

chically performed. The detector detects objects taken from

different viewing angles and the detections are filtered to

ensure the correctness. Moreover, we propose a method

to locate the frames in the case of camera’s fast move by

two-norm of the homography matrix. Based on that, per-

formance on Multi-Object Tracking is improved with the in-

volvement of Single Object Tracking and a re-identification

subnet. Our method participated in the Multi-Object Track-

ing Challenge (Task 4) of VisDrone2019 benchmark and

achieved state-of-the-art performance.

1. Introduction

In the wake of drones (or UAVs) equipped with cam-

eras, analysis on captured sequences continues to receive

much attention in recent years. As of today, drones have

been widely employed in diversified fields, including agri-

culture, meteorology, aerial photography and surveillance.

Multi-Object Tracking (MOT), aiming to recover the tra-

jectories of objects across frames, plays an important role in

autonomous drone systems. However, the vast majority of

existing MOT algorithms are hardly optimal for sequences

captured by drones as a result of perspective variations,

which makes developing an innovation method specifically

catering for drones urgent and challenging.

Tracking-by-detection is a widely used pipeline in mul-

tiple object tracking thanks to the rapid progress in object

detection. Object trajectories are generated by perform-

ing data association on detection basis. Some approaches

[13, 29, 31, 33] have made excellent progress with the aid

of appearance and motion models. However, nearly all the

steps of these algorithms are based on the accuracy of detec-

tion result, which can be hard to improve due to occlusions

and background clutters. In the meantime, unlike surveil-

lance cameras which are fixed, drones capture visual data

whilst moving and same kind of objects might exhibit dif-

ferent features in diverse drone views. These issues make

it difficult to perform precise estimate on object location as

well as high quality of trajectory recovery.

In this paper, we provide a hierarchical multi-target

tracker (HMTT) based on detection for drone vision. Hi-

erarchical operating steps significantly enhance the particu-

larity and exactitude. During the stage of determining ob-

ject position, we first divide each classification into two cat-

egories depending upon the shooting angles (right above

and inclined top) to get accurate detection kinds. Then,

we perform detection result filtering by generating tracklets

to remove unreliable bounding boxes, for such detections

can seriously reduce the performance of data association in

subsequent processing. Based on the reliable detections,

we restart the association stage with Single Object Track-

ing (SOT) and Kalman filtering [12] additionally employed

to fill the missed detection gaps. Meanwhile, to maintain

stable tracking when the camera suddenly moves, we ex-

tract SIFT (Scale Invariant Feature Transform) points [19]

to assist data association and single target tracking across

consecutive frames. Each trajectory’s appearance feature is

used to calculate its distance from other ones, which is re-

garded as the measure of coalescence.

The main contributions of this article are summarized as

follows:

• For video data captured by drones, we propose a hier-

archical MOT method incorporating SOT and Kalman

filtering, with an object re-identification (ReID) net-



work facilitating to polish the result.

• We propose a modified object detection method adapt-

ing to different drone’s shooting angles, which further

filters out unreliable detections by generating tracklets

to avoid their adverse impact on follow-up tracking.

• We propose a novel method to determine when the

camera moves abruptly by using two-norm of the ho-

mography matrix.

2. Related works

2.1. Drone-based visual data understanding

Though computer vision has been brought closer to

drones, the lack of publicly available large-scale drone-

based benchmarks or datasets somewhat hinders the fur-

ther development in drone-based visual data understanding.

There are merely a small number of datasets related. With

drone platforms, [11] presents a dataset for car counting

and [16, 21, 28] respectively collect video sequences for

object tracking. Moreover, VisDrone2018 dataset [37] fo-

cuses on core problems in computer vision fields and the

challenge workshop, Vision Meets Drone Video Object De-

tection and Tracking (VisDrone-VDT2018) [38], proposed

plentiful methods which pushed the boundary of automatic

understanding of drone-based visual data.

2.2. Object detection

Object detection is one of the fundamental problems in

computer vision. Two-stage detectors generate a set of re-

gion candidates and classify each using a network. RCNN

[10] and Fast-RCNN [9] rely on low level region proposal

methods while Faster-RCNN [27] generates region proposal

by introducing a region proposal network (RPN). On the

other hand, one-stage detectors are able to achieve higher

computational efficiency with region proposal generation

stage completely dropped. YOLO [26] directly predicts de-

tections with fewer anchor boxes, namely a grid of input

image. SSD [18] places anchor boxes densely over feature

maps. Recently, other than these anchor-based one-stage

approaches, keypoint estimation for object detection gradu-

ally ascends the stage. CornerNet [14] employs two bound-

ing box corners as keypoints while ExtremeNet [36] de-

tects four extreme points (top-most, leftmost, bottom-most,

right-most) and one center point of objects. CenterNet [35]

simply presents per object by a single center point with

other properties thereafter regressed from image features at

that location. Given that center points are easier to detect,

we choose CenterNet for detection in the multi-object track-

ing challenge due to its high accuracy.

2.3. Multi-object Tracking

Plenty of recent MOT methods tend to deal with the task

based on the tracking-by-detection paradigm. IOU Tracker

[3] relies on no other than intersection-over-union (IOU)

of detections and SORT [2] performs Kalman filtering [12]

and data association using Hungarian algorithm [22]. Deep

SORT [31] combines motion and appearance information to

provide greater accuracy in association metric.

On the other hand, tremendous progress has been made

in SOT field recently and Siamese networks especially gain

considerable attention due to their balanced accuracy and

speed. SiamRPN [15] achieves end-to-end representation

learning regarding tracking as a one-shot local detection

task and DaSiamRPN [39] learns distractor-aware features

for explicit distractors suppression. Therefore, SOT track-

ers have been put into use of MOT tasks. V-IOU Tracker [4]

makes improvements on basis of IOU Tracker [3] recurring

to visual tracking to continue a track in the absence of de-

tections. Analogously, SAC [6] incorporates a SOT tracker

into tracking schemes to cope with missing detections.

However, we find that there is rarely a good way to cope

with the small number of false detections as well as cam-

era’s fast motion. Therefore we propose a new method

to improve MOT performance with detection filtering and

frame monitoring added.

3. Proposed method

The proposed method, HMTT, consists of four parts: (1)

object detection and filtering; (2) frame monitoring; (3)

tracking; (4) trajectory connection. Figure 1 shows the

framework of our approach and each stage included will be

elaborated in this section.

3.1. Object detection and filtering

We firstly use a CenterNet [35] network with hourglass

[23] backbone to perform object detection. Unfortunately,

for same kind of objects under disparate vision angles, fea-

tures may be extracted with large difference, so it is difficult

to obtain detection results robustly, as shown in Figure 2.

We observe that drone’s shooting angles roughly fall into

two categories as RA (right above) and IT (inclined top).

Consequently, we separate each object category into two va-

rieties, namely RA and IT, to avoid confusing the network.

A low score threshold is set here to reserve as many correct

results as possible in spite of FPs (False Positives).

To be specific, we ulteriorly label each bounding box on

the train and validation set manually given their vision an-

gles. For instance, a bounding box labeled as a bus would

be specifically classified as a RA-bus or an IT-bus. This

further manual annotation is easy to finish due to the al-

most constant shooting angle in a sequence. Also, we deal

with the detection results on the test set regarding sequence

as the basic unit. Right after obtaining the bounding box

results including categories shot from RA and IT, we calcu-

late RORA (the ratio measuring the amount of objects shot
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Figure 1. Overview of our method, which processes input sequences hierarchically at the four different stages.

Figure 2. Same kind of objects under disparate vision angles. First

row: sample patches shot from IT (inclined top). Second row:

sample patches of corresponding categories shot from RA (right

above).

from right above) in a sequence by:

RORA =
N(RA)

N(RA) +N(IT )
, (1)

where N(RA) means the number of detected objects shot

from right above in the sequence and similarly for N(IT ).
In the light of RORA, we strictly define the sequence’s

shooting angle as RA-shot if the ratio is rather high or IT-

shot if it is extremely low. Sequences whose RORA locates

in the middle of the thresholds (mid-shot) will be coped

with in a loose way because of their changeable or awk-

ward shooting angle. We simply throw away IT results in

RA-shot sequences and discard RA results in IT-shot ones.

As for mid-shot sequences, we perform the reintegration to

restore the number of categories.

However, false detections are inevitable, so we need

to filter out unreliable ones so that true detections can be

tracked with no deviations. For the purpose of moving out

FPs, the detection results are then fed into a tracker to gen-

erate tracklets. Following IOU Tracker [3], we assume true

detections of an object in consecutive frames own a high

overlap ratio that of IOU, which is calculated by:

IOU(a, b) =
Area(a)

⋂

Area(b)

Area(a)
⋃

Area(b)
. (2)

A tracklet extends if the last detection in the previous frame

associates with a new detection according to their IOU. The

distance matrix M is constructed by IOU distance:

mi,j = 1− IOU(Ti, Dj), (3)

where Ti denotes the last bounding box of the ith tracklet

and Dj represents the jth detection box, and the distance

between them is denoted as mi,j . With the aid of Hungar-

ian algorithm [22] and the distance matrix M , we find the

optimal pairs of tracklets and detections. New tracklets start

with detections not assigned to the existing ones and the ex-

isting tracklets end without any detection assigned. Then

we get rid of the detections neither in any of the tracklets

nor with high enough detection score. As shown in Fig-

ure 3, nearly all the left detections are reliable.



Figure 3. Sample detection filtering outputs using IOU Tracker.

Left column: detection results of CenterNet. Right column: re-

fined detection results after filtering.

3.2. Frame monitoring

The purpose of frame monitoring is to determine if there

is a sudden change in drone motion in order to correct the

tracking strategy. Drones generally shoot videos while fly-

ing. Slow flights turn out to be innocuous to tracking, but

camera’s sudden move does not. It has serious effects upon

the accuracy of association based on IOU at the following

tracking stage. As a result, we perform frame monitoring

as pre-processing in order to locate the frames affected by

camera’s fast motion.

Following [19], we extract SIFT points in every frame

of a sequence and attempt to match them across consecu-

tive images by k-NN (k-nearest neighbors algorithm). To

be specific, for one key point in a frame, the algorithm is

used to find the two nearest points in the consecutive pic-

ture. If the ratio of the closest distance to the next closest

is less enough, we will retain the closest one and consider

the pair as a good match. Hence come a quantity of well-

matched points across consecutive frames. By the use of

RANSAC [7] algorithm, four pairs are singled out to figure

out the homography matrix, which can transform an image

from one view to another through perspective transforma-

tion calculated by:

⎡

⎣

x1

y1
1

⎤

⎦ = H

⎡

⎣

x2

y2
1

⎤
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⎡
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h10 h11 h12
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⎤

⎦

⎡

⎣

x2

y2
1

⎤

⎦, (4)

where x1, y1 and x2, y2 respectively represent the homoge-

neous coordinates of corresponding points, and H denotes

the homography matrix. To measure the intensity of cam-

era’s movements, we use two-norm of the homography ma-

trix as criterion and then pick out the locomotor frames out

of stable ones for adaptive operations at the next stage. The

two-norm is computed using Equation 5.

‖H‖
2
=

√

λmax(HTH), (5)

where λmax(·) represents the maximal eigenvalue of the

matrix product. In this way, we convert mutation degree

of the multi-dimensional motion of camera into a simple

scalar representation, which is more suitable for algorithm

discrimination. As shown in Figure 4, SIFT image align-

ment using Equation 4 performs well in locomotor frames.

3.3. Tracking

Detection filtering makes sure the reliability of bound-

ing box results, but it is inevitable to miss some positive

ones. So we present an algorithm attempting to fill the gaps

while associating the detection results. Based on the frame

monitoring stage, we divide the algorithm flow into two

branches for stable frames and locomotor ones. Further-

more, Kalman filter [12] and a DaSiamRPN tracker [39]

are used for higher association validity and better tracking

continuity.

Algorithm 1 shows the tracking procedure of single sta-

ble frame and we explain the whole tracking stage in the

following steps.

Step 1. Initially, the sets of trajectories including Ta of ac-

tive tracks, Tt of tentative tracks and Tf of finished tracks

are all empty. The algorithm begins with the first frame in a

sequence.

Step 2. For a stable frame, execute the Step 3. For a loco-

motor one, execute the Step 4 to 5.

Step 3. We send Ta, Tt, Tf and the detection result D

of current frame into Algorithm 1 for single frame track-

ing procedure, where KF (·) means Kalman filtering and

SOT (·) denotes the single object tracking with DaSi-

amRPN.

Step 4. Some fine adjustments for Algorithm 1 are per-

formed. We work out the homography matrix between the



Figure 4. Illustration of cross-frame perspective transformation based on SIFT points matching. The first two columns show the samples

of consecutive frames and the last one shows the previous frame after transformation using the homography matrix.

previous frame and the current one, then use it to calcu-

late the transformed locations of bounding boxes in the last

frame, which are also the last boxes of tracks in Ta and Tt.

Then they replace the Kalman filtering predictions in line 2

and 3 to do the Hungarian algorithm. Meanwhile, the SOT

result, bSOT , is based on the transformed box location and

SIFT image alignment.

Step 5. In line 16, we no longer perform Kalman filtering

and directly determine whether tR can be sent into Tf ac-

cording to its length, just following line 28 to 30. Moreover,

we get rid of the Kalman filtering operation in line 20 and

for the tracks processed in line 20 to 34, we directly bring

them to an end casting away the last bounding boxes gener-

ated by KF and execute line 28 to 30.

Step 6. Go back to Step 2 to process the next frame, unless

all the frames in the sequence have been processed. We treat

all the tracks in Tf and long enough ones in Ta and Tt (the

last bounding boxes of tracks in Tt generated by KF are

cast away) as results.

Step 7. We extend all the result tracks forward using DaSi-

amRPN until any of the following condition is satisfied: (1)

tracker tracking to the first frame; (2) over half area of the

tracking box hanging out of frame; (3) tracking result scor-

ing lower than δfSOT ; (4) tracking result overlapping too

much (more than δfIOU calculated by IOU) with some cer-

tain bounding box in another track; (5) IOU of tracking re-

sults between consecutive frames lower than δadIOU .

For algorithm 1, note that in line 2 and 3, we take ad-

vantage of the predictions from line 1 to do the Hungarian

algorithm where distance matrix M constructed by IOU dis-

tance serves as the criterion to find optimal pairs of tracks

and detections, exactly as the detection filtering stage. The

first pair enclosed by brackets denotes the successfully ass-

signed detection and track while the following two mean the

left ones. In addition, score(·) in line 13 is calculated by the

output score of SOT tracker. This algorithm aims to asso-

ciate highly correct detections while filling gaps with SOT

results and use Kalman filtering to mitigate occlusions.

We change the algorithm for locomotor frames because

Kalman filtering is no longer valid in this case. Also, both

IOU distance and the SOT tracker are based on location in-

formation which becomes trustless. So all the moves about

Kalman filtering are deleted or replaced. We specifically ap-

ply the image alignment for association and SOT to reduce

the impact of camera’s rapid movements.

Also, as each of the tracks begins with a specific detec-

tion, we compensate for its missing front part with SOT in

Step 7.

3.4. Trajectory connection

Notwithstanding that Kalman filtering alleviates the

problems brought by occlusions, probability mass still

spreads out in state space in the case of long term object

disappearance. In addition, both irregular movements and

initial entries have an impact on Kalman filtering forecast.

So we introduce a ReID network to get same object’s tra-

jectories merged. OSNet [34] is applied here because of its

capacity of learning omni-scale feature representations.

The ReID features extracted with OSNet represent

bounding boxes rather than trajectories. Thus we pro-

pose an exhaustive algorithm that feature distances of every

pair of bounding boxes from two trajectories are calculated

and the minimum one determines whether they need to be

merged. Specifically, we use Euclidean distance of features



Algorithm 1: Tracking procedure of single stable

frame

Input:

The sets of trajectories: Ta of active tracks, Tt of

tentative tracks and Tf of finished tracks;

The set of bounding boxes D detected in current

frame;

Output:

The sets of updated tracks Ta, Tt, Tf ;

1 All the tracks in Ta and Tt get predictions with the

help of Kalman filtering;

2 [DH , TH ], DR, TR = Hungarian(D, Ta);

3 [D′

H , T ′

H ], DL, TL = Hungarian(DR, Tt);

4 Ta, Tt, Tf = φ;

5 for each [dH , tH ] in [DH , TH ]
⋃

[D′

H , T ′

H ] do

6 tH ← dH , Ta ← tH ;

7 end

8 for each tR in TR do

9 bSOT = SOT(tR);

10 dbest = dj where max(IOU(dj , bSOT )),
dj ∈ DL;

11 if IOU(dbest, bSOT ) � δIOU then

12 tR ← dbest, remove dbest from DL,

Ta ← tR;

13 else if score(bSOT ) � δSOT then

14 tR ← bSOT , Ta ← tR;

15 else

16 tR ← KF (tR), Tt ← tR;

17 end

18 end

19 for each tL in TL do

20 bkf = KF (tL);
21 dbest = dj where max(IOU(dj , bkf )),

dj ∈ DL;

22 if IOU(dbest, bkf ) � δIOU then

23 tL ← dbest, remove dbest from DL,

Ta ← tL;

24 else

25 tL ← bkf ;

26 if all the last 20 tracking boxes of tL are

generated by KF then

27 remove the 20 boxes from tL;

28 if len(tL) � Lmin then

29 Tf ← tL;

30 end

31 else

32 Tt ← tL;

33 end

34 end

35 end

36 for each dj in DL do

37 start a new track t with dj ;

38 Ta ← t;

39 end

as measurement so the distance between two trajectories is

defined as:

d(x, y) = minEu(xi, yj), (6)

where xi is the ith bounding box of one trajectory x and yj
is the jth bounding box of the other trajectory y. Eu(·, ·)
denotes the Euclidean distance of the two boxes’ ReID fea-

tures.

For the trajectories which need to be merged, we connect

them with linear interpolation if they are close enough on

the timeline. Otherwise we simply label them with a same

identity.

4. Experiment

In this section, we first introduce the benchmark dataset

and experiment details. Then the evaluation of the work-

shop challenge is introduced with our results presented.

4.1. Dataset

The VisDrone2019 dataset comprises 288 video clips

formed by 261,908 frames and 10,209 static images. These

frames are manually annotated with more than 2.6 million

bounding boxes of targets of frequent interests. To evalu-

ate our algorithm, we use the Multi-Object Tracking Chal-

lenge (Task 4) dataset which provides 56 video sequences

for training, 7 sequences for validation and 16 sequences

for workshop competition testing. Ten object categories of

interest including pedestrian, person, car, van, bus, truck,

motor, bicycle, awning-tricycle, and tricycle are annotated

while the competition solely considers five object categories

in multi-object tracking evaluation, i.e., car, bus, truck,

pedestrian, and van. Some rarely occurring special vehicles

labeled as others are ignored.

4.2. Implementation details

Object detection and filtering. Though people is ex-

cluded from object categories of interest, it is called back in

our work due to its high similarity with pedestrian. We fine-

tune the CenterNet [35] detector pretrained on MS COCO

[17] dataset and firstly set the detection score threshold as

0.3. The RORA thresholds for differentiating shooting an-

gles of sequences are as strict as 0.1 and 0.9. No additional

processing is required for people and pedestrian results due

to their close distance between each other in location un-

der some circumstances. However, we need to deal with

vehicle results to eliminate some redundant boxes. NMS

(non-maximum suppression) is used for RA-shot sequences

while we process vehicle results in IT-shot and mid-shot se-

quences according to NIOU (Nest-IOU), defined as follows:

NIOU(a, b) =
Area(a)

⋂

Area(b)

min(Area(a), Area(b))
. (7)

If the NIOU of two detection boxes exceeds 0.7, we merely

remain the enclosing rectangle of them. It successfully



avoids the situation where some part of an object is simul-

taneously considered as a new whole one. With multi-scale

evaluation, the performance on small objects gets promoted.

In the filtering phase, all sequences are processed with the

IOU distance threshold of 0.5 while using the Hungarian

algorithm. Tracklets in RA-shot sequences and IT-shot se-

quences are generated strictly with every detection scoring

over 0.45 and the maximum should be higher than 0.5. Ev-

ery tracklet should last 6 frames at least. Tracklets in mid-

shot sequences are eased up with every detection scoring

over 0.35 and the maximum over 0.4. The length require-

ment has also been lowered to 2 frames. Moreover, tracklets

containing more than two detections classified as people are

entirely thrown away and we pick up back detections scor-

ing over 0.68 even if they have been dropped during track-

lets generation.

Frame monitoring. We screen out locomotor frames of

a sequence after getting the homography matrix set. The

mean and standard deviation of the matrices’ two-norms

quantifies the overall movement of camera and we define

the threshold using Equation 8:

thresh = µ+ 2σ, (8)

where µ and σ indicate the mean and the standard devia-

tion. Frames with homography matrix whose two-norm ex-

ceeds thresh are defined as locomotor frames and the other

frames are deemed as stable ones.

Tracking. A number of parameters need to be set at this

stage. Starting with the IOU distance threshold for Hungar-

ian algorithm, we set it loosely as 0.8 with confidence in the

filtered detection results. We pick up back unassigned de-

tections with IOU threshold δIOU as 0.35. For SOT part, we

get the pretrained DaSiamRPN [39] model on OTB dataset

[32] and use it in our experiment. The score determining

whether to add the SOT box to the track is computed as:

scorei =

{

scoreSOT if ∄scorei−1

scoreSOT ∗ scorei−1 if ∃scorei−1

, (9)

where scoreSOT denotes the SOT score in current frame.

If the last bounding box of the trajectory is also generated

by SOT, we multiply scoreSOT by the score in previous

frame. Otherwise we simply use the current SOT score. We

set 0.998 as the threshold δSOT in stable frames and 0.4 in

locomotor ones. Only if scorei exceeds the threshold, can

the SOT box be attached. Meanwhile, we set Lmin as 3 to

filter out badly short tracks. For the final forward tracking

session, thresholds for the stopping condition include 0.1 as

δadIOU , 0.5 as δfIOU , and 0.998 as δfSOT .

Trajectory connection. In virtue of OSNet [34], Two

different models with same structure are trained for pedes-

trian and vehicles respectively. Trajectories are merged sup-

posing their Euclidean distance less than 20 for pedestrian

and 30 for vehicles. We connect them with linear interpo-

lation if they are apart from each other no more than 40

frames.

4.3. Evaluation and results

The protocol in [24] is used to evaluate the tracking per-

formance. A track is considered correct if the IOU overlap

with ground truth is larger than a threshold. Three thresh-

olds in evaluation, i.e., 0.25, 0.50, and 0.75 are employed

here. The performance of an algorithm is evaluated by av-

eraging the mean average precision (mAP) across object

classes over different thresholds.

We evaluate the performance of our approach on the

VisDrone2019-MOT test-challenge dataset and obtain the

results as shown in Table 1. Our HMTT attains the highest

mAP comparing to the six baseline methods and Ctrack[38],

the MOT-track winner of VisDrone-VDT2018 Challenge.

Meanwhile, among a total of 12 teams participating in the

MOT task this year, our proposed method ranks the fourth

place. Some final visualizations are shown in Figure 5.

5. Conclusion

In this work, we propose a novel approach for Multi-

Object Tracking in visual data taken from drones. To adapt

perspective variations, we improve the object detector by

fine classification. Detection filtering is performed to get

rid of FPs which lead to object shifting and tracking fail-

ing. Besides, we screen out the frames affected by the fast

motion of drones using two-norm of the homography matrix

for separated treatment. With the help of single object track-

ing and re-identification, the Multi-Object Tracking perfor-

mance gets promoted significantly. The proposed method

performs well on the VisDrone2019 Multi-Object Tracking

test-challenge dataset.
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